
Appendix B

Complexity Theory for
Cryptology

For (at least) three reasons “ordinary” complexity theory (using Turing
machines) is insu�cient for cryptologic needs:

1. Complexity theory primarily addresses the question whether the worst
case of a problem is hard (i. e. a solution is not e�ciently computable).
However to preclude an e�cient cryptanalysis we want the normal case

to be hard. We saw that the existence of strong basic cryptographic
functions implies P 6= NP, but conversely this inequality (if true)
would not su�ce to prove the existence of strong cryptography.

From other parts of mathematics we are warned that a worst case
scenario may not su�ce to make a problem hard. For instance the
Newton algorithm for determining roots of polynomials and the sim-
plex method for linear optimization are hard in the worst case, but
very e�cient in the normal case.

2. The cryptanalyst is free to use probabilistic algorithms (“Monte Carlo”
algorithms) that are very e�cient but don’t give a correct result in all
cases. We saw several examples for number theoretic problems.

The exact mathematical treatment uses concepts from probability the-
ory: Parts of the input are taken from a probability space ⌦. The
results are statements on the distribution of the output.

3. Moreover the cryptanalyst is free to adapt her methods to the concrete
problem at hand. She doesn’t necessarily need a universal algorithm
that is e�cient for all instances of her problem. For example she could
choose a di↵erent algorithm depending on the key length. Thus we
have to consider non-uniform models of computation.

As a consequence the ordinary theory of Turing machines is insu�cient
for formalizing complexity theory as it is needed in cryptology. We could

122

remedy this shortage by considering families of Turing machines—say a
di↵erent one for each input length—, and also admitting probabilistic input.

However an alternative model of computation, using Boolean circuits,
has a simpler, more intuitive description and a more direct and elegant ap-
plication: families of probabilistic circuits (FPC for short). Realizing com-
mon algorithms by circuits is distinctly simpler and more intuitive than
programming a Turing machine.

123

B.1 Probabilistic Boolean Circuits

A Boolean circuit describes an algorithm in the form of a flow chart that
connects the single bit operations, see Appendix C.12 of Part II. It has two
supplemental generalizations:

a probabilistic circuit formalizes probabilistic algorithms,

a family of circuits allows to express the complexity of an algorithm for
increasing input sizes.

First we formalize the concept of a probabilistic algorithm for computing
a map

f : A �! F s
2

on a set A. To this end we consider maps (to be represented by circuits)

C : A⇥ ⌦ �! F s
2

where ⌦ is a probability space. We look at the probabilities that C “com-
putes” f(x) or f :

P ({! | C(x,!) = f(x)}) (“locally” at x) and

P ({(x,!) | C(x,!) = f(x)}) (“globally”)

that we want to be “significantly” > 1
2s , the probability of hitting a value

in Fs
2 by pure chance. In the local case we average over ⌦ for fixed x, in

the global case we average also over x 2 A. In general we assume that the
probability spaces ⌦ and A ⇥ ⌦ are finite and (in most cases) uniformly
distributed.

In order to describe probabilistic algorithms we need circuits with three

di↵erent types of input nodes:

• r deterministic input nodes that are seeded by an input tuple
x 2 F r

2 , or x from a subset A ✓ Fr
2,

• some constant input nodes, each a priori set to 0 or 1,

• k probabilistic input nodes that are seeded by an element (“event”)
of the Laplacean probability space ⌦ = F k

2 (corresponding to k “coin
tosses”), or by an element of a subset ⌦ ✓ F k

2 .—Sometimes also other
probability distributions on ⌦, di↵erent from the uniform distribution,
might be taken into account.

The theory aims at statements on the probabilities of the output values
y 2 F s

2 .

124

Examples

1. Searching a quadratic non-residue for an n bit prime module p. Here
we choose a random b 2 [1 . . . p� 1] and compute (bp) (the Legendre
symbol that is 1 for quadratic residues, �1 for quadratic non-residues).
The success probability is 1

2 , the cost O(n2) (see Appendix A.8).

More generally we ask whether an h-tuple

(b1, . . . , bh) 2 ⌦ = [1 . . . p� 1]h

of independently choosen elements contains a quadratic non-residue.
There is a probabilistic circuit (for the given p) without deterministic
input nodes (but with some constant input nodes to input p),

C : Fhn
2 �! Fn

2 ,

C(!) =

(
bi, the first bi that is a quadratic non-residue,

0 if none of the bi is a quadratic non-residue,

of size O(hn2) that outputs a quadratic non-residue with probability
1� 1

2h
. Note the deviation of this example from the definition above:

Here C doesn’t compute an explicitly given function f but provides
output with a certain property.

