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In this section we study certain statistical properties of texts and lan-
guages. These help to answer questions such as:

• Does a given text belong to a certain language? Can we derive an
algorithm for automatically distinguishing valid plaintext from random
noise? This is one of the central problems of cryptanalysis.

• Do two given texts belong to the same language?

• Can we decide these questions also for encrypted texts? Which prop-
erties of texts are invariant under certain encryption procedures? Can
we distinguish encrypted plaintext from random noise?

• Is a given ciphertext monoalphabetically encrypted? Or polyalphabet-
ically with periodic repetition of alphabets? If so, what is the period?

• How to adjust the alphabets in the columns of a periodic cipher? Or of
several ciphertexts encrypted with the same key and correctly aligned
in depth?

To get useful information on these questions we define some statistical
reference numbers and analyze the distributions of these numbers. The main
methods for determining reference values are:

• Exact calculation. This works for artificial languages with exact
descriptions and for simple distributions, but for natural languages it
is hopeless.

• Modelling. We try to build a simplified model of a language, based
on letter frequencies etc. and hope that the model on the one hand
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approximates the statistical properties of the language closely enough,
and on the other hand is simple enough that it allows the calculation
of the relevant statistics. The two most important models are:

– the computer scientific model that regards a language as a fixed
set of strings with certain statistical properties,

– the stochastic model that regards a language as a finite stationary
Markov process. This essentially goes back to Shannon in the
1940s after at least 20 years of naive but successful use by the
Friedman school.

• Simulation. We take a large sample of texts from a language and
determine the characteristic reference numbers by counting. In this
way we find empirical approximations to the distributions and their
characteristic properties.

The main results of this section go back to Friedman, Kullback, and
Sinkov in the 1920s and 1930s. However the statistical methodology has
since developed and now provides a uniform conceptual framework for sta-
tistical tests and decisions.

For a systematic treatment of the first two questions above a good ref-
erence is [4, 5]. An elementary but mathematically sound introduction to
probability and statistics is [6], whereas [7] and [8] use an elementary “naive”
approach to probability theory.
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1 Recognizing Plaintext: Friedman’s Most-
Frequent-Letters Test

We begin with the first question: Does a given text belong to a certain lan-
guage? Friedman gave a quite simple procedure for distinguishing valid
text from random noise that works surprisingly well, even for short texts.
Besides it makes a smooth introduction to statistical test theory.

Friedman’s Procedure

Assume we are given a string of letters and want to decide whether it is a
part of a meaningful text (in a given language, say English), or whether it
is random gibberish. Our first contact with this problem was the exhaustion
attack against the simple shift cipher that produced 26 strings, exactly one of
which represented the correct solution. Cherry-picking it was easy by visual
inspection. But for automating this decision procedure we would prefer a
quantitative criterion.

Such a criterion was proposed by Friedman in Riverbank Publication
No. 16 from 1918 [3]. The procedure is

1. Identify a set of most frequent letters from the target language. For
English take ETOANIRSHD that make up 73.9% of an average English
text but only 10/26 ≈ 38.5% of a random text.

2. Count the cumulative frequencies of these most-frequent letters for
each of the candidate strings.

3. Pick the string with the highest score. If this doesn’t work, also con-
sider the next highest scores.

Example. For the Caesar example in Section 1.3 the scores are in Table 1.
We immediately see that the correct solution CAESAR has the highest
score (even if this is not a genuine English word).

The example shows that Friedman’s procedure seems to work well even
for quite short strings. To confirm this observation we analyze the distribu-
tion of the Most-Frequent-Letters scores—in short MFL scores—for strings
of natural languages and for random strings. First we consider this task from
a theoretic viewpoint, then we also perform some empirical evaluations.

The distribution of MFL Scores

Consider strings of length r over an alphabet Σ whose letters are indepen-
dently drawn with certain probabilities, the letter s ∈ Σ with probability
ps. LetM⊆ Σ be a subset and p =

∑
s∈M ps be the cumulative probability
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Table 1: Friedman scores for the exhausion of a shift cipher

FDHVDU 3 OMQEMD 3 XVZNVM 1

GEIWEV 3 PNRFNE 4 <--- YWAOWN 3

HFJXFW 1 QOSGOF 3 ZXBPXO 1

IGKYGX 1 RPTHPG 3 AYCQYP 1

JHLZHY 2 SQUIQH 3 BZDRZQ 2

KIMAIZ 3 TRVJRI 4 <--- CAESAR 5 <===

LJNBJA 2 USWKSJ 2 DBFTBS 3

MKOCKB 1 VTXLTK 2 ECGUCT 2

NLPDLC 2 WUYMUL 0

of the letters in M. The MFL score of a string a = (a1, . . . , ar) ∈ Σr with
respect to M is

NM(a) = #{i | ai ∈M}.

To make the scores for different lengths comparable we also introduce the
MFL rate

νM(a) =
NM(a)

r
.

The MFL rate defines a function

νM : Σ∗ −→ Q.

(Set νM(∅) = 0 for the empty string ∅ of length 0.)
The distribution of scores is binomial, that is the probability that a

string a ∈ Σr contains exactly k letters from M is given by the binomial
distribution

P (a ∈ Σr |NM(a) = k) = Br,p(k) =

(
r

k

)
· pk · (1− p)r−k.

Random strings. We take the 26 letter alphabet A...Z and pick a subset
M of 10 elements. Then p = 10/26 ≈ 0.385, and this is also the
expected value of the MFL rate νM(a) for a ∈ Σ∗. For strings of
length 10 we get the two middle columns of Table 2.

