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8 Rearranging the Columns

The Problem

The formula for the disk cipher from Theorem 1 was f�,k = f� � f",k0 where
k0 = f�1

� (k). However we didn’t use this formula in our analysis but rather a
similar one of the type f�,k = g �f� where g should describe the shifts in the
alphabets and g�1 the rearrangement. What we did was first rearrange the
shifts in the di↵erent columns, and then solve the resulting monoalphabetic
ciphertext. Note that for this method to work in general the primary alpha-
bet must be known. Unfortunately there is no useful general interpretation
of the formula g = f� � f",k0 � f�1

� when � is unknown.
We’ll analyze the situation, first for an example.

Example

We take the standard alphabet ⌃ = A...Z, and consider an alphabet table.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

---------------------------------------------------

Q W E R T Z U I O P A S D F G H J K L Y X C V B N M

W E R T Z U I O P A S D F G H J K L Y X C V B N M Q

E R T Z U I O P A S D F G H J K L Y X C V B N M Q W

... ... ...

M Q W E R T Z U I O P A S D F G H J K L Y X C V B N

Phrased in terms of permutations the top row, Row 0, the standard alphabet,
corresponds to the identical permutation " 2 S(⌃). The next row, Row 1,
the primary alphabet, corresponds to the permutation � 2 S(⌃). Row 2
corresponds to � � ⌧ , where ⌧ is the alphabet shift

⌧(A) = B, ⌧(B) = C, . . . , ⌧(Z) = A

Row i corresponds to � � ⌧ i�1. For the concrete example we have

�(A) = Q, �(B) = W, . . .

and thus
� � ⌧(A) = �(B) = W, � � ⌧(B) = �(C) = E, . . .

On the other hand

⌧ � �(A) = ⌧(Q) = R, ⌧ � �(B) = ⌧(W) = X, . . .
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Shifts in the Primary Alphabet

Recall the alphabet table in the general case

s0 s1 s2 . . . sn�1

t0 t1 t2 . . . tn�1

t1 t2 t3 . . . t0
. . . . . . . . . . . . . . .
tn�1 t0 t1 . . . tn�2

where ti = �si for 0  i  n� 1, and � is the permutation that defines the
primary alphabet.

Identify as usual the alphabet ⌃ = {s0, . . . , sn�1} with Z/nZ, the inte-
gers mod n, via i 7! �i and take indices mod n. Mathematical expressions
for the shifts in the original and primary alphabets are

• ⌧ = shift by 1 in the original alphabet, ⌧(si) = si+1.

• ⌧k = shift by k in the original alphabet, ⌧k(si) = si+k.

• �⌧��1 = shift by 1 in the primary alphabet,

ti
��1

7! si
⌧7! si+1

�7! ti+1

• �⌧k��1 = (�⌧��1)k = shift by k in the primary alphabet.

The alphabet table, interpreted as list of permutations, is the orbit of
� 2 S(⌃) under iterated right translation by ⌧ (or under the cyclic subgroup
h⌧i ✓ S(⌃) generated by ⌧).

The “naive” shift that we performed in Section 7 shifted the single letters
of the primary alphabet by a certain number of positions in the standard
alphabet—we performed ⌧ i � � for some value i. Why was this successful?
Under what conditions are the naively shifted primary alphabets again rows
of the alphabet table?

Decimated alphabets

We take the ordering of the alphabets into account and let T1 = (t0, . . . , tn�1)
be the ordered primary alphabet where ti = �si. The secondary alphabets
then are Ti = (ti�1, . . . , tn�1, t0, . . . , ti�2) for i = 2, . . . , n. They correspond
to the permutations � � ⌧ i�1, that is Ti = (�si�1,�si, . . .).

The primary alphabet used in the example of Section 7 was of a special
kind: It had ti = s3i mod 26. The corresponding formula for the general case
is

ti = ski mod n,

and ti for i = 0, . . . , n � 1 runs through all elements of ⌃ if and only if k
and n are relative prime.
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Definition. Let the alphabet ⌃ be linearly ordered as (s0, . . . , sn�1), and
let gcd(k, n) = 1. The (ordered) alphabet T = (t0, . . . , tn�1) is called
decimated alphabet of order k (of ⌃ with the given linear order
relation) if there is an index p 2 {0, . . . , n�1} such that tp+i = ski mod n

for i = 0, . . . , n� 1.

That means, beginning with tp = s0 we take each k-th letter from ⌃.
If the primary alphabet is decimated, so are all the secondary alphabets;

we get them all by varying the index p.
Now when we apply the shift ⌧ to the (ordered) primary and secondary

alphabets T1, . . . , Tn we get new alphabets f⌧ (T1), . . . , f⌧ (Tn); note that we
interpret the n-tuples Ti as texts and apply ⌧ elementwise. The question we
want to answer is whether the f⌧ (Ti) belong to the collection of the Ti. The
answer involves the normalizer N(h⌧i) of the subgroup h⌧i  S(⌃).

Theorem 2 (Decimated alphabets) Let the alphabet ⌃ be linearly
ordered as (s0, . . . , sn�1). Let the (ordered) primary alphabet T1 =
(t0, . . . , tn�1) be defined by ti = �si where � 2 S(⌃), and let T2, . . . , Tn

be the corresponding ordered secondary alphabets. Then the following state-
ments are equivalent:

(i) There is a j 2 {1, . . . , n} with f⌧ (T1) = Tj.
(ii) f⌧ permutes the {T1, . . . , Tn}.
(iii) T1 is a decimated alphabet of ⌃.
(iv) � 2 N(h⌧i).

Proof. “(i) =) (iv)”: f⌧ (T1) = Tj means that ⌧ � � = � � ⌧ j . Then
��1 � ⌧ � � 2 h⌧i or � 2 N(h⌧i).

“(iv) =) (iii)”: By conjugation � defines an automorphism of the cyclic
group h⌧i. These automorphisms are known, the following Lemma 1 gives
� � ⌧ � ��1 = ⌧k for some k, relative prime with n. The letter s0 occurs
somewhere in T1, so let s0 = tp. Then �sp = tp = s0 and

tj+p = �sj+p = �⌧ jsp = ⌧ jk(�sp) = ⌧ jks0 = sjk for j = 0, . . . , n� 1,

where as usual we take the indices mod n.
“(iii) =) (iv)”: Let p and k as in the definition. For any i we have

⌧k�sp+i = ⌧ktp+i = ⌧kski = ski+k = sk(i+1) = tp+i+1 = �sp+i+1 = �⌧sp+i.

From this we conclude � � ⌧ = ⌧k � � or � � ⌧ � ��1 2 h⌧i.
“(iv) =) (ii)”: We have ��1 �⌧ �� = ⌧k

0
where k0k ⌘ 1 (mod n) whence

⌧ � � = � � ⌧k0 . The permuted alphabet Ti corresponds to the permutation
��⌧ i�1. Therefore f⌧Ti corresponds to ⌧ ���⌧ i�1 = ��⌧k0+i�1. We conclude
f⌧Ti = Tk0+i.

“(ii) =) (i)” is the restriction to a special case. 3
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Lemma 1 Let G = hgi be a finite cyclic group of order m. Then the auto-
morphisms of G are the power maps g 7! gk where k is relatively prime to
m. In other words, the automorphism group AutG is isomorphic with the
multiplicative group (Z/mZ)⇥.

Proof. Let h be an automorphism of G. Then h(g) = gk for some k 2 Z.
This k uniquely defines h on all of G, and k is uniquely determined by h up
to multiples of Ord(g) = m. The power map g 7! gk is bijective if and only
if k is relatively prime to m. 3


