
Appendix A

Primitive Elements and
Quadratic Residues

This mathematical appendix treats in a closed form some number theoretic
subjects that play a major role for cryptology. They relate to the multiplica-
tive group of a residue class ring.

As we saw in the main text several results on the security of crypto-
graphic procedures depend on the non-existence of e�cient algorithms for
some tasks.

Relevant problems and their (incomplete) solutions are:

1. Find a primitive element.

• The complexity of the general case is unknown.

• Exhaustion is e�cient if ERH holds.

• There is a much more e�cient probabilistic algorithm, that how-
ever doesn’t even terminate in the worst case.

• For many prime modules the solution is trivial.

• Proving primitivity is e�cient if the prime factors of the order of
the multiplicative group are known. Otherwise the complexity is
unknown.

• For a composite module the problem reduces to its prime
factors—if these are known.

2. Decide on quadratic residuosity.

• For prime modules there is an e�cient algorithm.

• For a composite module the problem reduces to its prime
factors—if these are known.

• For composite modules with unknown prime factors the complex-
ity is unknown. Presumably the problem is hard (as hard as prime
decomposition).
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3. Find a quadratic non-residue.

• The complexity of the general case is unknown.

• Exhaustion is e�cient if ERH holds.

• There is an e�cient probabilistic algorithm, that however doesn’t
even terminate in the worst case.

• For most primes the solution is trivial.

• For a composite module the problem reduces to its prime
factors—if these are known.

A related problem, finding square roots in residue class rings, is treated in
Chapter 5.
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A.1 Primitive Elements for Powers of 2

The cases n = 2 or 4 are trivial: M2 is the one-element group. M4 is cyclic
of order 2, thus 3 ⌘ �1 (mod 4) is primitive.

From now on we assume n = 2e with e � 3. Note that Mn consists of
the residue classes of the odd integers, hence '(n) = 2e�1.

Lemma 10 Let n = 2e with e � 2.

(i) If a is odd, then

a2
s
⌘ 1 (mod 2s+2) for all s � 1.

(ii) If a ⌘ 3 (mod 4), then n | 1 + a+ · · ·+ an/2�1
.

Proof. (i) First we prove the statement for s = 1. In the case a = 4q + 1 we
have a2 = 16q2+8q+1. In the case a = 4q+3 we have a2 = 16q2+24q+9,
hence a2 ⌘ 1 (mod 8).

The assertion for general s follows by induction:

a2
s�1

= 1 + t2s+1 =) a2
s
= (a2

s�1
)2 = 1 + 2t2s+1 + t222s+2.

(ii) By (i) we have 2n = 2e+1
| an/2 � 1. Since only the first power of 2

divides a� 1 we conclude

n = 2e |
an/2 � 1

a� 1

as claimed. 3

Lemma 11 Let p a prime and e an integer with pe � 3. Let pe be the largest

power of p that divides x�1. Then pe+1
is the largest power of p that divides

xp � 1.

Proof. We have x = 1+ tpe with an integer t that is not a multiple of p. The
binomial theorem yields

xp = 1 +
pX

k=1

✓
p

k

◆
tkpke.

Since p divides all binomial coe�cients
�p
k

�
= p!

k!(p�k)! for k = 1, . . . , p� 1 we

can factor out pe+1 from the sum:

xp = 1 + tpe+1s
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with some integer s. Hence pe+1 divides xp � 1. It remains to show that s is
not a multiple of p. We take a closer look at s:

s =
pX

k=1

1

p

✓
p

k

◆
· tk�1pe(k�1)

= 1 +
1

p

✓
p

2

◆
· tpe + · · ·+

1

p
· tp�1pe(p�1).

Since pe � 3 we have e(p� 1) � 2, hence s ⌘ 1 (mod p). 3

Lemma 10 implies

a2
e�2

⌘ 1 (mod n) for all odd a.

Hence the exponent �(n)  2e�2, and Mn is not cyclic. More exactly:

Proposition 17 Let n = 2e with e � 3. Then:

(i) The order of �1 in G = Mn is 2, the order of 5 is 2e�2
, and G is the

direct product of the cyclic groups generated by �1 and 5.

(ii) If e � 4, then the primitive elements mod n are the integers

a ⌘ 3, 5 (mod 8). Their number is n/4.

Proof. (i) Since ord 5 | 2e and ord 5  2e�2, we conclude that ord 5 is a power
of 2 and  2e�2.

Now 22 is the largest power of 2 in 5� 1, thus 23 is the largest power of
2 in 52�1 (by Lemma 11). Successively we conclude that 2e�1 is the largest
power of 2 in 52

e�3
�1. Hence the 2e�2-th power of 5 is the smallest one ⌘ 1

(mod 2e).
The product of the two subgroups is direct since �1 is not a power of 5—

otherwise 5k ⌘ �1 (mod n), and, because of e � 2, also 5k ⌘ �1 (mod 4),
contradicting 5 ⌘ 1 (mod 4).

The direct product is all of G since its order is 2 · 2e�2.
(ii) By (i) each element a 2 G has a unique expression of the form

a = (�1)r5s with r = 0 or 1, and 0  s < 2e�2. Hence ak equals 1 in Z/nZ
if and only if kr is even and ks is a multiple of 2e�2. In particular then k is
even. If s is even, then the condition is satisfied for some k < 2e�2. Thus a
is primitive if and only if s is odd, or equivalently a ⌘ ±5 (mod 8). 3

As a corollary we have �(2e) = 2e�2 for e � 4, and �(8) = 2.
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A.2 Primitive Elements for Prime Modules

More di�cult (and mathematically more interesting) is the search for prim-
itive elements for a prime module. Since the multiplicative group is cyclic
it su�ces to find one primitive element—all the other ones are powers of it
with exponents coprime with p� 1. In particular there are exactly '(p� 1)
primitive elements mod p. Usually the primitive elements for any module n
where Mn is cyclic are also called primitive roots mod n.

The simplest, but not best, method is trying x = 2, 3, 4, . . ., and testing
if xd 6= 1 for each proper divisor d of p� 1. We need not to test all divisors:

Lemma 12 Let p be a prime � 5. An integer x is primitive mod p, if and
only if x(p�1)/q

6= 1 in Fp for each prime factor q of p� 1.

