
Composition of Ciphers

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

April 7, 1997—English version August 14, 2014
last change January 20, 2021

A first approach to constructing strong ciphers is the composition of
several simple transformation steps. We saw some examples of this approach
already in classical Cryptography, and we saw how this often resulted in
much stronger ciphers. But this effect is not guaranteed, and does not crop
up in all cases. In this section we consider some basic aspects of this approach
that is an essential ingredient of the construction of strong bitblock ciphers.

Terminologically we distinguish between

Multiple ciphers: combinations of instances of the same encryption func-
tion but with different keys.

Cascades: combinations of different encryption functions (also called prod-
uct ciphers).

1

K. Pommerening, Bitblock Ciphers 2

1 Multiple Ciphers and Group Structures

Multiple Ciphers

Let F = (fk)k∈K be a cipher over the alphabet Σ, where fk : Σ∗ −→ Σ∗ is
the encryption function corresponding to the key k ∈ K. The set of all of
encryption functions is denoted by

F̃ = {fk | k ∈ K} ⊆ Map(Σ∗,Σ∗).

By forming the double cipher

F (2) = (fh ◦ fk)h,k∈K

the key space is significantly enlarged from K to K ×K. In the same way
we can construct the triple cipher F (3), . . ., the n-fold cipher F (n). All this
makes sense only when

(A) F̃ is not a semigroup.

If F̃ is a semigroup, then for each pair of keys h, k ∈ K there exists a key
x ∈ K such that fh◦fk = fx, and we don’t get any new encryption functions
by this kind of composition—a typical case of an “illusory complication”,
the effective keysize didn’t increase at all!

We observe an even better effect when

(B) F̃ generates a subsemigroup of Map(Σ∗,Σ∗) of large size.

And the best we can hope for is:

(C) The map K ×K −→ F̃ (2) ⊆ Map(Σ∗,Σ∗) is injective.

For a finite key space K we can express this also in the form:

(C’) #F̃ (2) = #{fh ◦ fk | h, k ∈ K} = (#K)2.

The Group Property of a Block Cipher

A block cipher is uniquely characterized by its effect on Σr for a given
exponent r, the blocksize. (For the moment we don’t care about continuing
it to strings of arbitrary lengths or about “padding” shorter strings to full
blocklength.)

A block cipher preserves lengths if it transforms Σr to itself. Then in
a canonical way F̃ is a subset of the symmetric group S(Σr), hence finite,
and without restriction we may assume that also the keyspace K is finite.
For such block ciphers the semigroup property (the converse of (A) above) is
equivalent with the group property. This follows from the well-known simple
lemma:

K. Pommerening, Bitblock Ciphers 3

Lemma 1 Let G be a finite group, H ≤ G a subsemigroup, that is H 6= ∅
and HH ⊆ H. Then H is a group, in particular 1 ∈ H.

Proof. Each g ∈ G has finite order, gm = 1 for some m. If g ∈ H, then
1 = gm ∈ H, and g−1 = gm−1 ∈ H. 3

This proves:

Proposition 1 Let F be a length preserving block cipher over a finite al-
phabet. Then the following statements are equivalent:

(i) For any two keys h, k ∈ K there exists an x ∈ K such that fh◦fk = fx.

(ii) The set F̃ of encryption functions is a group.

Remark

The probability that two random elements of the symmetric group Sn gen-
erate the whole group Sn or at least the alternating group An is

> 1− 2

(ln lnn)2
for large n.

Source: John Dixon, The probability of generating the symmetric group.
Mathematische Zeitschrift 110 (1969), 199–205.

For n = 264, a typical size for a block cipher, this lower bound is ≈
0.86. With high probability it should generate the full or at least the “half”
permutation group on the blocks. The concrete proof however might be
difficult. One would try to determine the order of some concrete encryption
functions by their effect on certain concrete messages, and then take the
lowest common multiple as a lower bound for the group order.

In any case it seems that in general a multiple cipher is stronger than
the underlying simple cipher. We’ll discuss this again in Sections 3 and 4.

K. Pommerening, Bitblock Ciphers 4

2 Examples of Multiple Ciphers

Examples of Groups

Each of the following length preserving ciphers forms a group:

• The shift ciphers over Σ with respect to a group structure on Σ

• The monoalphabetic substitutions over Σ

• The Bellaso ciphers with a fixed period

• The block transpositions of a fixed length

DES

DES is a block cipher on F64
2 with keyspace F56

2 . Campbell and Wiener
in (Crypto 92) proved that DES generates the alternating group of order
264. Shortly before Coppersmith had shown that the group order is at
least 10277. Only much later someone noted that Moore and Simmons in
Crypto 86 had published the lengths of several cycles that would have
sufficed to show that DES is not a group—a fact that for several years was
viewed as an open conjecture.

Historical Examples

The composition of a polyalphabetic cipher of period l and another one of
period q has period lcm(l, q). Application: Key generating machines as
mentioned in Part I, see the web page http://www.staff.uni-mainz.de

/pommeren/Cryptology/Classic/4 Cylinder/LongPeriods.html.
Another historical example: the double columnar transposition that is

considerably stronger than the simple columnar transposition.

