5.4 Square Roots for Prime Power Modules

A simple procedure (implicitly using Hensel's lifting) allows to extend the square root algorithms from prime modules to prime powers. Let p be a prime $\neq 2$, and let $e \geq 2$. Let z be a quadratic residue $\bmod p^{e}$. We want to find a square root of z.

Of course z is also a quadratic residue $\bmod p^{e-1}$. Assume we already have found a root for it, that is a y with $y^{2} \equiv z\left(\bmod p^{e-1}\right)$. Let

$$
a=1 /(2 y) \bmod p
$$

and $y^{2}-z=p^{e-1} \cdot u$. We set

$$
x:=y-a \cdot\left(y^{2}-z\right) \bmod p^{e} .
$$

Then we have

$$
\begin{aligned}
x^{2} & \equiv y^{2}-2 a y\left(y^{2}-z\right)+a^{2}\left(y^{2}-z\right)^{2} \equiv y^{2}-2 a y p^{e-1} u \\
& \equiv y^{2}-p^{e-1} u=z \quad\left(\bmod p^{e}\right)
\end{aligned}
$$

Hence x is a square root of $z \bmod p^{e}$.
We wont explicit this algorithm but illustrate it with two examples:

Examples

1. $n=25, z=19$. We have $p=5,19 \bmod 5=4$. Hence we can take $y=2$ and $a=1 / 4 \bmod 5=4$. Then $y^{2}-z=-15$ and

$$
x=2+15 \cdot 4 \bmod 25=62 \bmod 25=12 .
$$

Check: $12^{2}=144=125+19$.
2. $n=27, z=19$. We have $p=3,19 \bmod 3=1$. Hence in the first step we can take $y=1$ and $a=1 / 2 \bmod 3=2$. Then $y^{2}-z=-18$ and

$$
x=1+2 \cdot 18 \bmod 9=37 \bmod 9=1 .
$$

For the second step (from 9 to 27) again $y=1, y^{2}-z=-18$, and

$$
x=37 \bmod 27=10 .
$$

Check: $10^{2}=100=81+19$.

The costs consist of two contributions:

1. One square root $\bmod p$ and one division. (The quotient a needs to be computed only once since $x \equiv y(\bmod p)$.)
2. Each time the exponent is incremented we execute two congruence multiplications and two subtractions.

Hence the total cost is $\mathrm{O}\left(\log (n)^{3}\right)$ for the module n.
Finally we have to consider the case where $n=2^{e}$ is a power of two.
For $e \leq 3$ the only quadratic residue is 1 , its square root is 1 .
For larger exponents e we have again a recurrence to $e-1$: Let z be an odd integer (all invertible elements are odd). Assume we already found a y with $y^{2} \equiv z\left(\bmod 2^{e-1}\right)$. Then $y^{2}-z=2^{e-1} \cdot t$. If t is even, then $y^{2} \equiv z\left(\bmod 2^{e}\right)$. Otherwise we set $x=y+2^{e-2}$. Then

$$
x^{2} \equiv y^{2}+2^{e-1} y+2^{2 e-4} \equiv z+2^{e-1} \cdot(t+y) \equiv z \quad\left(\bmod 2^{e}\right)
$$

since $t+y$ is even. Hence $x=y$ or $y+2^{e-2}$ is a square root of z. Here the cost is even smaller than $\mathrm{O}\left(\log (n)^{3}\right)$.

By the way we have shown that z is a quadratic residue $\bmod 2^{e}($ for $e \geq 3)$ if and only if $z \equiv 1(\bmod 8)$.

