
B.3 E�cient Algorithms

To generalize the results from Section B.1 we first define the concepts of
advantage and error probability for PPCs.

Let L ✓ F⇤
2 be a language over the binary alphabet F2, and set

Ln := L \ Fn
2 . Let f be a map

(2) f : L �! F⇤
2 with f(Lr(n)) ✓ Fs(n)

2

where r(n) is the monotonically increasing sequence of indices i with Li 6= ;.
We want to compute this map by a PPC as in (1).

Examples

1. The function f(x, y, z) := xy mod z for n-bit integers x, y, z is com-
putable by a (deterministic) circuit

Cn : F3n
2 �! Fn

2

of size #Cn = O(n3) (with error probability 0). Here r(n) = 3n and
s(n) = n.

2. Let L be the set of (binary encoded) odd integers � 3, and f : L �! F2

be the primality indicator as in Section B.1. There we saw a PPC for
the strong pseudoprime test of size O(n3) with advantage 1

4 and error
probability 1

4 (constant with respect to n). Using t bases we get a size
of O(tn3), and an error probability of 1

4t .

Definition 1 A function ' : N �! R+ is called (asymptotically) negli-
gible if for each nonconstant polynomial ⌘ 2 N[X]

'(n) 
1

⌘(n)
for almost all n 2 N.

In other words, '(n) tends to 0 faster than the inverse of any polynomial.

Example An obvious example is '(n) = 2�n.

Definition 2 Sei f : L �! F⇤
2 be as in (2). Let C be a PPC that computes

f on Lr(n) with an error probability of "n. Assume "n is a negligible
function of n. Then C is called an e�cient probabilistic algorithm
for f .

f is called (probabilistically) e�ciently computable if there is an
e�cient algorithm for f .

129



This definition substantiates the idea of an algorithm that is “e�cient for
almost all input tuples” (or input strings if the input is taken from a language
L).

For Rabin’s primality test, that is the repeated execution of the strong
pseudoprime test, we satisfy this requirement by letting the number t of
bases grow with n. In order to get a polynomial family we upgrade t to a
polynomial ⌧ 2 N[X]. Then Cn has n deterministic input nodes, and n⌧(n)
probabilistic ones. The size is O(n3⌧(n)), and the error probability, 1

4⌧(n) .
Thus we have shown:

Proposition 28 Rabin’s primality test is an e�cient probabilistic algo-

rithm for deciding primality.

130