2. The strong pseudoprime test: Here the input is taken from the set
A ✓ [3 . . . 2n � 1] of odd integers. We want to compute the primality
indicator function

f : A �! F2, f(m) =

(
1 if m is composite,

0 if m is prime.

The probabilistic input consists of a base a 2 ⌦ = [2 . . . 2n � 1]. The
strong pseudoprime test is represented by a circuit

C : Fn
2 ⇥ Fn

2 �! F2

of size O(n3), and yields the result 1 if m fails (then m is proven to be
composite), 0 if m passes (then m is possibly prime). Thus C outputs
the correct result only with a certain probability.

Now we formalize the property of a (probabilistic) circuit C of computing
the correct value of f(x) 2 Fs

2 with a probability that “significantly” di↵ers
from a random guess: Given " � 0, a circuit

C : F r
2 ⇥ ⌦ �! Fs

2

125

(with r deterministic input nodes) has an "-advantage for the computation
of f(x) or f if

P ({! 2 ⌦ | C(x,!) = f(x)}) �
1

2s
+ " (“local case”) or

P ({(x,!) 2 A⇥ ⌦ | C(x,!) = f(x)}) �
1

2s
+ " (“global case”).

Thus in the global case the probability with respect to ! of getting a cor-
rect result is additionally averaged over x 2 A. The advantage 0, or the
probability 1

2s , corresponds to randomly guessing the result.
C has an error probability � for computing f(x) or f if

P ({! 2 ⌦ | C(x,!) = f(x)}) � 1� � or

P ({(x,!) 2 A⇥ ⌦ | C(x,!) = f(x)}) � 1� �.

Examples

1. For searching a quadratic non-residue mod p we have

P ({! 2 ⌦ | C(!) is a quadratic non-residue}) = 1�
1

2h
.

Thus the circuit has an (12 �
1
2h
)-advantage and an error probability

of 1
2h
.

2. For the strong pseudoprime test we have for fixed m

P ({! 2 ⌦ | C(m,!) = f(m)})

(
�

3
4 if m is composite,

= 1 if m is prime.

Averaging over m we get

P ({(m,!) 2 A⇥ ⌦ | C(m,!) = f(m}) �
3

4
,

hence an 1
4 -advantage and an error probability of 1

4 . (Since the number
of composite integers is much larger than the number of primes, the
value 1

4 is not significantly changed by averaging over m.)

126

B.2 Polynomial Size Families of Circuits

A circuit has a fixed number of input nodes. Therefore it can process inputs
of a fixed length only, in contrast with a Turing machine. However to assess
the e�ciency of an algorithm in general we have to estimate the increase of
cost for increasing input sizes.

To this end we consider families (Cn)n2N of circuits with an increasing
number of deterministic input nodes. Then the cost of a computation may
be expressed as a function of the length of the input.

More exactly we define: A family of probabilistic circuits (FPC) is
a family C = (Cn)n2N,

(1) Cn : Fr(n)
2 ⇥ Fk(n)

2 �! Fs(n)
2 ,

where the circuit Cn has r(n) deterministic input nodes, and k(n) proba-
bilistic ones. Of course, if all k(n) = 0, we speak of a family of deterministic
circuits.

A polynomial size family of probabilistic circuits (PPC) is an
FPC C = (Cn)n2N, such that #Cn  ↵(n) for all n 2 N with a polynomial
↵ 2 N[X] (non-negative integer coe�cients). In particular the number of
input nodes of all kinds, as well as the number s(n) of output nodes, is poly-
nomially bounded. (We don’t require that the functions r, k, s themselves
are polynomials.)

Even in the deterministic case this model of computation might be able
to compute more functions than the common model of Turing machines
(and it is in fact), since it allows to choose a di↵erent algorithm for each
input length. For this reason we also speak of a “non-uniform computational
model”. On first sight this feature seems not so pleasant. Nevertheless it is
particularly realistic for cryptanalysis: Depending on the input size n the
cryptanalyst may choose a suitable algorithm.

If a Turing machine computation in polynomial time is possible, then
for the same problem there is a PPC also. The reverse statement is not true,
although we only know “artificial” counterexamples.

Should any NP-complete problem be computable by a PPC, then so
would be all the other ones. Virtually nobody believes in this possibility.

