4 Approximation by Linear Structures

The second main approach to hidden linearity is via linear structures. These
are detected by difference calculus.

4.1 Linear structures of a Boolean map

Definition 1 Let f : F} — FZ be a Boolean map, and u € F}. Then the
difference map is defined by A, f : F} — F? is

Auf(z) = f(z+u)— f(x) for all x € [F5.

Lemma 1 Let f,g: F} — Fl and u € F}. Then:
() Au(f +9) = Auf + Aug,
(ii) Deg A, f < Deg f — 1.

Proof. (i) is trivial.
(i) Assume without loss of generality: ¢ = 1, f = T is a monomial, and
finally f =11 ---T,.. Then

Auf(z)=(z14+u) - (xp +up) —x1 -2

obviously hs degree < r —1. &

Corollary 1 If f is constant, then A, f =0 for all u € F3.
Corollary 2 If f is affine, then A, f constant for all u € Fy.

Definition 2 (Evertse, EUROCRYPT 87) A vector u € Fy is called linear
structure of f: F} — F1 if A, f is constant.

Remarks

1. Aygof(z) = fz+utv)— f(z) = flea+u+v)— flz+v)+ flx +v)—
f(x) :Auf(m+v)+Avf<x)'

2. If f is affine, then every vector is a linear structure of f.
3. 0 always is a linear structure of f.

4. If w and v are linear structures, then so is u + v by remark 1. There-
fore the linear structures of f form a vector subspace of Fy. On this
subspace f is affine. We conclude that the converse of remark 2 is also
true.
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5. If g : F2 — F} is linear, then A, (go f) = go Ayf.

Definition 3 For a Boolean map f : F} — F2 the vector space of its
linear structures is called the radical Rady, its dimension, linearity
dimension of f, and its codimension, rank of f, Rank f.

4.2 The differential profile

For a Boolean map f : F} — F4 and u € F}, v € F] let

D¢(u,v) = {zeFy|A.f(z)=v},
1
dp(u,v) = 27#Df(u,v).
Definition 4 (Chabaud/Vaudenay, EUROCRYPT 94) The function
§p:Fy xFi — R
is called the differential profile of f.

(The normalization with the coefficient -

matrix #Df(u,v) is called difference table.)

is useful. In the literature the

Remarks

1. If f is affine, f(z) = Az + b, then A, f(x) = Au, hence

Fy, if Au=wv,

0 else,

Dy¢(u,v) = {x€F3|Au:v}:{

1, if Au=w,
5f(U7U) - {0 else

Each row of the differential profile contains exactly one 1, and 0 else.
2. The following statements are equivalent:

F?  for one v,
u is a linear structure of f <= Dy(u,v) = {@2 |
else

1 for one v,

— r(u,v) =
() {0 else.
The “row u” of the differential profile is 0 except exactly one entry 1.
3. For arbitrary f, and u = 0, we have

1, ifv=0,

0 else

6f (07 U) = {
(row 0 of the differential profile).
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4. Zvng d¢(u,v) =1 (row sums of the differential profile). In particular

1

for each vector u € F4 there is a v € F§ such that d7(u,v) > 5;.

‘We have shown:

Proposition 1 For a Boolean map f : Fy — F1 the following statements
are equivalent:

(i) f is affine.
(ii) Fach vector u € FY is linear structure of f.

(iii) Each row of the differential profile contains exactly one entry # 0.

Remarks
5. x € Dy(u,v) & v +u € Di(u,v).

6. All values #D(u,v) are even: For u = 0 this follows from remark 3,
else from remark 5. Therefore all §¢(u, v) are integer multiples of Qn%l

7. In the case ¢ = 1 the autocorrelation, by its definition, can be expressed
as
ki(x) =0¢(z,0) — d¢(x,1).

Exercise 1 How does the differential profile behave under affine transfor-
mations of the argument or image space?

Exercise 2 Show that for bijective f always d;-1(v,u) = 05(u,v).

4.3 Efficient calculation of the differential profile

The following lemma is the basis for the efficient calculation of differential
profiles:

Lemma 2 For every Boolean map f:F} — Fl
0 = iﬂ * U
Proof.

O x0p(u,v) = Z Zﬁf(x,y)ﬁf(az+u,y+v)

xGF;yng

= Z V(e +u, f(x) +v)

zeFy

= #Hr el | flz+u) = f(z)+0v}O
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The convolution theorem yields
by = 2 = 2
f - 2n f - f’
and we have shown:

Theorem 1 The differential profile is, up to a constant factor, the Walsh
transform of the linear profile:

1. 1
Parseval’s equation immediately gives:

Corollary 1 For every Boolean map f:Fj) — F

2" . Z Z Ap(u,v)? =27 Z Z dr(z,y)2.

u€lFy velFd z€FY yeF]

Corollary 2 Two Boolean maps Fy — F2 have the same linear profile, if
and only if they have the same differential profile.