English strings. Assuming that the letters of an English string are inde-
pendent is certainly only a rough approximation to the truth, but the
best we can do for the moment, and, as it turns out, not too bad. Then
we takeM = {ETOANIRSHD} and p = 0.739 and get the rightmost two
columns of Table 2.
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Table 2: Binomial distribution for r = 10. The columns headed “Total”
contain the accumulated probabilities.

p = 0.385 (Random) p = 0.739 (English)

Score Coefficient Probability Total Probability Total

0 B10,p(0) 0.008 0.008 0.000 0.000
1 B10,p(1) 0.049 0.056 0.000 0.000
2 B10,p(2) 0.137 0.193 0.001 0.001
3 B10,p(3) 0.228 0.422 0.004 0.005
4 B10,p(4) 0.250 0.671 0.020 0.024
5 B10,p(5) 0.187 0.858 0.067 0.092
6 B10,p(6) 0.097 0.956 0.159 0.250
7 B10,p(7) 0.035 0.991 0.257 0.507
8 B10,p(8) 0.008 0.999 0.273 0.780
9 B10,p(9) 0.001 1.000 0.172 0.951
10 B10,p(10) 0.000 1.000 0.049 1.000

A Statistical Decision Procedure

What does this table tell us? Let us interpret the cryptanalytic task as a
decision problem: We set a threshold value T and decide:

• A string with score ≤ T is probably random. We discard it.

• A string with score > T could be true plaintext. We keep it for further
examination.

There are two kinds of possible errors in this decision:

1. A true plaintext has a low score. We miss it.

2. A random string has a high score. We keep it.

Example. Looking at Table 2 we are tempted to set the threshold value
at T = 4. Then (in the long run) we’ll miss 2.4% of all true plaintexts
because the probability for an English 10 letter text string having an
MFL score ≤ 4 is 0.024. On the other hand we’ll discard only 67.1%
of all random strings and erroneously keep 32.9% of them.

The lower the threshold T , the more unwanted random strings will be se-
lected. But the higher the threshold, the more true plaintext strings will
be missed. Because the distributions of the MFL scores for “Random” and
“English” overlap there is no clear cutpoint that always gives the correct
decision.
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This is a typical situation for statistical decision problems (or tests). The
statistician usually bounds one of the two errors by a fixed amount, usually
5% or 1%, and calls this the error of the first kind, denoted by α. (The
complementary value 1 − α is called the sensitivity of the test.) Then she
tries to minimize the other error, the error of the second kind, denoted
by β. The complementary value 1 − β is called the power (or specifity)
of the test. Friedman’s MFL-method, interpreted as a statistical test (for
the “null hypothesis” of English text against the “alternative hypothesis”
of random text), has a power of ≈ 67% for English textstrings of length 10
and α = 2.4%. This α-value was chosen because it is the largest one below
5% that really occurs in the sixth column of Table 2.

To set up a test the statistician faces two choices. First she has to choose
between “first” and “second” kind depending on the severity of the errors
in the actual context. In our case she wants to bound the number of missed
true plaintexts at a very low level—a missed plaintext renders the complete
cryptanalysis obsolete. On the other hand keeping too many random strings
increases the effort of the analysis, but this of somewhat less concern.

The second choice is the error level α. By these two choices the statisti-
cian adapts the test to the context of the decision problem.

Remark. We won’t discuss the trick of raising the power by exhausting the
α-level, randomizing the decision at the threshold value.

Note. There is another (“Bayesian”) way to look at the decision problem.
The predictive values give the probabilities that texts are actually
what we decide them to be. If we decide “random” for texts with MFL
score ≤ 4, we’ll be correct for about 671 of 1000 random texts and err
for 24 of 1000 English texts. This makes 695 decisions for random of
which 671 are correct. The predictive value of our “random” decision
is 96.5% ≈ 671/695. The decision “English” for an MFL score > 4
will be correct for 976 of 1000 English texts and false for 329 of 1000
random texts. Hence the predictive value of the decision “English” is
about 75% ≈ 976/1305. That means that if we pick up texts (of length
10) with a score of at least 5, then (in the long run) one out of four
selected texts will be random.

Other Languages: German and French

German: The ten most frequent letters are ENIRSATDHU. They make up
75.1% of an average German text.

French: The ten most frequent letters are EASNTIRULO. They make up
79.1% of an average French text.

With these values we supplement Table 2 by Table 3.
As before for English we get as conclusions for textstrings of length 10:
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Table 3: Distribution of MFL scores for r = 10

p = 0.751 (German) p = 0.791 (French)

Score Probability Total Probability Total

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.003 0.003 0.001 0.001
4 0.016 0.019 0.007 0.008
5 0.058 0.077 0.031 0.039
6 0.145 0.222 0.098 0.137
7 0.250 0.471 0.212 0.350
8 0.282 0.754 0.301 0.651
9 0.189 0.943 0.253 0.904
10 0.057 1.000 0.096 1.000

German: With a threshold of T = 4 and α = 1.9% the MFL-test has a
power of 67%. The predictive value for “German” is 75% ≈ 981/1310.

French: With a threshold of T = 5 and α = 3.9% the MFL-test has a
power of 86%. The predictive value for “French” is 87% ≈ 961/1103.

Textstrings of length 20

The distribution is given in Table 4. We conclude:

English: With a threshold of T = 10 and α = 1.9% the MFL-test has a
power of 90% and a predictive value of 91% ≈ 981/1081.

German: With a threshold of T = 11 and α = 4.0% the MFL-test has a
power of 96% and a predictive value of 96% ≈ 960/1002.