Proof. The order of x divides p� 1, and each proper divisor of p� 1 divides
at least one of the quotients p�1

q . 3

To apply this criterion we need the prime decomposition of p� 1. Then
the test is e�cient: The number of prime factors is  log2(p � 1), and for
each of them we apply the binary power algorithm.

Example For p = 41 we have p � 1 = 40 = 23 · 5. Hence x is primitive if
and only if x20 6= 1 and x8 6= 1. The test runs through the following
steps in F41:

x = 2 : x2 = 4, x4 = 16,

⇢
x8 = 10,
x20 = x8x8x4 = 1.

x = 3 : x2 = 9, x4 = 81, x4 = �1, x8 = 1.
x = 4 : x = 22, hence x20 = 1.

x = 5 : x2 = 25, x4 = 10

⇢
x8 = 18,
x20 = x8x8x4 = 1.

x = 6 : x2 = 36, x4 = 25

⇢
x8 = 10,
x20 = x8x8x4 = �1.

Hence 6 is a primitive root for p = 41.

The obvious question is how many integers must we try to find a primitive
root? The quantity

↵(p) := min{x 2 N | x is primitive for p}

measures the complexity of complete search (but neglects the complexity of
the proof of primitivity). It is known that the the function ↵ is not bounded.
In 1962 Burgess proved

↵(p) = O( 6
p
p).
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Assuming ERH this exponential bound may be lessened to a polynomial
one. The best known result is by Shoup 1990:

↵(p) = O(log(p)6(1 + log log(p))4).

Even completely simple questions are yet unanswered:

• Is 2 primitive for infinitely many primes?

• Is 10 primitive for infinitely many primes? (Gauss’ conjecture)

Artin more generally conjectured: If a 2 N, and a is not an integer square
(i. e. a 6= 0, 1, 4, 9, . . .), then a is primitive for infinitely many primes.

Some relevant references:

• D. R. Heath-Brown: Artin’s conjecture for primitive roots. Quart.
J. Math. Oxford 37 (1986), 27–38.

• M. Ram Murty: Artin’s conjecture for primitive roots. Math. Intel-
ligencer 10 (1988), 59–67.

• V. Shoup: Searching for primitive roots in finite fields. Proc. 22nd
STOC 1990, 546–554.

• Murata: On the magnitude of the least prime primitive root. J. Num-
ber Theory 37 (1991), 47–66.
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A.3 Primitive Elements for Prime Powers

For prime powers we need one more lemma.

Lemma 13 Let p be prime � 3, k, an integer, and d � 0. Then

(1 + kp)p
d
⌘ 1 + kpd+1 (mod pd+2).

Proof. For d = 0 the statement is trivial. For d � 1 we reason by induction:
Assume

(1 + kp)p
d�1

= 1 + kpd + rpd+1 = 1 + (k + rp)pd.

Then

(1+kp)p
d
= (1+(k+rp)pd)p ⌘ 1+p · (k+rp) ·pd ⌘ 1+kpd+1 (mod pd+2),

since d+ 2  2d+ 1 and p � 3. 3

Proposition 18 Let p be prime � 3, e, an exponent � 2, and a be primitive

mod p. Then:

(i) a generates the group Mpe if and only if ap�1 mod p2 6= 1.

(ii) a or a+ p generates Mpe.

(iii) Mpe is cyclic, and �(pe) = '(pe) = pe�1(p� 1).

Proof. (i) Let t be the multiplicative order of a mod pe, necessarily a mul-
tiple of the order of a mod p, hence of p � 1. On the other hand t divides
'(pe) = pe�1(p� 1). Hence t = pd(p� 1) with 0  d  e� 1.

Choose k such that ap�1 = 1 + kp. Then by Lemma 13

(ap�1)p
e�2

⌘ 1 + kpe�1
⌘ 1 (mod pe) () p|k () ap�1

⌘ 1 (mod p2).

This is not the case if and only if d = e� 1.
(ii) Assume a doesn’t generate Mpe . Then ap�1

⌘ 1 (mod p2), hence

(a+ p)p�1
⌘ ap�1 + (p� 1)ap�2p ⌘ 1� ap�2 (mod p2),

and this is not ⌘ 1 (mod p2).
(iii) follows immediately from (ii). 3

We immediately get an analogous result for modules that are twice a
prime power:

Corollary 1 Let q = pe be a power of a prime p � 3. Then:
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(i) The multiplicative group M2q is canonically isomorphic with Mq, hence

cyclic.

(ii) If a is a primitive element mod q, then a is primitive mod 2q for odd

a, and a+ q is primitive mod 2q for even a.

(iii) �(2pe) = pe�1(p� 1).

Proof. (i) Since q and 2 are coprime, and M2 is the trivial group, by the
chinese remainder theorem M2q

⇠= M2 ⇥Mq
⇠= Mq. This map is explicitely

given by a mod 2q 7! a mod q.
(ii) Exactly one of a and a+ q is odd, hence coprime with 2q. Thus the

inverse isomorphism is

a 7!

(
a, if a is odd,

a+ q, if a is even.

(iii) obvious. 3
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A.4 The Structure of the Multiplicative Group

The previous results allow a complete characterization of the modules n for
which the multiplicative group Mn is cyclic:

Corollary 2 (Gauss 1799) For n � 2 the multiplicative group Mn is

cyclic if and only if n is one of the integers 2, 4, pe, or 2pe with an odd

prime p.

Proof. This follows from Proposition 18, Corollary 1, and the following
Lemma 14. 3

Lemma 14 If m,n � 3 are coprime, then Mmn is not cyclic, and

�(mn) < '(mn).

Proof. If n � 3, then '(n) is even. For a prime power this follows from the
explicit formula. In the general case we reason by the multiplicativity of the
'-function. We conclude

kgV('(m),'(n)) < '(m)'(n) = '(mn),

�(mn) = kgV(�(m),�(n))  kgV('(m),'(n)) < '(mn).

Hence Mmn is not cyclic. 3

Now the structure of the multiplicative group is completely known also
for a general module. Let us denote the cyclic group of order d by Zd.