Composition of Bellaso Cipher

The composition of two Bellaso ciphers of periods l and q has period
lcm(l, q), essentially the product lq. However its security amounts at most
to the sum l + q in view of an attack with known plaintext:

Assume known plaintext of length l + q (over the alphabet Z/nZ). This
yields l + q linear equations for l + q unknows—the characters of the two
keys. Assume that l < q. Then the situation is

Plaintext a0 a1 . . . al−1 al . . . aq−1 . . .
Key 1 h0 h1 . . . hl−1 h0
Key 2 k0 k1 . . . kl−1 kl . . . kq−1 . . .

Ciphertext c0 c1 . . . cl−1 cl . . . cq−1 . . .

K. Pommerening, Bitblock Ciphers 5

Taken together this is a Bellaso cipher with key

(h0 + k0, h1 + k1, . . .)

and period lcm(l, q).
Let the known plaintext be (a0, . . . , al+q−1). Then the system of linear

equations for the l + q unknowns h0, . . . , hl−1, k0, . . . , kq−1 ∈ Z/nZ is:

h0 + k0 = c0 − a0,

h1 + k1 = c1 − a1,
...

hl−1 + kl−1 = cl−1 − al−1,

h0 + kl = cl − al,
...

hl+q−1 mod l + kl+q−1 mod q = cl+q−1 − al+q−1.

This cannot have a unique solution: If we add a fixed value x to all hi, and
subtract x from all kj , then we get another solution. Therefore for simplicity
we may assume h0 = 0. If the keys are not randomly chosen but built from
keywords, then a simple “Caesar exhaustion” will reveal the “true” keys
later. For decryption the shifted keys are equivalent. And since we eliminated
one unknown quantity, in general even l + q − 1 known plaintext letters are
enough for uniquely solving the remaining l + q − 1 equations. We won’t go
into the details but give an exercise for interested readers.

Exercise

Consider the ciphertext

CIFRX KSYCI IDJZP TINUV GGKBD CWWBF CGWBC UXSNJ LJFMC

LQAZV TRLFK CPGYK MRUHO UZCIM NEOPP LK

For an attack with known plaintext assume that

• the plaintext (is in German and) starts with “Sehr geehrter ...” (a
common beginning of a letter)

• some keylengths are already ruled out by trial & error; the actual
lengths to test for a double Belaso cipher are 42 = 6× 7.

(A coincidence analysis, even if it doesn’t give enough confidence in a defi-
nite period, should suffice to exclude all but a few combinations of possible
keylengths.)

K. Pommerening, Bitblock Ciphers 6

3 Cryptanalysis of Double Ciphers

Meet in the Middle

The name of this attack against double encryption goes back to Merkle
and Hellman in 1981. (Don’t confuse it with the “Man in the Mid-
dle” attack against cryptographic protocols.) They formalized an attack
that worked in “classical times” against rotor machines, see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/5 Rotor/AnalRot.html.
Consider the composition of two encryption functions with different keys:

Σ∗
fk−→ Σ∗

fh−→ Σ∗

a 7→ b 7→ c.

Assume a pair (a, c) of corresponding plaintext and ciphertext is known,
and assume that the exhaustion of the simple cipher is feasible. Then the
attacker builds two tables:

• all fk(a), k ∈ K,

• all f−1h (c), h ∈ K,

and compares them. Each coincidence yields a possible pair (h, k) ∈ K2

of keys that can be further inspected, say with further known (or guessed)
plaintext.

Expenses

This attack needs

• 2 ·#K encryptions (not (#K)2),

• 2 ·#K memory cells.

Noting that we need only store one of the two tables we even halve the
number of memory cells.

With the usual prefixes for memory sizes

210 220 230 240 250 260

Kilo Mega Giga Tera Peta Exa

and using 1 byte = 8 bits we see that 60 bit keys need memory that ex-
ceeds the (actually) available capacities. However for cryptanalysis the time
requirements are more critical than memory requirements. Therefore as a
general finding we may state:

The security of a double cipher is not significantly better than
the security of the underlying simple cipher. In particular the
bitlength of a key exhaustion is not doubled but only increased
by 1 bit.

K. Pommerening, Bitblock Ciphers 7

False Alarms

One question yet awaits an answer: How many of the coincidences in com-
paring the two tables lead to a wrong pair of suspected keys? That is, how
likely are false alarms?

Here is a heuristic consideration: Assume we encrypt n-bit blocks with l-
bit keys. Then the tables have 2l entries, resulting in 22l comparisions. Since
the number of possible values is 2n we expect about N1 = 22l−n coincidences.
(Implicitly assuming that the values behave like random. By the Birthday
Paradox we expect the first coincidence after 2n/2 trials, but this is irrelevant
in the present context.)

If we test the pitched key pairs with a second known plaintext block,
then we are left with N2 = N1/2n = 22l−2n candidates. After testing t
known plaintext blocks we expect to keep Nt = 22l−tn candidates—but of
course at least one, the right one.

Thus in general we find a unique solution as soon as

t ≥ 2l

n
.