French: With a threshold of T = 12 and α = 4.1% the MFL-test has a
power of 98.5% and a predictive value of 98.5% ≈ 959/974.
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Table 4: Distribution of MFL scores for r = 20

Random English German French
Score Prob Total Prob Total Prob Total Prob Total

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000
3 0.017 0.022 0.000 0.000 0.000 0.000 0.000 0.000
4 0.045 0.067 0.000 0.000 0.000 0.000 0.000 0.000
5 0.090 0.157 0.000 0.000 0.000 0.000 0.000 0.000
6 0.140 0.297 0.000 0.000 0.000 0.000 0.000 0.000
7 0.175 0.472 0.000 0.000 0.000 0.000 0.000 0.000
8 0.178 0.650 0.001 0.001 0.001 0.001 0.000 0.000
9 0.148 0.798 0.004 0.006 0.003 0.004 0.001 0.001

10 0.102 0.900 0.013 0.019 0.010 0.013 0.003 0.004
11 0.058 0.958 0.034 0.053 0.026 0.040 0.010 0.013
12 0.027 0.985 0.072 0.125 0.060 0.100 0.028 0.041
13 0.010 0.996 0.125 0.250 0.111 0.211 0.064 0.105
14 0.003 0.999 0.178 0.428 0.168 0.379 0.121 0.226
15 0.001 1.000 0.201 0.629 0.202 0.581 0.184 0.410
16 0.000 1.000 0.178 0.807 0.191 0.772 0.217 0.627
17 0.000 1.000 0.119 0.925 0.135 0.907 0.193 0.820
18 0.000 1.000 0.056 0.981 0.068 0.975 0.122 0.942
19 0.000 1.000 0.017 0.998 0.022 0.997 0.049 0.991
20 0.000 1.000 0.002 1.000 0.003 1.000 0.009 1.000
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Figure 1: MFL scores for 2000 English (blue) and random (red) text chunks
of 10 letters each

2 Empirical Results on MFL Scores

The power calculations for the tests—not the tests themselves!—relied on
the independency of the letters in a string. This assumption is clearly false
for natural languages. Therefore getting experimental results for the distri-
butions of the MFL scores makes sense.

For English we take a text of 20000 letters, an extract
from the Project Gutenberg etext of Kim, by Rudyard Kipling,
http://www.gutenberg.org/ebooks/2226. The partial 20000 letter text
is at http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/Kim20K.txt. We divide this text into 2000 substrings of
10 letters each. To this set of substrings we apply the Perl script
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl

/fritestE.pl. The results are collected and evaluated in a spread-
sheet, found at http://www.staff.uni-mainz.de/pommeren/Cryptology

/Classic/Files/statFriE.xls.
We do the same for random text, constructed by taking 20000 random

numbers between 0 and 25 from random.org, see .../Files/rnd10E.txt.
The Perl script .../Perl/RandOrg.pl transforms the random numbers to
text.

Figure 1 shows some characteristics of the distribution. Table 5 compares
the expected and observed distributions. For random texts they match well,
taking into account variations caused by drawing a sample. Also for English
the observations seem to match the predicted values. The empirical values
amount to a power of 68% (instead of 67%) and a predictive value of 75%
(75%).

We repeat this procedure for German and French. As texts we

http://www.gutenberg.org/ebooks/2226
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Kim20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Kim20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriE.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriE.xls
http://www.random.org/
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10E.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/RandOrg.pl
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Table 5: Expected and observed frequencies of MFL scores for 2000 English
and 2000 random text chunks of 10 letters

Random English
score expected observed expected observed

0 16 12 0 0
1 98 102 0 0
2 274 256 2 2
3 456 491 8 11
4 500 494 40 52
5 374 380 134 132
6 194 182 318 316
7 70 66 514 513
8 16 15 546 587
9 2 1 344 304
10 0 1 98 83

take Schachnovelle by Stefan Zweig, http://gutenberg.spiegel.de

/buch/7318/1, and De la Terre à la Lune by Jules Verne,
http://www.gutenberg.org/ebooks/799. The 20000 letter extracts are
in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/Files/Schach20K.txt and .../Files/Lune20K.txt. We gener-
ate independent random texts, see .../Files/rnd10D.txt and
.../Files/rnd10F.txt. (The random texts being independent, the
observed values for random texts differ.) The Perl scripts, adapted to the
differing collections of most-frequent letters, are .../Perl/fritestD.pl

and .../Perl/fritestF.pl.
The results are in Figures 2 and 3, and Tables 6 and 7. The compre-

hensive evaluation is in the spreadsheets .../Files/statFriD.xls and
.../Files/statFriF.xls.

The empirical values amount to a power of 63% (theory: 67%) and a
predictive value of 75% (75%) for German, and a power of 87% (86%) and
a predictive value of 88% (87%).

Exercise. Verify the calculations of powers and predictive values.

http://gutenberg.spiegel.de/buch/7318/1
http://gutenberg.spiegel.de/buch/7318/1
http://www.gutenberg.org/ebooks/799
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Schach20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Schach20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Lune20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10D.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10F.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestD.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestF.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriD.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriF.xls
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Figure 2: MFL scores for 2000 German (blue) and random (red) text chunks
of 10 letters each

Table 6: Expected and observed frequencies of MFL scores for 2000 German
and 2000 random text chunks of 10 letters

Random German
score expected observed expected observed

0 16 22 0 0
1 98 111 0 0
2 274 287 0 3
3 456 443 6 4
4 500 493 32 31
5 374 363 116 110
6 194 184 290 277
7 70 78 500 553
8 16 18 564 632
9 2 1 378 314
10 0 0 114 76
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Figure 3: MFL scores for 2000 French (blue) and random (red) text chunks
of 10 letters each

Table 7: Expected and observed frequencies of MFL scores for 2000 French
and 2000 random text chunks of 10 letters

Random French
score expected observed expected observed

0 16 17 0 0
1 98 102 0 0
2 274 290 0 0
3 456 463 2 1
4 500 491 14 5
5 374 376 62 18
6 194 188 196 160
7 70 61 424 472
8 16 11 602 719
9 2 1 506 484
10 0 0 192 141
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3 Application to the Cryptanalysis of the Belaso
Cipher

The Friedman procedure doesn’t need contiguous plaintext. It also works
when we pick out isolated letters from a meaningful text. In particular it
works in a (semi-) automated approach to adjusting the columns of a Be-
laso ciphertext.

As an example we consider the ciphertext

UMHOD BLRHT SCWWJ NHZWB UWJCP ICOLB AWSWK CLJDO WWJOD L

We assume a Belaso cipher with period 4. (The Kasiski analysis yields
a single significant repetition WWJ at a distance of 28.) The four columns
(written horizontally) are

UDHWHUPLSLWD MBTWZWIBWJWL HLSJWJCAKDJ ORCNBCOWCOO

For an exhaustion attack we complete the alphabets (i. e. we increment the
letters step by step) and count the MFL scores for letter combinations in
each row, see Table 8.

