
5.3 Square Roots in Finite Prime Fields

In many cases taking square roots is a trivial task as the following simple
consideration shows:

Lemma 9 Let G be a finite group of odd order m. Then for each a 2 G

there is exactly one x 2 G with x2 = a, and it is given by x = a
m+1

2 .

Proof. Since am = 1 we have x2 = am+1 = a. We conclude that the squaring
map x 7! x2 is surjective, hence a bijection G �! G. 3

We search methods for taking square roots in a finite prime field Fp

as e�ciently as possible. The case p ⌘ 3 (mod 4) is extremely simple by
the foregoing consideration: If p = 4k + 3, then the group M2

p of quadratic

residues has odd order p�1
2 = 2k + 1. Hence for a quadratic residue z 2 M2

p

the unique square root is x = zk+1 mod p [Lagrange 1769]. The cost of
taking this square root is at most 2 · log2(p) congruence multiplications.

Examples

1. For p = 7 = 4 ·1+3 we have k+1 = 2. By A.8 2 is a quadratic residue.
A square root is 22 = 4. Check: 42 = 16 ⌘ 2.

2. For p = 23 = 4 · 5+3 we have k+1 = 6. By A.8 again 2 is a quadratic
residue. A square root is 26 = 64 ⌘ 18. Check: 182 ⌘ (�5)2 = 25 ⌘ 2.

Unfortunately for p ⌘ 1 (mod 4) we cannot hope for such a simple pro-
cedure. For example �1 is a quadratic residue, but no power of �1 can be
a square root of �1 since always [(�1)m]2 = (�1)2m = 1 6= �1.

Fortunately there are general procedures, for example one that is bap-
tized AMM after Adleman, Manders, and Miller, but was described al-
ready by Cipolla in 1903. It starts by decomposing p� 1 into p� 1 = 2e ·u
with odd u. Furthermore we choose (once and for all) an arbitrary quadratic
nonresidue b 2 F⇥

p �M2
p—this is the only nondeterministic step in the algo-

rithm, see Section A.8. (Assuming ERH the procedure is even deterministic,
as it is in the many cases where a quadratic nonresidue is known anyway.)

Now we consider a quadratic residue z 2 M2
p and want to find a

square root of it. Since z 2 M2
p, we have ord(z) | p�1

2 , hence the 2-order
r = ⌫2(ord(z)) of ord(z) is bounded by  e � 1, and r is minimal with
zu2

r
⌘ 1.
We recursively define a sequence z1, z2, . . . beginning with

z1 = z with r1 = ⌫2(ord(z1)).

71

If zi 2 M2
p is chosen, and ri is the 2-order of ord(zi), then the sequence

terminates if ri = 0. Otherwise we set

zi+1 = zi · b
2e�ri .

Then zi+1 2 M2
p. Furthermore

zu·2
ri�1

i+1 ⌘ zu·2
ri�1

i · bu·2
e�1

⌘ 1,

since the first factor is ⌘ �1 due to the minimality of ri, and the second
factor is ⌘ (bp) = �1, for u · 2e�1 = p�1

2 . Hence ri+1 < ri. The terminating
condition rn = 0 is reached after at most e steps with n  e  log2(p).

Then we compute reversely:

xn = z
u+1
2

n mod p

with x2n ⌘ zu+1
n ⌘ zn (since ord(zn) |u by its odd parity). Recursively

xi = xi+1/b
2e�ri�1

mod p

that by induction satisfies

x2i ⌘ x2i+1/b
2e�ri

⌘ zi+1/b
2e�ri

⌘ zi.

Hence x = x1 is a square root of z.
In addition to the cost of finding b we count the following steps:

• Computing the powers b2, . . . , b2
e�1

, costing (e� 1) modular squares.

• Computing the powers bu, b2u, . . . , b2
e�1u, taking at most

2 · log2(u) + e� 1 congruence multiplications.

• Computing zu, taking at most 2 · log2(u) congruence multiplications.

• Furthermore we compute for each i = 1, . . . , n  e:

– zi by one congruence multiplication,

– zui from zui�1 by one congruence multiplication,

– zu2
r

i from zu2
r

i�1 by one congruence multiplication,

– and then ri.

This makes a total of at most 3 · (e� 1) congruence multiplications.

• xn as a power by at most 2 · log2(u) congruence multiplications.

• xi from xi+1 each by one congruence division with cost O(log(p)2).

Summing up we get costs of size about O(log(p)3) with a rather small con-
stant coe�cient.

72

Example Let p = 29 and z = 5. Then p� 1 = 4 · 7, hence e = 2 and u = 7.
By the remarks above b = 2 is a quadratic nonresidue. We compute
the powers

b2 = 4, bu ⌘ 128 ⌘ 12, b2u ⌘ 144 ⌘ �1,

z2 ⌘ 25 ⌘ �4, z4 ⌘ 16, z6 ⌘ �64 ⌘ �6, z7 ⌘ �30 ⌘ �1.

Now
z1 = 5, zu1 ⌘ �1, z2u1 ⌘ 1, r1 = 1,

z2 ⌘ z1b
2
⌘ 5 · 4 = 20, zu2 ⌘ zu1 b

2u
⌘ (�1)(�1) = 1, r2 = 0.

Now we go backwards:

x2 ⌘ z
u+1
2

2 = z42 = (z22)
2
⌘ 4002 ⌘ (�6)2 = 36 ⌘ 7,

x1 = x2/b mod p = 7/2 mod 29 = 18.

Hence x = 18 is the wanted root. Check: 182 = 324 ⌘ 34 ⌘ 5.

Exercises Find deterministic algorithms (= simple formulas) for taking
square roots in the fields

• Fp with p ⌘ 5 (mod 8)

• F2m with m � 2 [Hints: 1. Consider the order of the radicand in
the multiplicative group. 2. Invert the linear map x 7! x2.]

• Fq for q = pm

Alternative algorithms: Almost all known e�cient algorithms that com-
pletely cover the case p ⌘ 1 (mod 4) are probabilistic and have
a deterministic variant whose cost is polynomial assuming ERH.
The book by Forster (Algorithmische Zahlentheorie) has a vari-
ant of the Cipolla/AMM algorithm that uses the quadratic exten-
sion Fp2 ◆ Fp and is conceptionally quite simple. The Handbook of

Applied Cryptography (Menezes/van Oorschot/Vanstone) con-
tains an algorithm by Tonelli 1891 that admits a concise formu-
lation, but cost O(log(p)4). Another method is a special case of the
Cantor/Zassenhaus algorithm for factoring polynomials over finite
fields, see von zur Gathen/Gerhard: Modern Computer Algebra.

Yet another procedure by Lehmer uses the Lucas sequence (an) with
a1 = b, a2 = b2 � 2z, where b2 � 4z is a quadratic nonresidue. The
only known deterministic algorithm with proven polynomial cost was
given by Schoof. It uses elliptic curves, and costs O(log(p)9), so it is
of theoretical interest only.

For overviews see:

73

• E. Bach/ J. Shallit: Algorithmic Number Theory. MIT Press, Cam-
bridge Mass. 1996.

• D. J. Bernstein: Faster square roots in annoying finite fields.
Preprint (siehe die Homepage des Autors http://cr.yp.to/).

74