Theorem 2 Let n = 2epe11 · · · perr be the prime decomposition of the integer

n � 2 with di↵erent odd primes p1, . . . , pr, and e � 0, r � 0, e1, . . . , er � 1.
Let qi = peii and q0i = pei�1

i (pi � 1) for i = 1, . . . , r. Then

Mn
⇠=

(
Zq01

⇥ · · ·⇥ Zq0r , if e = 0 or 1,

Z2 ⇥ Z2e�2 ⇥ Zq01
⇥ · · ·⇥ Zq0r , if e � 2.

We find a primitive element a mod n by choosing primitive elements

a0 mod 2e (if e � 2) and ai mod qi and solving the simultaneous congru-

ences a ⌘ ai (mod qi), and if applicable a ⌘ a0 (mod 2e).

Proof. All this follows from the chinese remainder theorem. 3

Exercise Derive a general formula for �(n).
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A.5 The Jacobi Symbol

Consider the multiplicative group Mn = (Z/nZ)⇥ for a module n � 2, and
its squaring map

q : Mn �! Mn, x 7! x2 mod n .

q is a group homomorphism. The elements in the image of q are the
quadratic residues mod n. An integer x is a quadratic residue mod n if
x mod n is invertible, and there exists an integer u with u2 ⌘ x (mod n).
Thus the set of quadratic residues is the subset M2

n of the residue class ring
Z/nZ. (This notation is not standard just as little as Mn. But it spares
writing ((Z/nZ)⇥)2 over and over again.)

Remarks and Examples

1. For n = 2 we have M2
n = Mn = {1}.

2. For n � 3 we have �1 6= 1 and (�1)2 = 1. Hence q is not injective
and thus also not surjective. Therefore quadratic non-residues exist.

3. Let n = p � 3 be prime. Then the kernel of q exactly consists of the
zeroes of the polynomial X2

� 1 in the field Fp, hence of {±1}. We
conclude that the number of quadratic residues is p�1

2 .

4. More generally let n = q = pe be a power of an odd prime p. Then
Mn is cyclic of order '(q) = q · (1 �

1
p) by Proposition 18. Thus 1

has exactly the square roots ±1 in Mq, and the number of quadratic
residues is '(q)/2.

5. Let n be a product of two di↵erent odd primes p and q. By the chinese
remainder theorem the natural map Mn �! Mp ⇥ Mq is an isomor-
phism. HenceMn contains exactly four square roots of 1, andM2

n  Mn

is a subgroup of index 4.

6. In the general case let n = 2epe11 · · · perr be the prime decomposition
with di↵erent odd primes p1, . . . , pr, and r � 0, e � 0, e1, . . . , er � 1.
Proposition 2 tells us the number of square roots of 1 in Mn:

2r, if e = 0 or 1,
2r+1, if e = 2,
2r+2, if e � 3.

This number is also the order of the kernel of q, hence the index of
M2

n in Mn.
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The naive algorithm, exhaustion, for determing the quadratic residuosity
of a mod n tries 12, 22, 32, . . . until it hits a. A quadratic non-residue always
takes bn2 c steps, a quadratic residue n/4 steps in the average. Thus the costs
grow exponentially with the number log n of places.

For the case where n is prime we’ll see better algorithms.
The phenomen that there is no e�cient algorithm for composite integers

n is the basis of many cryptographic constructions, for instance the simplest
perfect random generator (BBS, see Part IV).

For a prime module p the Legendre symbol indicates quadratic resid-
uosity:

(
x

p
) =

8
><

>:

1 if x is a quadratic residue,

0 if p|x,

�1 otherwise.

The Legendre symbol defines a homomorphism

(
•

p
) : Mp �! Mp/M2

p
⇠= {±1}.

In the special case p = 2

(
x

2
) =

(
1 if x is odd,

0 if x is even.

Proposition 19 (Euler’s criterion) Let p be an odd prime. then

x
p�1
2 ⌘ (

x

p
) (mod p) for all x.

Proof. If p|x both sides equal 0. Otherwise (x
p�1
2 )2 = xp�1

⌘ 1, hence

x
p�1
2 ⌘ ±1. Let a be primitive modp. Then both sides equal �1, hence

the assertion holds for x = a. Since both sides represent homomorphisms
F⇥
p �! {±1} the assertion is true for all powers of a, hence for all x that

are no multiples of p. 3

Euler’s criterion yields an e�cient algorithm for deciding quadratic
residuosity: We have to take p�1

2 -th powers in F⇥
p , and this costs at most

2blog2(
p�1
2 )c multiplications mod p. Taking the cost of modular multiplica-

tion into account we get an order of magnitude of log2(p)
3.

By Euler’s criterion �1 is a quadratic residue if and only if p�1
2 is even,

hence p ⌘ 1 (mod 4). The decision on 2 or 3 is significantly more di�cult.
However there is an even faster algorithm. It is the subject of the following
Section A.6.

The Legendre symbol has a natural generalization by the Jacobi sym-
bol (that uses the same notation): For n > 0 with prime decomposition
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n = p1 · · · pr (the pi not necessarily distinct)

(
x

n
) := (

x

p1
) · · · (

x

pr
) for x 2 Mn.

In particular (xn) = 0 if x and n are not coprime. The supplementing defini-
tions (x1 ) = 1, (xn) = ( x

�n) for n < 0, and (x0 ) = 0, make the Jacobi symbol
a function

(
•

•
) : Z⇥ Z �! Z

with values in {0,±1}, and multiplicative in numerator and denomina-
tor. In particular the Jacobi symbol defines a homomorphism ( •n) from
Mn to {±1}. But it is not an indicator of quadratic residuosity. Denoting
M+

n = ker( •n) and M�
n = Mn �M+

n , in general M2
n is a proper subgroup of

M+
n . Its index is given by example 6 above: If the number of square roots of

1 is 2k with k � 1, then M2
n has index 2k�1 in M+

n .
In any case (xn) depends on the residue class x mod n only. Obviously

(
x

2k
) =

(
1, if x is odd,

0, if x is even.
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A.6 Quadratic Reciprocity

Quadratic reciprocity provides a very convenient method of computing the
Jacobi (or Legendre) symbol and thereby deciding quadratic residuosity.
It relies on the following two propositions and a lemma that helps to reduce
composite modules to prime modules.

Lemma 15 Let s, t 2 Z be odd. Then

(i) s�1
2 + t�1

2 ⌘
st�1
2 (mod 2),

(ii) s2�1
8 + t2�1

8 ⌘
s2t2�1

8 (mod 2).