We pick up the most promising result for each column:

Column 1: RAETERMIPITA

Column 2: ETLOROATOBOD

Column 3: PTARERKISLR

Column 4: ADOZNOAIOAA or EHSDRSEMSEE

Only for column 4 we have more than one choice. However the first choice
yields an ugly “plaintext”. We drop it and keep

Col 1: RAETERMIPITA

Col 2: ETLOROATOBOD

Col 3: PTARERKISLR

Col 4: EHSDRSEMSEE

From this scheme we read the solution columnwise:

Repeat the last order. Errors make it impossible to read.

Exercise. What was the encryption key used in this example?

Remark. Friedman in his Riverbank Publication No. 16 [3] uses the MLF
method also for polyalphabetic ciphers with non-standard, but known,
primary alphabets.
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Table 8: MFL scores for the example

UDHWHUPLSLWD 5 MBTWZWIBWJWL 2 HLSJWJCAKDJ 4 ORCNBCOWCOO 6

VEIXIVQMTMXE 5 NCUXAXJCXKXM 2 IMTKXKDBLEK 4 PSDOCDPXDPP 5

WFJYJWRNUNYF 3 ODVYBYKDYLYN 4 JNULYLECMFL 2 QTEPDEQYEQQ 5

XGKZKXSOVOZG 3 PEWZCZLEZMZO 3 KOVMZMFDNGM 3 RUFQEFRZFRR 5

YHLALYTPWPAH 5 QFXADAMFANAP 6 LPWNANGEOHN 7 SVGRFGSAGSS 6

ZIMBMZUQXQBI 2 RGYBEBNGBOBQ 4 MQXOBOHFPIO 5 TWHSGHTBHTT 8*

AJNCNAVRYRCJ 6 SHZCFCOHCPCR 5 NRYPCPIGQJP 3 UXITHIUCIUU 5

BKODOBWSZSDK 6 TIADGDPIDQDS 9* OSZQDQJHRKQ 5 VYJUIJVDJVV 2

CLPEPCXTATEL 5 UJBEHEQJERET 7 PTARERKISLR 8* WZKVJKWEKWW 1

DMQFQDYUBUFM 2 VKCFIFRKFSFU 3 QUBSFSLJTMS 4 XALWKLXFLXX 1

ENRGREZVCVGN 6 WLDGJGSLGTGV 3 RVCTGTMKUNT 5 YBMXLMYGMYY 0

FOSHSFAWDWHO 8* XMEHKHTMHUHW 6 SWDUHUNLVOU 5 ZCNYMNZHNZZ 4

GPTITGBXEXIP 5 YNFILIUNIVIX 6 TXEVIVOMWPV 4 ADOZNOAIOAA10*

HQUJUHCYFYJQ 2 ZOGJMJVOJWJY 2 UYFWJWPNXQW 1 BEPAOPBJPBB 3

IRVKVIDZGZKR 5 APHKNKWPKXKZ 3 VZGXKXQOYRX 2 CFQBPQCKQCC 0

JSWLWJEAHALS 6 BQILOLXQLYLA 3 WAHYLYRPZSY 4 DGRCQRDLRDD 7

KTXMXKFBIBMT 3 CRJMPMYRMZMB 2 XBIZMZSQATZ 4 EHSDRSEMSEE10*

LUYNYLGCJCNU 2 DSKNQNZSNANC 8* YCJANATRBUA 6 FITESTFNTFF 7

MVZOZMHDKDOV 5 ETLOROATOBOD10* ZDKBOBUSCVB 3 GJUFTUGOUGG 2

NWAPANIELEPW 7 FUMPSPBUPCPE 2 AELCPCVTDWC 4 HKVGUVHPVHH 4

OXBQBOJFMFQX 2 GVNQTQCVQDQF 3 BFMDQDWUEXD 4 ILWHVWIQWII 5

PYCRCPKGNGRY 3 HWORURDWRERG 8* CGNEREXVFYE 5 JMXIWXJRXJJ 2

QZDSDQLHOHSZ 7 IXPSVSEXSFSH 7 DHOFSFYWGZF 4 KNYJXYKSYKK 2

RAETERMIPITA10* JYQTWTFYTGTI 5 EIPGTGZXHAG 5 LOZKYZLTZLL 2

SBFUFSNJQJUB 3 KZRUXUGZUHUJ 2 FJQHUHAYIBH 5 MPALZAMUAMM 3

TCGVGTOKRKVC 4 LASVYVHAVIVK 5 GKRIVIBZJCI 4 NQBMABNVBNN 5
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4 Recognizing Plaintext: Sinkov’s Log-Weight
Test

The MFL-test is simple and efficient. Sinkov in [8] proposed a more refined
test that uses the information given by all single letter frequencies, not just
by separating the letters into two classes. We won’t explore the power of
this method but treat it only as a motivation for Section 5.

As in Section 1 we assign a probability ps to each letter s of the alphabet
Σ. We enumerate the alphabet as (s1, . . . , sn) and write pi := psi . For a string
a = (a1, . . . , ar) ∈ Σr we denote by Ni(a) = #{j | aj = si} the multiplicity
of the letter si in a. Then for an n-tuple k = (k1, . . . , kn) ∈ Nn of natural
numbers the probability for a string a to have multiplicities exactly given
by k follows the multinomial distribution:

P (a ∈ Σr |Ni(a) = ki for all i = 1, . . . , n) =
r!

k1! · · · kn!
· pk1

1 · · · p
kn
n .

The Log-Weight (LW) Score

A heuristic derivation of the LW-score of a string a ∈ Σr considers the “null
hypothesis” (H0): a belongs to a given language with letter probabilities pi,
and the “alternative hypothesis” (H1): a is a random string. The probabili-
ties for a having k as its set of multiplicities if (H1) or (H0) is true, are (in
a somewhat sloppy notation)

P (k |H1) =
r!

k1! · · · kn!
· 1

nr
, P (k |H0) =

r!

k1! · · · kn!
· pk1

1 · · · p
kn
n .

