
K. Pommerening, Bitstream Ciphers 127

x2 y2

xd1 mod m
-output y2XXXXXXXX

x1 y1

xd0 mod m
— — — n bits — — — — — — — —

-output y1XXXXXXXXXXXXXXXX

x0
— 2n/d bits —

XXXXXXXXXXXXXXXX

x0 has 2n/d bits.

xd0 has 2n bits.

Figure 4.4: Micali-Schnorr generator

4.7 The Micali-Schnorr Generator

Micali and Schnorr proposed a pseudorandom generator that is a descen-
dent of the RSA generator. Fix an odd number d � 3. The parameter set
is the set of all products m of two primes p and q whose bit lengths di↵er
by at most 1, and such that d is coprime with (p � 1)(q � 1). For an n-bit
number m let h(n) be an integer ⇡ 2n

d . Then the d-th power of an h(n)-bit
number is (approximately) a 2n-bit number.

In the i-th step calculate zi = xdi�1 mod m. Take the first h(n) bits as the

new state xi, that is xi = bzi/2n�h(n)c, and output the remaining bits, that
is yi = zi mod 2n�h(n). Thus the bits of the result zi are partitioned into two
disjoint parts: the new state xi, and the output yi. Figure 4.4 illustrates this
scheme.

But why may we hope that this pseudorandom generator is perfect? This
depends on the hypothesis: There is no e�cient test that distinguishes the
uniform distribution on {1, . . . ,m � 1} from the distribution of xd mod m
for uniformly distributed x 2 {1, . . . , 2h(n)}. If this hypothesis is true, then
the Micali-Schnorr generator is perfect. This argument seems tautologic,
but heuristic considerations show a relation with the security of RSA and
with factorization. Anyway we have to concede that this “proof of security”
seems considerably more airy then that for BBS.

How fast do the pseudorandom bits tumble out of the machine? As ele-
mentary operations we again count the multiplication of two 64-bit numbers,
and the division of a 128-bit number by a 64-bit number with 64-bit quo-
tient. We multiply and divide by the classical algorithms. Thus the product
of s (64-bit) words and t words costs st elementary operations. The cost of



K. Pommerening, Bitstream Ciphers 128

division is the same as the cost of the product of divisor and quotient.
The concrete recommendation by the inventors is: d = 7, n = 512.

(Today we would choose a larger n.) The output of each step consists of 384
bits, withholding 128 bits as the new state. The binary power algorithm for
a 128-bit number x with exponent 7 costs several elementary operations:

• x has 128 bits, hence 2 words.

• x2 has 256 bits, hence 4 words, and costs 2 · 2 = 4 elementary opera-
tions.

• x3 has 384 bits, hence 6 words, and costs 2 · 4 = 8 elementary opera-
tions.

• x4 has 512 bits, hence 8 words, and costs 4 · 4 = 16 elementary opera-
tions.

• x7 has 896 bits, hence 14 words, and costs 6 · 8 = 48 elementary
operations.

• x7 mod m has  512 bits, and likewise costs 6 · 8 = 48 elementary
operations.

This makes a total of 124 elementary operations; among them only one
reduction modm (for x7). Our reward consists of 384 pseudorandom bits.
Thus we get about 3 bits per elementary operation, or, by the assumptions
in Section 4.6, about 6 milliards bits per second. Compared with the BBS
generator this amounts to a factor of about 1000.

Parallelization increases the speed virtually without limit: The Micali-

Schnorr generator allows complete parallelization. Thus distributing the
work among k CPUs brings a profit by the factor k since the CPUs can work
indepedently of each other without need of communication.