Proof. Assume s = 2k + 1 and t = 2l + 1. Then st = 4kl + 2k + 2l + 1,

st� 1

2
= 2kl + k + l ⌘ k + l =

s� 1

2
+

t� 1

2
.

Moreover
s2 = 4 · (k2 + k) + 1, t2 = 4 · (l2 + l) + 1,

s2t2 = 16 · . . .+ 4 · (k2 + k + l2 + l) + 1,

s2t2 � 1

8
= 2 · . . .+

k2 + k + l2 + l

2
,

and this proves the assertion. 3

Proposition 20 Let n be odd. Then

(i) (�1
n ) = (�1)

n�1
2 ,

(ii) ( 2n) = (�1)
n2�1

8

Proof. The lemma reduces the assertions to the case n = p prime.
(i) is a direct consequence of Euler’s criterion, Proposition 19.
(ii) We have

(�1)k · k ⌘

⇢
k, if k is even,

p� k, if k is odd,

p�1
2Y

k=1

(�1)k · k ⌘ 2 · 4 · · · (p� 1) = 2
p�1
2 · (

p� 1

2
)!.
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Om the other hand

p�1
2Y

k=1

(�1)k · k = (
p� 1

2
)! · (�1)

p2�1
8 , since

p�1
2X

k=1

k =
(p� 1)(p+ 1)

2 · 2 · 2
.

Now (p�1
2 )! is a product of positive integers < p, thus not a multiple of

p. Hence we may divide by it. Then from the two equations and Euler’s
criterion we get

(�1)
p2�1

8 ⌘ 2
p�1
2 ⌘ (

2

p
) (mod p) .

Since p � 3 this congruence implies equality. 3

In particular 2 is a quadratic residue modulo the prime p if and only if
(p2 � 1)/8 is even, or p2 ⌘ 1 (mod 16), or p ⌘ 1 or 7 (mod 8).

Theorem 3 (Law of Quadratic Reciprocity) Let m and n be two di↵erent

odd coprime positive integers. Then

(
m

n
)(

n

m
) = (�1)

m�1
2

n�1
2 .

Here is a somewhat more comprehensible formula:

(
m

n
) =

(
�( n

m) if m ⌘ n ⌘ 3 (mod 4),

( n
m) else.

The proof is in the next section. First we illustrate the computation with
an example:

Is 7 a quadratic residue mod107? No, as the following computation
shows:

(
7

107
) = �(

107

7
) = �(

2

7
) = �1.

Likewise 7 is not a quadratic residue mod 11:

(
7

11
) = �(

11

7
) = �(

4

7
) = �(

2

7
)(
2

7
) = �1.

Hence 7 is a quadratic non-residue also mod 1177 = 11 ·107. But ( 7
1177) = 1.

From the law of quadratic reciprocity we derive the following algorithm:
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Procedure JacobiSymbol

Input parameters:
m, n = two integers.

Output parameter:
jac = (mn ).

Instructions:
If n = 0 output jac = 0 end
If m = 0 output jac = 0 end
If gcd(m,n) > 1 output jac = 0 end
[Now m,n 6= 0 are coprime, so jac = ±1.]
jac = 1.
If n < 0 replace n by �n.
If n is even divide n by the maximum possible power 2k.
If m < 0

replace m by �m,
if n ⌘ 3 (mod 4) replace jac by �jac.

[From now on m and n are coprime, and n is positive and odd.]
[In the last step m = 0 and n = 1 may occur.]
If m > n replace m by m mod n.
While n > 1:

If m is even:
Divide m by the maximum possible power 2k,
if (k is odd and n ⌘ ±3 (mod 8)) replace jac by �jac.

[Now m and n are odd and coprime, 0 < m < n.]
[The law of quadratic reciprocity applies.]
If (m ⌘ 3 (mod 4) and n ⌘ 3 (mod 4))

replace jac by �jac.
Set d = m, m = n mod m, n = d.

The analysis of this algorithm resembles the analysis of the Euclidean
algorithm: We need at most 5 · log(m) steps, each one essentially consisting
of one integer division. Since the size of the operands rapidly decreases, the
total cost amounts to O(log2(m)2). This is significantly faster than applying
Euler’s criterion.
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A.7 Proof of the Law of Quadratic Reciprocity

Now for the proof of the law of quadratic reciprocity. In the literature we
find many di↵erent proofs. We adapt one that uses the theory of finite fields
and follows ideas by Zolotarev (Nouvelles Annales de Mathematiques 11
(1872), 354–362) and Swan (Pacific J. Math. 12 (1962), 1099–1106).

Lemma 16 Let p an odd prime, and a and p be coprime. Then the following

statements are equivalent:

(i) a is a quadratic residue mod p.

(ii) Multiplication by a is an even permutation of Fp.

Proof. Denote the multiplication by µa : Fp �! Fp, x 7! ax mod p. Then
a 7! µa is an injective group homomorphism µ : F⇥

p �! Sp to the full
permutation group on p elements. If a is primitive, then µa has exactly two
cycles: {0} and F⇥

p . Since p is odd, the sign of µa is �(µa) = (�1)p�2 = �1,
hence µa is an odd permutation.

Since a generates the group F⇥
p , the two homomorphisms

(
•

p
) and � � µ : F⇥

p �! {±1}

must be identical, and this was the assertion. 3

As another tool we use the discriminant of a polynomial
f = anTn + · · ·+ a0 2 K[T ]. We can compute it in any extension field
L ◆ K that contains all the zeroes t1, . . . , tn of f by the formula

D(f) = a2n�2
n ·

Y

1i<jn

(ti � tj)
2.

The discriminant is invariant under all permutations of the ze-
roes. Hence it is in K. In our case this will also follow from the
explicit computation.