The quotient of these two values, the “likelihood ratio”

λ(k) =
P (k |H0)

P (k |H1)
= nr · pk1

1 · · · p
kn
n ,

makes a good score for deciding between (H0) and (H1).

Usually one takes the reciprocal value, that is H1 in the numera-
tor, and H0 in the denominator. We deviate from this convention
because we want to have the score large for true texts and small
for random texts.

For convenience one considers the logarithm (to any base) of this number:

log λ(k) = r log n+
n∑
i=1

ki · log pi.
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Table 9: Log weights of the letters for English (base-10 logarithms)

s A B C D E F G

1000ps 82 15 28 43 127 22 20

Log weight 1.9 1.2 1.4 1.6 2.1 1.3 1.3

s H I J K L M N

1000ps 61 70 2 8 40 24 67

Log weight 1.8 1.8 0.3 0.9 1.6 1.4 1.8

s O P Q R S T U

1000ps 75 19 1 60 63 91 28

Log weight 1.9 1.3 0.0 1.8 1.8 1.9 1.4

s V W X Y Z

1000ps 10 23 1 20 1

Log weight 1.0 1.4 0.0 1.3 0.0

(We assume all pi > 0, otherwise we would omit si from our alphabet.)
Noting that the summand r log n is the same for all a ∈ Σr one considers

log λ(k)− r log n =

n∑
i=1

ki · log pi =

r∑
j=1

log paj .

Because 0 < pi < 1 the summands are negative. Adding a constant doesn’t
affect the use of this score, so finally we define Sinkov’s Log-Weight (LW)
score as

S1(a) :=
n∑
i=1

ki · log(1000 ·pi) =
r∑
j=1

log(1000 ·paj ) = r · log 1000 +

r∑
j=1

log paj .

The numbers log(1000 ·pi) are the “log weights”. More frequent letters have
higher weights. Table 9 gives the weights for the English alphabet with
base-10 logarithms (so log 1000 = 3). The MFL-method in contrast uses the
weights 1 for ETOANIRSHD, and 0 else.

Note that the definition of the LW score doesn’t depend on its heuristic
motivation. Just take the weights given in Table 9 and use them for the
definition of S1.

Examples

We won’t analyze the LW-method in detail, but rework the examples from
Section 1. The LW scores for the Caesar example are in Table 10.

The correct solution stands out clearly, the order of the non-solutions is
somewhat permuted compared with the MFL score.
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Table 10: LW scores for the exhausion of a shift cipher

FDHVDU 8.7 OMQEMD 8.4 XVZNVM 5.2

GEIWEV 9.7 PNRFNE 10.1 <--- YWAOWN 9.7

HFJXFW 6.1 QOSGOF 8.2 ZXBPXO 4.4

IGKYGX 6.6 RPTHPG 9.4 AYCQYP 7.2

JHLZHY 6.8 SQUIQH 6.8 BZDRZQ 4.6

KIMAIZ 7.8 TRVJRI 8.6 CAESAR 10.9 <===

LJNBJA 7.1 USWKSJ 7.6 DBFTBS 9.0

MKOCKB 7.7 VTXLTK 7.3 ECGUCT 9.5

NLPDLC 9.3 WUYMUL 8.5

For the period-4 example the LW scores are in Tables 11 to 14. The
method unambiguously picks the correct solution except for column 3 where
the top score occurs twice.

In summary the examples show no clear advantage of the LW-method
over the MFL-method, notwithstanding the higher granularity of the infor-
mation used to compute the scores.

As for MFL scores we might define the LW rate as the quotient of the
LW score be the length of the string. This makes the values for strings of
different lengths comparable.

Table 11: LW scores for column 1 of a period 4 cipher

UDHWHUPLSLWD 18.7 DMQFQDYUBUFM 13.9 MVZOZMHDKDOV 14.5

VEIXIVQMTMXE 14.5 ENRGREZVCVGN 17.4 NWAPANIELEPW 20.4 <--

WFJYJWRNUNYF 15.4 FOSHSFAWDWHO 19.9 OXBQBOJFMFQX 10.5

XGKZKXSOVOZG 11.0 GPTITGBXEXIP 15.9 PYCRCPKGNGRY 16.9

YHLALYTPWPAH 19.1 HQUJUHCYFYJQ 12.3 QZDSDQLHOHSZ 13.9

ZIMBMZUQXQBI 10.2 IRVKVIDZGZKR 13.9 RAETERMIPITA 21.7 <==

AJNCNAVRYRCJ 16.7 JSWLWJEAHALS 17.9 SBFUFSNJQJUB 13.8

BKODOBWSZSDK 16.2 KTXMXKFBIBMT 13.9 TCGVGTOKRKVC 16.7

CLPEPCXTATEL 18.5 LUYNYLGCJCNU 16.6

Exercise. Give a more detailed analysis of the distribution of the
LW scores for English and for random texts (with “English”
weights). You may use the Perl script LWscore.pl in the directory
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Perl/.

