B.3 Efficient Algorithms

To generalize the results from Section we first define the concepts of
advantage and error probability for PPCs.

Let L C F; be a language over the binary alphabet Fo, and set
L, :=LNFZ. Let f be a map

2) fiL—F} with f(Lygmy) C F3"

where r(n) is the monotonically increasing sequence of indices ¢ with L; # (.
We want to compute this map by a PPC as in .

Examples

1. The function f(x,y,z) := xy mod z for n-bit integers z,y, z is com-
putable by a (deterministic) circuit

Cp: T3 — FY

of size #C,, = O(n?) (with error probability 0). Here r(n) = 3n and
s(n) = n.

2. Let L be the set of (binary encoded) odd integers > 3, and f: L — Fo
be the primality indicator as in Section There we saw a PPC for
the strong pseudoprime test of size O(n?) with advantage % and error
probability i (constant with respect to n). Using ¢ bases we get a size
of O(tn3), and an error probability of %.

Definition 1 A function ¢: N — R, is called (asymptotically) negli-

gible if for each nonconstant polynomial 7 € N[X]

1
o(n) < —— for almost all n € N.
n(n)
In other words, ¢(n) tends to 0 faster than the inverse of any polynomial.

Example An obvious example is ¢(n) = 27".

Definition 2 Sei f: L — F3 be as in . Let C' be a PPC that computes
J on L) with an error probability of ,. Assume &, is a negligible
function of n. Then C'is called an efficient probabilistic algorithm
for f.

f is called (probabilistically) efficiently computable if there is an
efficient algorithm for f.
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This definition substantiates the idea of an algorithm that is “efficient for
almost all input tuples” (or input strings if the input is taken from a language
L).

For RABIN’s primality test, that is the repeated execution of the strong
pseudoprime test, we satisfy this requirement by letting the number ¢ of
bases grow with n. In order to get a polynomial family we upgrade ¢ to a
polynomial 7 € N[X]. Then (), has n deterministic input nodes, and n7(n)
probabilistic ones. The size is O(n37(n)), and the error probability, ﬁ.
Thus we have shown:

Proposition 28 RABIN’s primality test is an efficient probabilistic algo-
rithm for deciding primality.
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