Examples

1. DES, n = 64, l = 56: N1 = 248, N2 = 2−16. We need about 2 blocks of
known plaintext.

2. IDEA, n = 64, l = 128: N1 = 2192, N2 = 2128, N3 = 264, N4 = 1. We
need about 4 blocks.

3. AES, n = 128, l = 128: N1 = 2128, N2 = 1. We need about 2 blocks.
But the number #K = 2128 will by far exceed our time and memory
resources (as in Example 2).

Time-Memory-Tradeoff

A more general consideration yields a “Time Memory Tradeoff”: Under-
taking a Meet in the Middle attack we may spare memory, allowing more
execution time, by generating only partial tables:

If during a pass we fix s bits of both h and k, then we need 2l−s memory
cells for both of the tables of fk(a)’s and f−1h (c)’s. As a compensation we
have to go through 22s passes. The expenses are:

2 · 2l−s encryptions for building one pair of tables,
22s comparisions of one pair of tables, in total

2 · 2l+s encryptions,
2 · 2l−s memory cells.

K. Pommerening, Bitblock Ciphers 8

Multiplying the number of encryptions and the number of needed mem-
ory cells we get 4 · 22l, independently from s. This gives the attacker some
freedom in using her resources in a flexible way.

Example DES: If the attacker owns 128 terabytes of memory, she can
generate 2 tables of 240 blocks each, hence choose s = 56 − 40 = 16. Then
she needs 2 · 272 encryptions. This is feasible, at least for the world’s largest
secret service.

Summary

Double ciphers don’t improve the security of encryption in a worthwile way.

K. Pommerening, Bitblock Ciphers 9

4 Triple Ciphers

The last section unveiled a principal weakness of double encryption. There-
fore, to get a real improvement, we move on to triple encryption. An often
used scheme is “EDE” (Encryption, Decryption, Encryption)

fg ◦ f−1h ◦ fk for g, h, k ∈ K.

Why is fh inverted? The advantage of this scheme is its compatibility with
simple encryption by choosing keys g = h = k.

The Meet in the Middle attack also applies to this scheme. Thus the
effective key length (for exhaustion) is not tripled but only doubled, but
that’s OK for 56 or 64-bit keys.

Often the scheme is somewhat simplified as “two-key triple encryption”:

f = fk ◦ f−1h ◦ fk for h, k ∈ K.

This scheme has a weakness under an attack with chosen plaintext that
however worries only paranoiacs. Consider the scenario

Σ∗
fk−→ Σ∗

f−1
h−→ Σ∗

fk−→ Σ∗,
a 7→ b 7→ b′ 7→ c.

Step 1: Using #K encryptions and #K memory cells precalculate the table

{f−1h (b0) | h ∈ K}

for a fixed intermediate value of b0.

Step 2: Then calculate for all keys k ∈ K:

ak := f−1k (b0) (the chosen plaintext),

ck := f(ak),

bk := f−1k (ck).

The second assignment is possible in an attack with chosen plaintext,
which implies that we can evaluate f with any plaintexts. The expenses
are 5 ·#K simple encryptions. If bk = f−1h (b0), then we keep the pair
(h, k) of keys for further examination.

Σ∗ -fk Σ∗ -
f−1h

Σ∗ -fk Σ∗

ak -
f

ck

b0 -
f−1h bkk

�
�

�	

f−1k

@
@

@I f−1k
f−1h (b0)

?
= f−1k (ck)
i��

K. Pommerening, Bitblock Ciphers 10

The most efficient known attack is described in:

• Van Oorschot/Wiener: A known plaintext attack on two-key triple
encryption. Eurocrypt 90.

K. Pommerening, Bitblock Ciphers 11

5 Cascades of Different Ciphers

Examples

1. Monoalphabetic substitutions and transpositions commute. Combin-
ing more than one of each doesn’t make sense since each of these two
types forms a group. Composing one monoalphabetic substitution and
one (simple) transposition makes a weak cipher. Solving it by a cipher-
text only attack starts with a frequency count that reveals the most
common letters.

2. The same remark applies to periodic polyalphabetic ciphers and trans-
positions. But if we take different period lengths for each step we get a
fairly complex cipher, however it is too complex for manual operation.

3. The Enigma composed a monoalphabetic cipher with several polyal-
phabetic substitutions of different periods, followed by one more
monoalphabetic substitution. The result was a single polyalphabetic
substitution with a very large period.

4. The ADFGVX cipher used by the German army in WW I consisted of a
substitution followed by a columnar transposition. For the substitution
the 26 letters and 10 digits were distributed into a 6-by-6 square in
an order defined by the key. Then each character was replaced by its
coordinates in this square that were denoted by A, D, F, G, V, X. The
French (Painvin und Givierge) had many successes in breaking this
cipher.

5. Composing a monoalphabetic cipher with an autokey cipher is one of
the “modes” that make block ciphers a little bit harder, see Chapter 3.

6. Finally recall that Porta’s disk cipher had a representation as com-
position of a monoalphabetic substitution with a Belaso (aka Vi-
genère) cipher.

As a résumé we may state that cascades of different ciphers in general
increase the security, but not always. In any case the situation requires a
careful analysis before we trust a newly constructed product cipher.