Non-uniform complexity may be modelled by Turing machines also,
simply admitting a di↵erent Turing machine for each input length. More-
over we could also define probabilistic Turing machines. After all preferring
the Shannon model of circuits over Turing machines is a matter of taste.

A computational problem is called hard if there is no PPC that solves
it with a distinguished advantage; we’ll make this definition more precise in
the next sections. The “hard number theoretic problems” from Chapter 5,
such as prime decomposition, are conjectured to be hard in this sense.

We know already that the basic operations on integers are computable by
(even deterministic) PPC’s. And therefore so are all algorithms on integers

127

that are e�ciently computable in the naive sense, using only “polynomially
many” elementary arithmetic operations.

128

B.3 E�cient Algorithms

To generalize the results from Section B.1 we first define the concepts of
advantage and error probability for PPCs.

Let L ✓ F⇤
2 be a language over the binary alphabet F2, and set

Ln := L \ Fn
2 . Let f be a map

(2) f : L �! F⇤
2 with f(Lr(n)) ✓ Fs(n)

2

where r(n) is the monotonically increasing sequence of indices i with Li 6= ;.
We want to compute this map by a PPC as in (1).

Examples

1. The function f(x, y, z) := xy mod z for n-bit integers x, y, z is com-
putable by a (deterministic) circuit

Cn : F3n
2 �! Fn

2

of size #Cn = O(n3) (with error probability 0). Here r(n) = 3n and
s(n) = n.

2. Let L be the set of (binary encoded) odd integers � 3, and f : L �! F2

be the primality indicator as in Section B.1. There we saw a PPC for
the strong pseudoprime test of size O(n3) with advantage 1

4 and error
probability 1

4 (constant with respect to n). Using t bases we get a size
of O(tn3), and an error probability of 1

4t .

Definition 1 A function ' : N �! R+ is called (asymptotically) negli-
gible if for each nonconstant polynomial ⌘ 2 N[X]

'(n) 
1

⌘(n)
for almost all n 2 N.

In other words, '(n) tends to 0 faster than the inverse of any polynomial.

Example An obvious example is '(n) = 2�n.

Definition 2 Sei f : L �! F⇤
2 be as in (2). Let C be a PPC that computes

f on Lr(n) with an error probability of "n. Assume "n is a negligible
function of n. Then C is called an e�cient probabilistic algorithm
for f .

f is called (probabilistically) e�ciently computable if there is an
e�cient algorithm for f .

129

This definition substantiates the idea of an algorithm that is “e�cient for
almost all input tuples” (or input strings if the input is taken from a language
L).

For Rabin’s primality test, that is the repeated execution of the strong
pseudoprime test, we satisfy this requirement by letting the number t of
bases grow with n. In order to get a polynomial family we upgrade t to a
polynomial ⌧ 2 N[X]. Then Cn has n deterministic input nodes, and n⌧(n)
probabilistic ones. The size is O(n3⌧(n)), and the error probability, 1

4⌧(n) .
Thus we have shown:

Proposition 28 Rabin’s primality test is an e�cient probabilistic algo-

rithm for deciding primality.

130

B.4 Hard Problems

Exactly defining what a hard problem is is somewhat more tricky. We want
to characterize a problem that has no e�cient solution for almost all in-
put tuples (or strings). Simply negating the property “e�cient” is clearly
insu�cient. Somewhat better is the requirement that the advantage of an
algorithm approaches 0 with increasing n. But also this is not yet a suitable
definition since the advantage describes a lower bound only.

A better requirement is the non-existence of an advantage that ap-
proaches 0 too slowly. “Too slowly” is

1

⌘(n)
with an arbitrary polynomial ⌘ 2 N[X].

“Slow enough” is for instance the inverse exponential finction 1/2n.
Moreover there should be “almost no” exceptions, or the set of excep-

tions should be “sparse”. Now we try to translate these ideas into an exact
definition.

For x 2 Lr(n) we consider the probability

px := P ({! 2 ⌦k(n) | Cn(x,!) = f(x)}),

and the set of input strings x for which Cn has an "-advantage:

Lr(n)(") := {x 2 Lr(n) | px �
1

2s(n)
+ "}.

For a polynomial ⌘ 2 N[X] the set Lr(n)(
1

⌘(n)) consists of the input strings

x for which C computes f(x) with advantage 1
⌘(n) . Thus the exceptional set

for ⌘ is

L[f,C,⌘] :=
[

n2N
Lr(n)(

1

⌘(n)
).