The ususal method of computing the discriminant from the coe�cients
consists in comparing it with the resultant of f and its derivative f 0. For the
cyclotomic polynomial f = Tn

�1 the computation is outstandingly simple:

Lemma 17 Assume that charK doesn’t divide n. Then the polynomial

f = Tn
� 1 2 K[T ] has discriminant

D(f) = (�1)
n(n�1)

2 · nn.
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Proof. Let ⇣ be a primitive n-th root of unity (in some suitable extension
field). Then

f =
n�1Y

i=0

(T � ⇣i),

D(f) =
Y

0i<jn�1

(⇣i � ⇣j)2 = (�1)
n(n�1)

2 ·

Y

i 6=j

(⇣i � ⇣j)

= (�1)
n(n�1)

2 ·

n�1Y

i=0

"
⇣i ·

n�1Y

k=1

(1� ⇣k)

#
.

The polynomial

g = Tn�1 + · · ·+ 1 =
n�1Y

k=1

(T � ⇣k) 2 K[T ]

satisfies g(1) = n. Hence

D(f) = (�1)
n(n�1)

2 ·

n�1Y

i=0

[⇣i · n] = (�1)
n(n�1)

2 · nn,

as claimed. 3

Lemma 18 Let p be an odd prime and n an odd integer, coprime with p.
Then the following statements are equivalent:

(i) The discriminant of Tn
� 1 2 Fp[T ] is a quadratic residue mod p.

(ii) l = (�1)(n�1)/2
· n is a quadratic residue mod p.

Proof. By Lemma 17 the discriminant is D(f) = ln. Let n = 2k + 1. Then
D(f) is the product of l with the quadratic residue l2k. 3

The discriminant of a polynomial f 2 K[T ] is a square in an extension
field L ◆ K that contains the zeroes of f :

D(f) = �(f)2 with �(f) = an�1
n ·

Y

i<j

(ti � tj).

But �(f) inherits the sign of a permutation of the zeroes. Thus is not
invariant, and therefore in general is not contained in K.

Proof of the theorem. Because of Lemma 15 (i) it su�ces to prove the
quadratic reciprocity law for two di↵erent odd primes p and q.
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Let K = Fp, ⇣ be a primitive q-th root of unity, L = K(⇣), and
f = T q

� 1. Then ⇣ 7! ⇣p defines a permutation µp of the roots of unity,
and an automorphism of L over K. Thus:

�(µp) ·�(f) =
Y

i<j

(⇣pi � ⇣pj) = �(f)p.

This yields a chain of equivalent statements:

(�1)
q�1
2 · q quadratic residue mod p () D(f) quadratic residue mod p

() �(f) 2 Fp () �(f) = �(f)p () �(µp) = 1

() p quadratic residue mod q.

From Proposition 20 (i) we get

(
p

q
) = (

(�1)
q�1
2 q

p
) = (

q

p
) · (

�1

p
)
q�1
2 = (

q

p
) · (�1)

p�1
2

q�1
2 ,

as claimed. }
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A.8 Quadratic Non-Residues

How to find a quadratic non-residue modulo a prime p? That is, an integer
a with p - a that is not a quadratic residue mod a. The preferred solution is
the smallest possible positive one. Nevertheless we start with �1:

Proposition 21 Let p � 3 be prime.

(i) �1 is a quadratic non-residue mod p () p ⌘ 3 (mod 4).

(ii) 2 is a quadratic non-residue mod p () p ⌘ 3 or 5 (mod 8).

(iii) (For p � 5) 3 is a quadratic non-residue mod p () p ⌘ 5 or 7
(mod 12).

(iv) (For p � 7) 5 is a quadratic non-residue mod p () p ⌘ 2 or 3
(mod 5).

Proof. (i) This follows from Proposition 20. However there is an even simpler
proof:

�1 2 M2
p ()

_

i2Z
i2 ⌘ �1 (mod p) ()

_

i2Z
ordp i = 4

() 4 |#F⇥
p = p� 1 () p ⌘ 1 (mod 4).

(ii) This also follows from Proposition 20: By the adjacent remark
2 2 M2

p () p ⌘ 1 or 7 (mod 8).
(iii) We use the law of quadratic reciprocity:

(
3

p
) = (�1)

p�1
2 (

p

3
) =

8
>>>><

>>>>:

(�1)6k(13) = 1 if p = 12k + 1,

(�1)6k+2(23) = �1 if p = 12k + 5,

(�1)6k+3(13) = �1 if p = 12k + 7,

(�1)6k+5(23) = 1 if p = 12k + 11,

=

(
1 if p ⌘ 1 or 11 (mod 12),

�1 if p ⌘ 5 or 7 (mod 12).

(iv) By quadratic reciprocity

(
5

p
) = (

p

5
) =

(
1 if p ⌘ 1 or 4 (mod 5),

�1 if p ⌘ 2 or 3 (mod 5),

as claimed. 3

Corollary 1 241 is the unique odd prime < 400 for which none of �1, 2,
3, 5 are quadratic non-residues.
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Corollary 2 For each odd prime p at least one of �1, 2, 3, or 5 is a

quadratic non-residue except for p ⌘ 1, 49 (mod 120).

For arbitrary, not necessarily prime, modules we have some analogous
results:

Lemma 19 Let n 2 N, n � 2. Assume that ( an) = �1 for some a 2 Z.
Then a is a quadratic non-residue in Z/nZ.

Proof. Let n = pe11 · · · perr be the prime decomposition. Then

(
a

n
) = (

a

p1
)e1 · · · (

a

pr
)er .

Hence for some k the exponent ek is odd, and ( a
pk
) = �1. Then a is a

quadratic non-residue mod pk. Since Fpk is a homomorphic image of Z/nZ,
a is a forteriori a quadratic non-residue mod n. 3

Corollary 3 Let n 2 N, n � 2, and not a square in Z.

(i) If n ⌘ 3 (mod 4), then �1 is a quadratic non-residue in Z/nZ.

(ii) If n ⌘ 5 (mod 8), then 2 is a quadratic non-residue in Z/nZ.

And so on. Unfortunately this approach doesn’t completely cover all
cases, see the remark below. Nevertheless we note that an algorithm for
finding a quadratic non-residue needs to address the cases n ⌘ 1 (mod 8)
only. Again there are two variants:

• A deterministic algorithm that tests a = 2, 3, 5, . . . in order. Assuming
ERH—for the character � = ( •n)—it is polynomial in the number
log(n) of places.

• A probabilistic algorithm that randomly chooses a and succeeds with
probability 1

2 each time, yielding ( an) = �1. Computing the Jacobi
symbol takes O(log(n)2) steps. In the average we need two trials to hit
a quadratic non-residue.