Table 15 gives log weights for German and French.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/LWscore.pl
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Table 12: LW scores for column 2 of a period 4 cipher

MBTWZWIBWJWL 15.0 VKCFIFRKFSFU 16.2 ETLOROATOBOD 21.6 <==

NCUXAXJCXKXM 10.5 WLDGJGSLGTGV 16.4 FUMPSPBUPCPE 17.2

ODVYBYKDYLYN 16.8 XMEHKHTMHUHW 17.7 GVNQTQCVQDQF 11.3

PEWZCZLEZMZO 13.2 YNFILIUNIVIX 17.4 HWORURDWRERG 20.1 <--

QFXADAMFANAP 16.3 ZOGJMJVOJWJY 11.4 IXPSVSEXSFSH 16.5

RGYBEBNGBOBQ 16.3 APHKNKWPKXKZ 13.1 JYQTWTFYTGTI 16.3

SHZCFCOHCPCR 17.3 BQILOLXQLYLA 14.5 KZRUXUGZUHUJ 11.7

TIADGDPIDQDS 18.2 CRJMPMYRMZMB 14.7 LASVYVHAVIVK 17.0

UJBEHEQJERET 17.1 DSKNQNZSNANC 16.6

Table 13: LW scores for column 3 of a period 4 cipher

HLSJWJCAKDJ 13.3 QUBSFSLJTMS 14.5 ZDKBOBUSCVB 13.6

IMTKXKDBLEK 14.3 RVCTGTMKUNT 16.7 AELCPCVTDWC 17.0

JNULYLECMFL 15.8 SWDUHUNLVOU 17.1 BFMDQDWUEXD 13.6

KOVMZMFDNGM 14.0 TXEVIVOMWPV 14.8 CGNEREXVFYE 16.2

LPWNANGEOHN 18.7 <- UYFWJWPNXQW 11.6 DHOFSFYWGZF 15.0

MQXOBOHFPIO 14.5 VZGXKXQOYRX 8.2 EIPGTGZXHAG 14.7

NRYPCPIGQJP 13.6 WAHYLYRPZSY 15.5 FJQHUHAYIBH 14.6

OSZQDQJHRKQ 10.1 XBIZMZSQATZ 10.0 GKRIVIBZJCI 13.3

PTARERKISLR 18.7 <- YCJANATRBUA 16.8

Table 14: LW scores for column 4 of a period 4 cipher

ORCNBCOWCOO 18.0 XALWKLXFLXX 10.3 GJUFTUGOUGG 14.8

PSDOCDPXDPP 15.1 YBMXLMYGMYY 13.5 HKVGUVHPVHH 15.1

QTEPDEQYEQQ 12.4 ZCNYMNZHNZZ 11.3 ILWHVWIQWII 15.8

RUFQEFRZFRR 14.6 ADOZNOAIOAA 18.5 JMXIWXJRXJJ 7.6

SVGRFGSAGSS 17.1 BEPAOPBJPBB 14.9 KNYJXYKSYKK 11.4

TWHSGHTBHTT 18.7 <- CFQBPQCKQCC 10.3 LOZKYZLTZLL 12.4

UXITHIUCIUU 16.1 DGRCQRDLRDD 16.1 MPALZAMUAMM 15.6

VYJUIJVDJVV 11.0 EHSDRSEMSEE 20.4 <= NQBMABNVBNN 15.1

WZKVJKWEKWW 11.7 FITESTFNTFF 18.4



K. Pommerening, Language Statistics 19

Table 15: Log weights of the letters for German and French (base-10 loga-
rithms)

s A B C D E F G

German 1.8 1.3 1.4 1.7 2.2 1.2 1.5

French 1.9 1.0 1.5 1.6 2.2 1.1 1.0

s H I J K L M N

German 1.6 1.9 0.5 1.2 1.5 1.4 2.0

French 0.8 1.8 0.5 0.0 1.8 1.4 1.9

s O P Q R S T U

German 1.5 1.0 0.0 1.9 1.8 1.8 1.6

French 1.7 1.4 1.0 1.8 1.9 1.9 1.8

s V W X Y Z

German 1.0 1.2 0.0 0.0 1.0

French 1.2 0.0 0.6 0.3 0.0
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5 Recognizing Plaintext: The Log-Weight Method
for Bigrams

In the last four sections we used only the single letter frequencies of a natu-
ral language. In other words, we treated texts as sequences of independent
letters. But a characteristic aspect of every natural language is how letters
are combined as bigrams (letter pairs). We may hope to get good criteria
for recognizing a language by evaluating the bigrams in a text. Of course
this applies to contiguous text only, in particular it is useless for the polyal-
phabetic example of Sections 3 and 4.

In analogy with the LW score we define a Bigram Log-Weight (BLW)
score for a string. Let pij be the probability (or average relative frequency)
of the bigram sisj in the base language. Because these numbers are small
we multiply them by 10000.

Tables containing these bigram frequencies for English, German, and
French are in http://www.staff.uni-mainz.de/pommeren/Cryptology

/Classic/8 Transpos/Bigrams.html

In contrast to the single letter case we cannot avoid the case pij = 0:
some letter pairs never occur as bigrams in a meaningful text. Therefore we
count the frequencies kij of the bigrams sisj in a string a ∈ Σr, and define
the BLW-score by the formula

S2(a) :=

n∑
i,j=1

kij · wij where wij =

{
log(10000 · pij) if 10000 · pij > 1,

0 otherwise.

Note. We implicitly set log 0 = 0. This convention is not as strange as it
may look at first sight: For pij = 0 we’ll certainly have kij = 0, and
setting 0 · log 0 = 0 is widespread practice.

To calculate the BLW score we go through the bigrams atat+1 for
t = 1, . . . , r − 1 and add the log weight wij = log(10000 · pij) of each
bigram. This approach is somewhat naive because it implicitly considers
the bigrams—even the overlapping ones!—as independent. This criticism
doesn’t mean that we are doing something mathematically wrong, but only
that the usefulness of the score might be smaller than expected.

We prepare matrices for English, German, and French that contain
the relative frequencies of the bigrams in the respective language. These
are in the files eng rel.csv, ger rel.csv, fra rel.csv in the direc-
tory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/ as comma-separated tables. The corresponding bigram log-weights
are in the files eng blw.csv, ger blw.csv, fra blw.csv. Programs that
compute BLW scores for English, German, or French are BLWscE.pl,
BLWscD.pl, and BLWscF.pl in the Perl directory.

