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14 Kullback’s Cross-Product Sum Statistic

For a decision whether two texts a ∈ Σr, b ∈ Σq belong to the same language
we could consider ϕ(a||b), the coincidence index of the concatenated string
a||b. It should approximately equal the coincidence index of the language,
or—in the negative case—be significantly smaller. This index evaluates as

(q + r)(q + r − 1) · ϕ(a||b) =
�

s∈Σ
[ms(a) +ms(b)] [ms(a) +ms(b)− 1]

=
�

s∈Σ
ms(a)

2 +
�

s∈Σ
ms(b)

2 + 2 ·
�

s∈Σ
ms(a)ms(b)− r − q

In this expression we consider terms depending on only one of the texts
as irrelevant for the decision problem. Omitting them we are left with the
“cross-product sum” �

s∈Σ
ms(a)ms(b)

From another viewpoint we could consider the “Euclidean distance” of a
and b in the n-dimensional space of single letter frequencies

d(a, b) =
�

s∈Σ
[ms(a)−ms(b)]

2 =
�

s∈Σ
ms(a)

2+
�

s∈Σ
ms(b)

2−2·
�

s∈Σ
ms(a)ms(b)

and this also motivates considering the cross-product sum. It should be large
for texts from the same language, and small otherwise.

Definition

Let Σ be a finite alphabet. Let a ∈ Σr and b ∈ Σq be two texts of lengths
r, q ≥ 1. Then

χ(a, b) :=
1

rq
·
�

s∈Σ
ms(a)ms(b),

where ms denotes the frequency of the letter s in a text, is called cross-
product sum of a and b.

For each pair r, q ∈ N1 this defines a map

χ : Σr × Σq −→ Q.

A Perl program, chi.pl, is in http://www.staff.uni-mainz.de/pommeren/
Cryptology/Classic/Perl/.

Transforming a and b by the same monoalphabetic substitution permutes
the summands of χ(a, b). Therefore χ is invariant under monoalphabetic
substitution.

Lemma 2 Always χ(a, b) ≤ 1. Equality holds if and only if a and b consist
of repetitions of the same single letter.
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Proof. We use the Cauchy-Schwartz inequality:

χ(a, b)2 =

�
�

s∈Σ

ms(a)

r

ms(b)

q

�2

≤
�

s∈Σ

�
ms(a)

r

�2

·
�

s∈Σ

�
ms(b)

q

�2

≤
�

s∈Σ

ms(a)

r
·
�

s∈Σ

ms(b)

q
= 1

Equality holds if and only if

• ms(a) = c ·ms(b) for all s ∈ Σ with a fixed c ∈ R,

• and all ms(a)
r and ms(b)

q are 0 or 1.

These two conditions together are equivalent with both of a and b consisting
of only one—the same—repeated letter. ✸

Considering the quantity ψ(a) := χ(a, a) =
�

sms(a)2/r2 doesn’t make
much sense for Corollary 1 of the Kappa-Phi-Theorem gives a linear (more
exactly: affine) relation between ψ and ϕ:

Lemma 3 For all a ∈ Σr, r ≥ 2,

ϕ(a) =
r

r − 1
· ψ(a)− 1

r − 1

Side Remark: Cohen’s Kappa

In statistical texts one often encounters a related measure of coincidence
between two series of observations:Cohen’s kappa. It combines Friedman’s
kappa and Kullback’s chi. Let a = (a1, . . . , ar), b = (b1, . . . , br) ∈ Σr be
two texts over the alphabet Σ (or two series of observations of data of some
type). Then consider the matrix of frequencies

mst(a, b) = #{i | ai = s, bi = t} for s, t ∈ Σ.

Its row sums are

ms(a) = #{i | ai = s} =
�

t∈Σ
mst(a, b),

its column sums are

mt(b) = #{i | bi = t} =
�

s∈Σ
mst(a, b),

its diagonal sum is
�

s∈Σ
mss(a, b) =

�

s∈Σ
#{i | ai = bi = s} = #{i | ai = bi}.
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The intermediate values from which Cohen’s kappa is calculated are

p0 =
1

r
·
�

s∈Σ
mss(a, b) = κ(a, b) and pe =

1

r2
·
�

s∈Σ
ms(a)ms(b) = χ(a, b)

Cohen’s kappa is defined for a �= b by

K(a, b) :=
p0 − pe
1− pe

=
κ(a, b)− χ(a, b)

1− χ(a, b)

If a and b are random strings with not necessarily uniform letter probabilities
ps, then K is asymptotically normally distributed with expectation 0 and
variance

p0 · (1− p0)

r · (1− p0)2

Therefore its use is convenient for large series of observations—or large
strings—but in cryptanalysis we mostly have to deal with short strings,
and considering κ and χ separately may retain more information.