Exercise For which prime modules is 7, 11, or 13 a quadratic non-residue?
What is the smallest prime module for which this approach (together
with Proposition 21) doesn’t provide a quadratic non-residue?

Remark A result by Chowla/Fridlender/Salié says that (with a
constant c > 0) there are infinitely many primes such that
all integers a with 1  a  c · log(p) are quadratic residues
mod p. Ringrose/Graham and—assuming ERH—Montgomery
have somewhat stronger versions of this result.
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Remark There is no global polynomial (in log(n)) upper bound for the
smallest quadratic non-residue that is valid for all modules n. A very
weak but simple result is in the following proposition.

Proposition 22 Let p � 3 be a prime. Then there is a quadratic non-

residue a < 1 +
p
p.

Proof. There are quadratic non-residues > 1 (and < p). Let a be the smallest
of these. Let m = d

p
ae. Thus (m� 1) · a < p < m · a, or

0 < m · a� p < a.

Hence m · a ⌘ m · a� p is a quadratic residue. This is possible only if m is
a quadratic non-residue. Since a is minimal we have a  m. We conclude

(a� 1)2 < (m� 1) · a < p,

hence a� 1 <
p
p. 3
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A.9 Primitive Elements for Special Primes

For many prime modules finding quadratic non-residues has turned out to
be extremely easy. The same is true for finding primitive roots.

Proposition 23 Let p = 2p0 + 1 be a special prime. Then:

(i) a 2 [2 . . . p�2] is a primitive root mod p if and only if it is a quadratic

non-residue.

(ii) (�1)
p0�1

2 · 2 is a primitive root mod p.

Proof. We have p ⌘ 3 (mod 4), thus �1 is a quadratic non-residue by Propo-
sition 21.

(i) Since the order #F⇥
p = p� 1 is even, moreover each primitive root is

also a quadratic non-residue. There are '(p � 1) = p0 � 1 of them, thus we
have found p0 quadratic non-residues. Since p0 = p�1

2 , these must be all of
them.

(ii) In the case p0 ⌘ 1 (mod 4) we have p ⌘ 3 (mod 8), hence

2 = (�1)
p0�1

2 · 2 is a quadratic non-residue by Proposition 21, hence also
primitive.

In the case p0 ⌘ 3 (mod 4) we have p ⌘ 7 (mod 8), hence 2 is a quadratic
residue, and �1 is a quadratic non-residue again by Proposition 21. There-

fore �2 = (�1)
p0�1

2 · 2 is a quadratic non-residue, hence also primitive. 3

The e↵ortlessness of finding a primitive root is one of several reasons
why cryptologists like special primes.

Corollary 1 Let p = 2p0 + 1 be a special prime. Then the order of 2 in F⇥
p

is

(i) p� 1 = 2p0 if p0 ⌘ 1 (mod 4),

(ii) (p� 1)/2 = p0 if p0 ⌘ 3 (mod 4).

Proof. (i) 2 is a primitive root.
(ii) The divisors of #F⇥

p are {1, 2, p0, 2p0}. Since 2 is a quadratic residue,
it is not primitive, hence the order is not 2p0. The order cannot be 1 since
2 6= 1 in Fp. And the order 3 would imply that 4 = 1, hence 3 = 0 in Fp,
hence p = 3 which ic not a special prime. 3
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A.10 Some Group Theoretic Trivia

Here we collect some elementary results on finite groups. The exponent of a
group G is the minimum positive integer e (or 1) such that xe = 1 for all
x 2 G. Denote the order of a group element x by ordx (positive integer or
1).

Lemma 20 Let G be a finite group with exponent e. Then e |#G, and e =
t := lcm({ordx | x 2 G}).

Proof. By Lagrange’s Theorem ordx |#G for all x 2 G, hence e |#G.
Moreover xe = 1 by definition of e, hence ordx | e for all x 2 G. Hence t | e.
Sinc xt = 1 for all x, even t = e. 3

Lemma 21 Let G and H be groups, g 2 G with ord g = r and h 2 H with

ordh = s. Then ord(g, h) = lcm(r, s) in the direct product G⇥H.

Proof.

(ge, he) = (g, h)e = 1 in G⇥H () ge = 1 in G and he = 1 in H.

3

Lemma 22 Let G be a group with exponent r and H be a group with expo-

nent s. Then the direct product G⇥H has exponent t := lcm(r, s).

Proof. Since r, s | t we have (g, h)t = (gt, ht) = (1,1) for all g 2 G and h 2 H.
Thus the exponent e of G⇥H is  t.

Since (1,1) = (g, h)e = (ge, he) for all g, h, we have r | e and s | e, hence
t | e. 3

Lemma 23 Let G be a cyclic group of prime order r, and H, a cyclic group

of prime order s 6= r. Then the direct product G⇥H is cyclic of order r · s.

Proof. Let g 2 G have order r, and h 2 H have order s. Then by Lemma 21
the element (g, h) has order lcm(r, s) = r · s = #(G ⇥H), hence generates
G⇥H. 3

Lemma 24 Let G be an abelian group.

(i) Let a, b 2 G, ord a = r, ord b = s, where r, s are finite and coprime.

Then ord(ab) = rs.
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(ii) Let a, b 2 G, ord a = r and ord b = s finite, t := lcm(r, s). Then

ord(ab) | t, and there is a c 2 G with ord c = t.

(iii) Let m = max{ord a | a 2 G} be finite. Then ord b |m for all b 2 G. In

particular m is the exponent of G.

Proof. (i) Let k := ord(ab). From (ab)rs = (ar)s · (bs)r = 1 we conclude that
k | rs. Conversely, since aks = aks · (bs)k = (ab)ks = 1 we have r | ks, hence
r | k, and likewise s | k, hence rs | k.

(ii) Let k := ord(ab). From (ab)t = at · bt = 1 follows that k | t.
Now let pe be a prime power with pe | t, say pe | r. Then ar/p

e
has order

pe. Let t = pe11 · · · perr be the prime decomposition with di↵erent primes pi.
Then there are ci 2 G with ord ci = peii . Since these orders are pairwise
coprime, the element c = c1 · · · cr has order t by (i).