As an example we compute the scores for the Caesar example, see
Table 16. The correct solution is evident in all three languages.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscD.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscF.pl
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Table 16: BLW scores for the exhaustion of a Caesar cipher

BLW scores English German French

FDHVDU 1.4 3.1 2.2

GEIWEV 5.8 <--- 7.3 <=== 4.3

HFJXFW 0.9 0.3 0.0

IGKYGX 2.2 2.1 1.3

JHLZHY 0.5 1.9 0.3

KIMAIZ 5.9 <--- 5.2 4.9

LJNBJA 1.1 2.4 0.9

MKOCKB 2.7 4.2 0.8

NLPDLC 3.0 2.8 1.4

OMQEMD 3.5 3.8 3.6

PNRFNE 3.6 4.7 3.6

QOSGOF 5.8 <--- 4.0 3.4

RPTHPG 4.5 2.6 2.7

SQUIQH 2.3 0.6 6.3 <---

TRVJRI 4.1 4.3 4.9

USWKSJ 3.3 3.7 2.0

VTXLTK 1.3 2.0 1.1

WUYMUL 3.1 2.9 2.7

XVZNVM 0.6 1.3 1.0

YWAOWN 5.5 2.3 0.0

ZXBPXO 0.0 0.0 0.0

AYCQYP 3.2 0.0 0.3

BZDRZQ 1.0 2.1 1.1

CAESAR 7.7 <=== 7.5 <=== 8.4 <===

DBFTBS 4.7 3.5 0.6

ECGUCT 5.5 3.6 5.5
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6 Empirical Results on BLW Scores

The heuristic motivation of the BLW score, like for all the scores in
this chapter, relies on independence assumptions that are clearly vio-
lated by natural languages. Therefore again it makes sense to get em-
pirical results by analyzing a large sample of concrete texts. We ex-
tract 20000 letters from each of the texts Kim, Schachnovelle, and De
la Terre à la Lune, and decompose them into 2000 chunks à 10 let-
ters, see the files eng10a.txt, ger10a.txt, and fra10a.txt in the direc-
tory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/. Likewise we generate random texts, see rnd10Ea.txt, rnd10Da.txt,
and rnd10Fa.txt. We collect the results in the spreadsheets ER10res.xls,
DR10res.xls, and FR10res.xls.

The results are summarized in Tables 17, 18, 19, and Figures 4, 5, 6

Table 17: Frequencies of BLW scores for English vs. random 10 letter texts

Score Random English

0 ≤ x ≤ 1 32 0
1 < x ≤ 2 97 0
2 < x ≤ 3 187 0
3 < x ≤ 4 254 0
4 < x ≤ 5 324 3
5 < x ≤ 6 301 1
6 < x ≤ 7 271 4
7 < x ≤ 8 216 1
8 < x ≤ 9 156 8
9 < x ≤ 10 77 18
10 < x ≤ 11 49 51
11 < x ≤ 12 25 120
12 < x ≤ 13 6 196
13 < x ≤ 14 3 322
14 < x ≤ 15 2 413
15 < x ≤ 16 0 406
16 < x ≤ 17 0 255
17 < x ≤ 18 0 157
18 < x ≤ 19 0 40
19 < x <∞ 0 5

The empirical results for the 5%-level of the error of the first kind are as
follows.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Ea.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Da.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Fa.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ER10res.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/DR10res.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/FR10res.xls
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Figure 4: BLW scores for 2000 English (red) and random (blue) text chunks
of 10 letters each

Figure 5: BLW scores for 2000 German (red) and random (blue) text chunks
of 10 letters each

Figure 6: BLW scores for 2000 French (red) and random (blue) text chunks
of 10 letters each
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Table 18: Frequencies of BLW scores for German vs. random texts

Score Random German

0 ≤ x ≤ 1 38 0
1 < x ≤ 2 105 0
2 < x ≤ 3 207 0
3 < x ≤ 4 269 0
4 < x ≤ 5 296 0
5 < x ≤ 6 319 0
6 < x ≤ 7 256 0
7 < x ≤ 8 185 1
8 < x ≤ 9 143 2
9 < x ≤ 10 96 15
10 < x ≤ 11 47 21
11 < x ≤ 12 30 45
12 < x ≤ 13 4 95
13 < x ≤ 14 4 202
14 < x ≤ 15 1 332
15 < x ≤ 16 0 411
16 < x ≤ 17 0 396
17 < x ≤ 18 0 298
18 < x ≤ 19 0 134
19 < x ≤ 20 0 41
20 < x <∞ 0 7

English. We take the threshold value T = 11 for English texts. Then 86
of 2000 English scores are ≤ T , the error of the first kind is α =
86/2000 = 4.2%. For random texts 1964 of 2000 scores are ≤ T , the
power is 1964/2000 = 99.5%. There are 36 random scores and 1914
English scores > T , the predictive value for English is 1914/1950 =
98.2%.

German. We take the threshold value T = 12 for German texts. Then 84
of 2000 German scores are ≤ T , the error of the first kind is α =
84/2000 = 4.2%. For random texts 1991 of 2000 scores are ≤ T , the
power is 1991/2000 = 99.6%. There are 9 random scores and 1916
German scores > T , the predictive value for German is 1916/1925 =
99.5%.

French. We take the threshold value T = 11 for French texts. Then 58 of
2000 French scores are ≤ T , the error of the first kind is α = 58/2000 =
2.9%. For random texts 1967 of 2000 scores are ≤ T , the power is
1967/2000 = 98.3%. There are 33 random scores and 1942 French
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Table 19: Frequencies of BLW scores for French vs. random texts

Score Random French

0 ≤ x ≤ 1 122 0
1 < x ≤ 2 195 0
2 < x ≤ 3 266 0
3 < x ≤ 4 315 0
4 < x ≤ 5 274 0
5 < x ≤ 6 264 0
6 < x ≤ 7 215 2
7 < x ≤ 8 140 0
8 < x ≤ 9 94 10
9 < x ≤ 10 53 15
10 < x ≤ 11 29 31
11 < x ≤ 12 21 50
12 < x ≤ 13 8 114
13 < x ≤ 14 2 239
14 < x ≤ 15 2 322
15 < x ≤ 16 0 415
16 < x ≤ 17 0 420
17 < x ≤ 18 0 258
18 < x ≤ 19 0 115
19 < x ≤ 20 0 8
20 < x <∞ 0 1

scores > T , the predictive value for French is 1942/1975 = 98.3%.