Mean Values

For a fixed a ∈ Σr we determine the mean value of κ(a, b) taken over all
b ∈ Σq:

1

nq
·
�

b∈Σq

χ(a, b) =
1

nq
·
�

b∈Σq

�
1

rq
·
�

s∈Σ
ms(a)ms(b)

�

=
1

rqnq
·
�

s∈Σ
ms(a)

�

b∈Σq

ms(b)

� �� �
q·nq−1

=
1

rqnq
· r · q · nq−1 =

1

n

where we used the corollary of Proposition 4.
In an analogous way we determine the mean value of χ(a, fσ(b)) for fixed

a, b ∈ Σr over all permutations σ ∈ S(Σ):

1

n!
·

�

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·

�

σ∈S(Σ)

�

s∈Σ
ms(a)ms(fσ(b))

As usual we interchange the order of summation, and evaluate the sum

�

σ∈S(Σ)

ms(fσ(b)) =
1

n
·
�

t∈Σ

�

σ∈S(Σ)

mt(fσ(b))

=
1

n
·

�

σ∈S(Σ)

�

t∈Σ
mt(fσ(b))

� �� �
q

=
1

n
· n! · q = (n− 1)! · q
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using the symmetry with respect to s. Therefore

1

n!
·

�

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·
�

s∈Σ
ms(a) ·

�

σ∈S(Σ)

ms(fσ(b))

=
1

rqn!
· r · (n− 1)! · q =

1

n

Note that this conclusion also holds for a = b.
This derivation shows:

Proposition 5 (i) The mean value of χ(a, b) over all texts b ∈ Σ∗ of a fixed
length q is 1

n for all a ∈ Σ∗.
(ii) The mean value of χ(a, b) over all a ∈ Σr and b ∈ Σq is 1

n for all
r, q ∈ N1.

(iii) The mean value of χ(a, fσ(b)) over all monoalphabetic substitutions
with σ ∈ S(Σ) is 1

n for each pair a, b ∈ Σ∗.
(iv) The mean value of χ(fσ(a), fτ (b)) over all pairs of monoalphabetic

substitutions, with σ, τ ∈ S(Σ), is 1
n for each pair a, b ∈ Σ∗.

Interpretation

• For a given text a and a “random” text b we have χ(a, b) ≈ 1
n .

• For “random” texts a and b we have χ(a, b) ≈ 1
n .

• For given texts a and b and a “random” monoalphabetic substitution
fσ we have χ(a, fσ(b)) ≈ 1

n . This remark justifies treating a nontrivially
monoalphabetically encrypted text as random with respect to χ and
plaintext.

• For given texts a and b and two “random” monoalphabetic substitu-
tions fσ, fτ we have χ(fσ(a), fτ (b)) ≈ 1

n .

Empirical Results

We collect empirical results for 2000 pairs of 100 letter texts us-
ing chistat.pl, from http://www.staff.uni-mainz.de/pommeren/

Cryptology/Classic/Perl/. For English we use the book Dr Thorndyke
Short Story Omnibus by R. Austin Freeman from Project Gutenberg.
We extract a first part of 402347 letters (Thorn1.txt) and take the
first 400000 of them for our statistic. In the same way for German
we use Die Juweleninsel by Karl May from Karl-May-Gesellschaft
(Juwelen1.txt, 434101 letters). For random texts we generate 400000
letters by Perl’s random generator (RndT400K.txt). (All texts in
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/.)
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The results are in Tables 31, 32, and 33. We see that χ—in contrast with
the coincidence index κ—performs extremely well, in fact in our experiments
it even completely separates English and German texts from random texts
of length 100. It is a test with power near 100% and error probability near
0%. The χ test even distinguishes between English and German texts at the
5% error level with a power of almost 75%. For this assertion compare the
95% quantile for English with the first quartile for German.

Table 31: Distribution of χ for 2000 English text pairs of 100 letters

Minimum: 0.0500
Median: 0.0660 Mean value: 0.0663
Maximum: 0.0877 Standard dev: 0.0049
1st quartile: 0.0630 5% quantile: 0.0587
3rd quartile: 0.0693 95% quantile: 0.0745

The results for 100 letter texts encourage us to try 26 letter texts. To this
end we need 104000 letters for each language. We extract the next 104009
letters from Dr Thorndyke Short Story Omnibus (Thorn2.txt), and the next
104293 letters from Die Juweleninsel (Juwelen2.txt). We construct random
text by taking 104000 random numbers between 0 and 25 from random.org

(RndT104K.txt). The results are in Tables 34, 35, and 36. The χ-test is quite
strong even for 26 letters: At the 5% error level its power is around 91% for
English, 98% for German.

Table 32: Distribution of χ for 2000 German text pairs of 100 letters

Minimum: 0.0578
Median: 0.0792 Mean value: 0.0794
Maximum: 0.1149 Standard dev: 0.0074
1st quartile: 0.0742 5% quantile: 0.0677
3rd quartile: 0.0840 95% quantile: 0.0923
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Table 33: Distribution of χ for 2000 random text pairs of 100 letters

Minimum: 0.0337
Median: 0.0400 Mean value: 0.0400
Maximum: 0.0475 Standard dev: 0.0020
1st quartile: 0.0387 5% quantile: 0.0367
3rd quartile: 0.0413 95% quantile: 0.0433

Table 34: Distribution of χ for 2000 English text pairs of 26 letters

Minimum: 0.0266
Median: 0.0666 Mean value: 0.0666
Maximum: 0.1169 Standard dev: 0.0120
1st quartile: 0.0577 5% quantile: 0.0488
3rd quartile: 0.0740 95% quantile: 0.0873

Table 35: Distribution of χ for 2000 German text pairs of 26 letters

Minimum: 0.0325
Median: 0.0784 Mean value: 0.0793
Maximum: 0.1538 Standard dev: 0.0154
1st quartile: 0.0680 5% quantile: 0.0562
3rd quartile: 0.0888 95% quantile: 0.1065

Table 36: Distribution of χ for 2000 random text pairs of 26 letters

Minimum: 0.0178
Median: 0.0385 Mean value: 0.0386
Maximum: 0.0680 Standard dev: 0.0075
1st quartile: 0.0340 5% quantile: 0.0266
3rd quartile: 0.0429 95% quantile: 0.0518