(iii) Let ord b = s. Then by (ii) there is a c 2 G with ord c = lcm(m, s).
Hence lcm(m, s)  m, hence = m, thus s |m. 3

Remarks

1. For non-abelian groups all three statements (i)–(iii) may be false. As
an example consider the symmetric group S4 of order 4! = 24. The
possible orders of its elements are 1 (for the trivial permutation), 2
for permutations consisting of one or two disjoint 2-cycles, 3 for all
3-cycles, and 4 for all 4-cycles. Thus the maximum order is 4, but
the exponent = the lcm of all orders is 12 (by Lemma 20). The cycle
� = (1 2 3) has order r = 3, the transposition ⌧ = (3 4) has order
s = 2. Their product is the 4-cycle (2 3 4 1) of order 4 6= lcm(r, s) = 6,
and there doesn’t exist any permutation of order 6.

2. In a nontrivial abelian group the order of a product ab in general di↵ers
from the lcm of the single orders: Take a 6= 1 and b = a�1.
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A.11 Blum Integers

Let n = pq with di↵erent primes p, q � 3. Then

Mn
⇠= Mp ⇥Mq, M2

n
⇠= M2

p ⇥M2
q ,

Mn/M2
n
⇠= Mp/M2

p ⇥Mq/M2
q
⇠= Z2 ⇥ Z2,

in particular #(Mn/M2
n) = 4. The subgroups M2

n  M+
n and M+

n  Mn

are proper and hence of index 2. The ring Z/nZ contains exactly 4 roots of
unity: 1,�1, ⌧,�⌧ , where

⌧ ⌘ �1 (mod p), ⌧ ⌘ 1 (mod q),

thus ( ⌧n) = �1. In other words: The kernel of the squaring homomorphism
q : Mn �! M2

n is K = {±1,±⌧}, isomorphic with the Klein four-group.
An integer of the form n = pq with di↵erent primes p, q ⌘ 3 (mod 4) is

called Blum integer.

Examples

1. 1177 in A.6.

2. If p is a special prime, then p ⌘ 3 (mod 4). Therefore a product of
two special primes is a Blum integer. Let us call such an integer
a special Blum integer.

In general, if n = pq with di↵erent odd prime numbers p and q, then
M2

n
⇠= M2

p ⇥M2
q has order p�1

2 ·
q�1
2 , and this number is odd if and only if p

and q both are ⌘ 3 (mod 4). Hence:

Lemma 25 A product n of two odd prime numbers is a Blum integer if

and only if the group M2
n of quadratic residues has odd order.

For a Blum integer �1 is a quadratic non-residue in Mp and Mq, hence
also in Mn. But

(
�1

n
) = (

�1

p
)(
�1

q
) = (�1)2 = 1,

thus �1 2 M+
n . Hence

(
�x

n
) = (

�1

n
)(
x

n
) = (

x

n
)

for all x. Moreover M2
n\K = {1}, thus the restriction of q to M2

n is injective,
hence bijective, and Mn is the direct product

Mn = K ⇥M2
n, M+

n = {±1}⇥M2
n.

Each quadratic residue a 2 M2
n has exactly one square root in each of the

four cosets of Mn/M2
n. If x 2 M2

n is one of them, then the other ones are
�x, ⌧x, �⌧x. This shows:
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Proposition 24 Let n be a Blum integer. Then:

(i) If x2 ⌘ y2 (mod n) for x, y 2 Mn, and x,�x, y,�y mod n are pairwise

distinct, then (xn) = �( yn).

(ii) The squaring homorphism q is an automorphism of M2
n.

(iii) Each a 2 M2
n has has exactly two square roots in M+

n . If x is one of

them, then �x mod n is the other one, and exactly one of these two

is itself a quadratic residue. Moreover a has exactly two more square

roots, and these are contained in M�
n .

Thus from the four square roots of a quadratic residue x exactly one is
itself a quadratic residue. We consider this one as something special, and
denote it by

p
x mod n. The least significant bit of x—also characterized as

the parity of x, or as x mod 2—is denoted by lsb(x).

Corollary 1 Let x 2 M+
n . Then x is a quadratic residue if and only if

lsb(x) = lsb(
p

x2 mod n).

Proof. If x is a quadratic residue, then x =
p

x2 mod n. Now assume
x is a quadratic non-residue, and let y =

p

x2 mod n. By (iii) we have
y = �x mod n = n� x. Since n is odd, x and y have di↵erent parities. 3

The problem of deciding quadratic residuosity mod n remains hard.
Only if the prime decomposition n = pq is known there is an e�cient solu-
tion:

x 2 M2
n () (

x

p
) = (

x

q
) = 1.

We know of no e�cient procedure that works without using the prime fac-
tors. Presumably deciding quadratic residuosity is equivalent with factoring
in the sense of complexity theory. Generally believed to be true is the

Quadratic Residuosity Assumption: Deciding quadratic
residuosity for Blum integers is hard.

A mathematical sound definition of “hard” is in Section B.7.
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A.12 The Multiplicative Group Modulo Special
Blum Integers

Let p = 2p0 + 1 be a special prime. Then the multiplicative group Mp = F⇥
p

is cyclic of order p � 1 = 2p0. Its subgroup M2
p  Mp of quadratic residues

has index 2 and is itself cyclic, its order being the prime p0. Thus

Mp
⇠= Z2p0 , #Mp = '(p) = �(p) = 2p0,

M2
p
⇠= Zp0 , #M2

p = p0.

Let n = pq be a special Blum integer, p = 2p0 +1 and q = 2q0 +1 being
special primes. Then we know that

Mn
⇠= Mp ⇥Mq, #Mn = '(n) = 4p0q0,

M2
n
⇠= M2

p ⇥M2
q , #M2

n = p0q0.

Moreover �(n) = lcm(2p0, 2q0) = 2p0q0. Since M2
n as a direct product of two

cyclic groups of coprime orders is itself cyclic of order p0q0 we conclude:

Proposition 25 Let n be a special Blum integer as above. Then the group

M2
n of quadratic residues mod n is cyclic of order p0q0 and consists of

(i) 1 element of order 1,

(ii) p0 � 1 elements x of order p0, characterized by x mod q = 1,

(iii) q0 � 1 elements x of order q0, characterized by x mod p = 1,

(iv) (p0 � 1)(q0 � 1) elements of order p0q0.

Note that these numbers sum up to p0q0, the order of M2
n.