We denote it as “advantageous set for f , C, ⌘”. Its components should
become more and more marginal with increasing n. The definition is:

Definition 3 A subset A ✓ L is called sparse if

#An

#Ln

is negligible.

Remarks and Examples

1. If #An = c is constant, and Ln = Fn
2 , then A is sparse in L for

#An

#Ln
=

c

2n
.

131

2. If #An grows at most polynomially, but #Ln grows faster than any
polynomial, then A is sparse in L.

3. If #An = c ·#Ln is a fixed proportion, then A is not sparse in L.

4. If L = N, and A is the set of primes (in binary coding), then by the
prime number theorem

#An ⇡
2n�1

n · ln(2)
=

#Ln

n · ln(2)
.

Hence the set of primes is not sparse in N.

5. No known e�cient algorithm is able to factorize a non-sparse subset
of the set M of all products of primes whose lengths di↵er by at most
one bit.

Definition 4 Let f be as in (2). Then f is called hard if for each PPC as
in (1) and for each polynomial ⌘ 2 N[X] the advantageous set L[f,C,⌘]

is a sparse subset of L.

Examples

1. The conjecture that prime decomposition of integers is hard makes
sense by remark 5.

2. Quadratic residuosity conjecture: Let B be the set of Blum in-
tegers (products of two primes ⌘ 3 (mod 4)),

L = {(m, a) |m 2 B, a 2 M+
n },

(for M+
n see Appendix A.5) and let

f : L �! F2

be the indicator function

f(m, a) =

(
1 if a is a quadratic residue modm,

0 else.

Then f is hard. (A forteriori when we more generally admit a 2 Mn.)

132

B.5 Basic Cryptographic Functions

Now the theoretic basis su�ces for an exact definition of one-way func-
tions and strong symmetric ciphers. Note that the “functions” or “maps”
in these definitions are infinite families with growing input size. There is no
mathematically sound definition of one-way or hash functions, or of strong
symmetric ciphers, for a fixed input size, as we assumed in treating these
concepts in a naive way in Section 4.1 and Chapters 5 and 6

Definition 5 Let f : L �! F⇤
2 be as in (2). A right inverse of f is a map

g : f(L) �! L ✓ F⇤
2 with f(g(y)) = y for all y 2 f(L). In other words

g finds pre-images of f . We call f a one-way function if each right
inverse of f is hard.

Adapting this definition the conjecture that the discrete exponential
function in finite prime fields is hard makes sense.

Now for the definition of a strong cipher. An “ordinary” block cipher is
a map

F : Fr
2 ⇥ Fq

2 �! Fr
2.

The corresponding decryption function is a map

G : Fr
2 ⇥ Fq

2 �! Fr
2

with G(F (x, k), k) = x for all x 2 F r
2 and k 2 F q

2 .
An attack with known plaintext finds a key k 2 F q

2 with F (x, k) = y,
given x, y 2 Fr

2. We formalize this by a map

H : Fr
2 ⇥ Fr

2 �! Fq
2

with F (x,H(x, y)) = y for all x, y 2 Fr
2 with y 2 F (x,Fq

2) (“possible pairs”
(x, y)).

Exercise Give an exact definition of a possible pair.

A more general attack uses several, say s, plaintext blocks. So it defines
a map

H : Frs
2 ⇥ Frs

2 �! Fq
2

with F (xi, H(xi, yi)) = yi for i = 1, . . . s for all possible x, y 2 Frs
2 .

Now we give a definition in terms of complexity theory.

Definition 6 A symmetric cipher is a family F = (Fn)n2N of block ci-
phers

Fn : Fr(n)
2 ⇥ Fq(n)

2 �! Fr(n)
2

with strictly monotonically increasing functions r and q, such that

Fn(•, k) is bijective for each k 2 Fq(n)
2 , and

133

• F is e�ciently computable,

• there is an e�ciently computable family G = (Gn)n2N of corre-
sponding decryption functions.

Definition 7 An known plaintext attack on a symmetric cipher F is a
family H = (Hn)n2N of maps

Hn : Fr(n)s(n)
2 ⇥ Fr(n)s(n)

2 �! Fq(n)
2

with
Fn(xi, Hn(xi, yi)) = yi for i = 1, . . . , s(n)

for all possible pairs x, y 2 Fr(n)s(n)
2 .

F is called a strong symmetric cipher if each known plaintext at-
tack on F is hard.

Defining a hash function is even more tricky. We omit it.

134