Therefore we can efficiently calculate the differential profile of a map
f: Fy — Fi by the following algorithm, that yields the linear profile as an
intermediate result:

1. Calculate the spectrum 1§f.

2. Take the squares w := 1930 and normalize Ay = 22% W

3. Transform back to d; = 2%1;\f = 22—1+1c2)

The effort, after having calculated A #, consists of additional 3N - 2log(N)
“elementary operations”. All in all this makes 6N - 2log(V) such operations
plus N squarings, where N = 2"%4 is the input size.

This entire procedure is in the sources as executable program bma
(‘Boolean Map Analysis’).

Exercise Let f:F} — F2 be a Boolean map. Show that
1
Z dp(u,v) = onVt* vr(v)
uclFy

for all v € F3. (Remember that vy is the preimage counter.)

Deduce that the following statements are equivalent (Zhang/Zheng,
SAC ’96):
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(i) f is balanced.

(ii) Zung dp(u,v) = 2" 9 for all v € F (all column sums of the
differential profile).

(iii) Zue]Fg d¢(u,0) = 2"79 (first column sum of the differential pro-
file).

4.4 The differential potential

Definition 5 (Nyberg, EUROCRYPT 93) For a Boolean map f : F} — F2
the quantity

Q= max{0s(u,v) | u € Fy,v € Fi, (u,v) # 0}
is called differential potential of f.

Note: Nyberg denotes the maximum entry of the difference table (except at
(0,0)) by “differential uniformity”. Here I prefer a uniform treatment of the
linear and the differential profiles and potentials.

Remarks

1. By remark 4 in 4.2 we have the bounds

2. Qy takes the lower bound 27, if and only if all §¢(u,v) = 279 for
u # 0, 1. e, if all the difference maps A, f : F} — F2 are balanced.
(The “row u” of the differential profile is constant.)

3. Since for f: Fy — F4 all values of the differential profile d; are
multiples of 271%1, the differential potential {2y > 2,1%1

4. If f has a linear structure # 0, i. e., if Rad; # 0, then Q = 1.

Exercise 1 Show that () is invariant under affine transformations of I
and FZ.

Exercise 2 Show that if f is bijective, then Q¢ = Qy.

Definition 6 (Nyberg, EUROCRYPT 93) A Boolean map f : Fj — Fl is
called perfectly nonlinear, if its differential potential has the (min-
imally possible) value 2y = 271,

Remarks
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5.

6.

By remark 5 in 4.1 and proposition 3 in 3.2 this holds, if and only if
B o f is perfectly nonlinear for each linear form f : IF% — F9, B #0.

A perfectly nonlinear map f : Fy — FZ cannot have any linear struc-
ture u # 0.

7. If a perfectly nonlinear map exists, then ¢ <n — 1 by remark 3.

From remark 2 we conclude:

Proposition 2 f : F} — Fi is perfectly nonlinear, if and only if the
differential profile 65 is constant = 279 on (F% — {0}) x F1.

4.5

Good diffusion

Definition 7 A Boolean map f : F} — F2 has good diffusion with

respect to u € Fy, if the difference function A, f is balanced.

Remarks

1.

For ¢ = 1 this means f(z +u) — f(z) = 0 or 1 each for exactly 2!
vectors © € F3. Let’s denote the number of zeroes of the difference
function by

Uf(u) = #{x € ]Fg | Auf(x) = O} = 2n6f(u70)7

then good diffusion with respect to u is equivalent with ng(u) = 2771

. For general ¢ good diffusion means, that #Df(u,v) = 2"7¢ and

§f(u,v) = 5 for all v € F{—i. e. the “row u” of the differential profile
is constant.

. With respect to 0 no map has good diffusion.

. Affine maps don’t have good diffusion with respect to any vector wu.

A Boolean map f is perfectly nonlinear, if and only if it has good
diffusion with respect to all vectors u € F§ — {0}.

Definition 8 (Webster/Tavares, CRYPTO 85) A Boolean function f fulfils

the strict avalanche criterion (SAC), if f has good diffusion with re-
spect to all canonical base vectors.

This means: Flipping one input bit changes exactly half of the values of f.

Remarks
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6. Every perfectly nonlinear function fulfils the SAC.