Corollary 1 Let n be a special Blum integer with prime factors p = 2p0+1
and q = 2q0 + 1. Then the probability ⌘ = P{x 2 M2

n | ord(x) = p0q0} that a

randomly chosen quadratic residue mod n has the maximum possible order

p0q0 is

⌘ = 1�
p0 + q0 � 1

p0q0
.

If we follow the common usage of choosing (RSA or) BBS modules n as
products of two l-bit primes, or p0 and q0 as (l � 1)-bit primes, then

2l�1 < p0 < 2l, 2l�1 < q0 < 2l,

2l < p0 + q0 � 1 < 2l+1, 22l�1 < p0 · q0 < 22l,

1

2l
=

2l

22l
<

p0 + q0 � 1

p0q0
<

2l+1

22l�1
=

1

22l�3
=

8

2l
.

We resume
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Corollary 2 Let n be a special Blum integer with prime factors p = 2p0+1
and q = 2q0 + 1 of bitlengths l. Then the probability ⌘ is bounded by

1�
8

2l
< ⌘ < 1�

1

2l
.

The deviation of this probability from 1 is asymptotically negligible: If we
choose a random quadratic residue x (say as the square of a random element
of Mn), then with overwhelming probability its order has the maximum
possible value. However there is an easy test: Check that neither x mod p
nor x mod q is 1.

Since Mn is the direct product of M2
n with a Klein four-group we also

know the orders of the elements of Mn and their numbers, in particular

Corollary 3 Let n be a special Blum integer with prime factors p = 2p0+1
and q = 2q0+1. Then Mn has exactly (p0� 1)(q0� 1) elements of order p0q0,
and exactly 3(p0 � 1)(q0 � 1) elements of order 2p0q0.

118



A.13 The BBS Sequence

Let n be a positive integer. Let x be invertible mod n, and let s := ord(x)
be its order in the multiplicative group mod n.

Lemma 26 For each integer r we have

r ⌘ 1 (mod s) () xr ⌘ x (mod n).

Proof. “=)”: Let r = 1 + c · s. Then

xr = x1+c·s
⌘ x · 1 = x mod n.

“(=”: Dividing mod n by the invertible element x gives

xr�1
⌘ 1 (mod n),

hence s | r � 1. 3

Now let x0 := x, and define the BBS sequence of integers xi by the
recursive formula xi = x2i�1 for i � 1, or

(1) xi = x2
i
mod n for i = 0, 1, 2, 3, . . .

Lemma 27 The BBS sequence (xi) is purely periodic if and only if

s = ord(x) is odd. Then the period ⌫ equals the multiplicative order of

2 mod s.

Proof. Assume the sequence is purely periodic with period ⌫. Then ⌫ is
minimal with x⌫ ⌘ x0 (mod n). Hence

x2
⌫

0 ⌘ x0 (mod n).

Thus s | (2⌫ � 1) by Lemma 26, and ⌫ is minimal with this property too, or
with 2⌫ ⌘ 1 mod s. In particular s is odd, and ⌫ is the order of 2 mod s.

Conversely assume that s is odd. Then 2 is invertible mods. Let
µ be the multiplicative order of 2 mod s. Then 2µ ⌘ 1 mod s, hence
xµ = x2

µ
⌘ x0 mod n by Lemma 26, thus the sequence is purely periodic. 3

Proposition 26 Let n be a Blum integer and x be a quadratic residue

6= 1 mod n. Then the BBS sequence xi as defined in (1) is purely periodic of

period ⌫ = ords(2).
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Proof. Assume n = pq where p and q are two di↵erent odd primes ⌘ 3 mod 4.
Let p = 4k+3 and q = 4l+3 with integers k and l. Then the multiplicative
group Mn has order (p � 1)(q � 1) = (4k + 2)(4l + 2). The group M2

n of
quadratic residues has index 4 in Mn, hence order (2k + 1)(2l + 1), an odd
integer. Thus every quadratic residue has odd order, and Lemma 27 applies
for x. 3

Corollary 4 Let n be a Blum integer and ⌫, the period of a BBS sequence.

Then ⌫ | �(�(n)) where � is the Carmichael function.

Proof. By Proposition 26 we have ⌫ = ords(2) | �(s). Moreover s =
ordn(x) | �(n), hence �(s) | �(�(n)). We conclude that ⌫ | �(�(n)). 3
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A.14 The BBS Sequence for Superspecial Blum
Integers

Again we get the most satisfying results in the superspecial case:

Definition A superspecial Blum integer is a product of two di↵erent
superspecial primes.

Examples The two smallest superspecial primes are p = 23 (with p0 = 11,
p00 = 5) and q = 47 (with q0 = 23, q00 = 11). Thus the smallest
superspecial Blum integer is n = 23 · 47 = 1081. By Section 2.1 we
are confident (however don’t know for sure) that there are very many
superspecial Blum integers.

Now let n = pq be a superspecial Blum integer with p = 2p0+1 = 4p00+3
and q = 2q0 + 1 = 4q00 + 3. Form the BBS sequence (1) for an initial value
x 2 M2

n � {1}. Then s = ordn(x) takes one of the values p0, q0, or p0q0, the last
on with extremely high probability, and the first two may be excluded by an
easy check. The period of the BBS sequence is ⌫ = ords(2) by Proposition 26,
and we may assume that s = p0q0. By the chinese remainder theorem and
Lemma 21

⌫ = lcm(ordp0(2), ordq0(2))

By the Corollary of Proposition 23 in Section A.9

ordp0(2) =

(
2p00 if p00 ⌘ 1 (mod 4)),

p00 if p00 ⌘ 3 (mod 4)),

ordq0(2) =

(
2q00 if q00 ⌘ 1 (mod 4)),

q00 if q00 ⌘ 3 (mod 4)),

Thus finally we have shown:

Proposition 27 Let n be a superspecial Blum integer. Let x be a quadratic

residue mod n with x 6⌘ 1 (mod p) and x 6⌘ 1 (mod q). Then the BBS se-

quence mod n for x has period

⌫ =

(
p00q00 if p00 ⌘ q00 ⌘ 3 (mod 4),

2p00q00 otherwise.

If p00 and q00 are (l�2)-bit primes (hence > 2l�3, and n is an l-bit integer),
then the period is > 2l�2 or about n/4.

121