We can express good diffusion of a Boolean function f by the convolution
of the character form x; with itself:

Xf ok Xf(u) = 2"k p(u) = 2"[0f(u,0) — dp(u, 1)] = 2y (u) — 27,
where k is the autocorrelation. Hence:

Lemma 3 A Boolean function f : Fy — Fo has good diffusion with respect
to u, if and only if

Xf*xf(u) =0 or in other words ry¢(u) = 0.
Moreover u is a linear structure of f, if and only if
Xgoxxg(u) =27 or in other words kjy(u) = %1.
Setting u = 0 we conclude

Xs*xr(0) =27,

since 177(0) = 2". Therefore f is perfectly nonlinear, if and only if x f*x s = 1,
the point mass in 0, or if ({f)? = X7 * Xy = 2" constant. This was just the
definition of a bent function. Thus we have shown:

Corollary 1 (Dillon 1974) A Boolean function f is perfectly nonlinear,
if and only if it is bent.

Corollary 2 (Nyberg, EUROCRYPT 91) A Boolean map f : Fy — F2 is
perfectly nonlinear, if and only if it is bent.

Proof. Each of these properties is equivalent analogous statement for all
functions B o f : F} — Fy where 3 : F§ — Fy an arbitrary linear form
#0. ¢

An expression for a globally “as good as possible” diffusion of a Boolean
function is the global autocorrelation

1 . 1 .
Tp = Z ﬁf(x)2 = Z ,'-@f(u)2 = Z Xf(u)4;
zelFy uclFy uclFy

we have used Parseval’s equation and the corollary 5 of the convolution
theorem in 2.3. In particular 74 > r(0)?> = 1, and we know already, that f
is perfectly nonlinear, if and only if 7; = 1. Furthermore

2

1 — . 1 )
=g 2L )t < o Y R

uely uelFy
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because all summands are > 0; equality holds, if and only if at most one
summand is > 0. Therefore 7; < 2", and equality holds, if and only if at
most one Y f(u)2 > 0. This one term then must equal the total sum of squares
22" hence X (u) = £2", hence L¢(u) = 0 or F%, hence f(z) =u-z+1 or
f(x) = u -z for all z. We have shown:

Proposition 3 Let 7; be the global autocorrelation of a Boolean function
f:F3 — Fy. Then:

() 1< 7 <2,
(i) 7y = 1 <= [ perfectly nonlinear.
(ili) 7 = 2" < f affine.
4.6 The linearity distance

Let
LS, :={f:Fy — Fy| f has a linear structure # 0}.

This is the union of the vector subspaces for a fixed linear structure, but it
is in general not a vector subspace.

Definition 9 (Meier/Staffelbach, EUROCRYPT 89) For a Boolean function
f :Fy — Fy the Hamming distance

Pf = d(f, Lsn)

is called the linearity distance of f.

Remarks
1. py =0 < f has a linear structure # 0.
2. Because A, C LS, we have p; < oy, the nonlinearity.

How large is py else? To find an answer, we count: For a fixed vector
u € F} we decompose F3 into two subsets

Dy(u,0) = {z €y [Auf(z) =0},
Di(u,1) = {z el [Auf(z) =1}
of sizes ng = ny(u) = 2"0f(u,0) and ny = 2" —ny(u) = 2"5¢(u, 1).

First assume ng > ni. To convert f to a function that has u as a linear
structure, we have to change at least "5 values, and that suffices: To see this
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let D¢(u,1) = M7 U M7 be decomposed into any two subsets of the same
size, where x € M| & x4+ u € MY, #M{| = #M] = ; then the function

;o ) fx)+1 forxze M,
Jle):= {f(x) else,

has u as a linear structure:

flx+u)+ f(z) =0 forz e My,
Aufi(w)=fllx+u)+ fl(z) =] fle+u)+flz)+1 =0 forze M,
flx4+u)+1+ f(x) =0 forxze M/,

and this cannot be got with less changes.
If ng < ny, in the same way we need > changes. Therefore the distance
of f to any function g, that has u as a linear structure, is

d(f,9) = ny(u) == min{=>, ==} = 2" - min{d;(u, 0), 5 (u, 1)},
and this value is assumed by a suitable g. We conclude

ps =min{ns(u) |u € Fy — {0}}.

Since always ng + n1 = 2", we have n(u) < 2”72 We have shown the first
statement of:

Proposition 4 (Meier/Staffelbach, EUROCRYPT 89) The linearity dis-
tance of a Boolean function f:Fy — Fq is

Equality holds, if and only if f is perfectly nonlinear.

Proof. We have to show the second statement: In the count above for each
vector u € F§ — {0} we have ng = §¢(u,0) =nq = ds(u, 1) =2""1. O

Furthermore
pyr=2""1min{6;(u,v) |u € F§ — {0},v € Fa}.

Let this minimum be taken in (ug,vp), i. e. pf = 2”71 §¢(ug,vp), then
d¢(ug,vo + 1) =1 — 05 (up,vp) is maximum, whence = Q. We conclude:

Proposition 5 The linearity distance py of a Boolean function f is tied to
the differential potential 0y by the formula:

P = on—L. (1 — Qf)
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