The BLW score is significantly stronger than the MFL score.
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7 Coincidences of Two Texts

The first six sections of this chapter introduced efficient methods for recog-
nizing plaintext in comparison with noise. These methods break down for
encrypted texts because they ignore properties that remain invariant un-
der encryption. One such invariant property—at least for monoalphabetic
substitution—is the equality of two letters, no matter what the concrete
value of these letters is.

This is the main idea that we work out in the next sections: Look for
identical letters in one or more texts, or in other words, for coincidences.

Definition

Let Σ be a finite alphabet. Let a = (a0, . . . , ar−1) and b = (b0, . . . , br−1) ∈ Σr

be two texts of the same length r ≥ 1. Then

κ(a, b) :=
1

r
·#{j | aj = bj} =

1

r
·
r−1∑
j=0

δajbj

is called coincidence index of a and b (where δ = Kronecker symbol).
For each r ∈ N1 this defines a map

κ : Σr × Σr −→ Q ⊆ R.

The scaling factor 1
r makes results for different lengths comparable.

A Perl program is in the Web: http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/kappa.pl.

Remarks

1. Always 0 ≤ κ(a, b) ≤ 1.

2. κ(a, b) = 1⇐⇒ a = b.

3. By convention κ(∅, ∅) = 1 (where ∅ denotes the nullstring by abuse of
notation).

4. Note that up to scaling the coincidence index is a converse of the
Hamming distance that counts non-coincidences.

Example 1: Two English Texts

We compare the first four verses (text 1) of the poem “If ...” by Rudyard
Kipling and the next four verses (text 2). (The lengths differ, so we crop the
longer one.)

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kappa.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kappa.pl
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IFYOU CANKE EPYOU RHEAD WHENA LLABO UTYOU ARELO OSING THEIR

IFYOU CANMA KEONE HEAPO FALLY OURWI NNING SANDR ISKIT ONONE

||||| ||| |

SANDB LAMIN GITON YOUIF YOUCA NTRUS TYOUR SELFW HENAL LMEND

TURNO FPITC HANDT OSSAN DLOOS EANDS TARTA GAINA TYOUR BEGIN

| |

OUBTY OUBUT MAKEA LLOWA NCEFO RTHEI RDOUB TINGT OOIFY OUCAN

NINGS ANDNE VERBR EATHE AWORD ABOUT YOURL OSSIF YOUCA NFORC

|

WAITA NDNOT BETIR EDBYW AITIN GORBE INGLI EDABO UTDON TDEAL

EYOUR HEART ANDNE RVEAN DSINE WTOSE RVEYO URTUR NLONG AFTER

| |

INLIE SORBE INGHA TEDDO NTGIV EWAYT OHATI NGAND YETDO NTLOO

THEYA REGON EANDS OHOLD ONWHE NTHER EISNO THING INYOU EXCEP

|

KTOOG OODNO RTALK TOOWI SEIFY OUCAN DREAM ANDNO TMAKE DREAM

TTHEW ILLWH ICHSA YSTOT HEMHO LDONI FYOUC ANTAL KWITH CROWD

| | || |

SYOUR MASTE RIFYO UCANT HINKA NDNOT MAKET HOUGH TSYOU RAIMI

SANDK EEPYO URVIR TUEOR WALKW ITHKI NGSNO RLOOS ETHEC OMMON

| |

FYOUC ANMEE TWITH TRIUM PHAND DISAS TERAN DTREA TTHOS ETWOI

TOUCH IFNEI THERF OESNO RLOVI NGFRI ENDSC ANHUR TYOUI FALLM

| | |

MPOST ORSAS THESA MEIFY OUCAN BEART OHEAR THETR UTHYO UVESP

ENCOU NTWOR THYOU BUTNO NETOO MUCHI FYOUC ANFIL LTHEU NFORG

|| ||

OKENT WISTE DBYKN AVEST OMAKE ATRAP FORFO OLSOR WATCH THETH

IVING MINUT EWITH SIXTY SECON DSWOR THOFD ISTAN CERUN YOURS

| | |

INGSY OUGAV EYOUR LIFEF ORBRO KENAN DSTOO PANDB UILDE MUPWI

ISTHE EARTH ANDEV ERYTH INGTH ATSIN ITAND WHICH ISMOR EYOUL

| |

THWOR NOUTT OOLS

LBEAM ANMYS ON

|

In these texts of length 562 we find 35 coincidences, the coincidence index
is 35

562 = 0.0623.
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Invariance

The coincidence index of two texts is an invariant of polyalphabetic substi-
tution (the keys being equal):

Proposition 1 (Invariance) Let f : Σ∗ −→ Σ∗ be a polyalphabetic encryp-
tion function. Then

κ(f(a), f(b)) = κ(a, b)

for all a, b ∈ Σ∗ of the same length.

Note that Proposition 1 doesn’t need any assumptions on periodicity or
on relations between the alphabets used. It only assumes that the encryption
function uses the same alphabets at the corresponding positions in the texts.

Mean Values

For a fixed a ∈ Σr we determine the mean value of κ(a, b) taken over all
b ∈ Σr:

1

nr
·
∑
b∈Σr

κ(a, b) =
1

nr
·
∑
b∈Σr

1

r
·
r−1∑
j=0

δajbj


=

1

rnr
·
r−1∑
j=0

[∑
b∈Σr

δajbj

]
︸ ︷︷ ︸

nr−1

=
1

rnr
· r · nr−1 =

1

n
,

because, if bj = aj is fixed, there remain nr−1 possible values for b.
In an analogous way we determine the mean value of κ(a, fσ(b) for fixed

a, b ∈ Σr over all permutations σ ∈ S(Σ):

1

n!
·
∑

σ∈S(Σ)

κ(a, fσ(b)) =
1

n!
· 1

r

∑
σ∈S(Σ)

#{j | σbj = aj}

=
1

rn!
·#{(j, σ) | σbj = aj}

=
1

rn!
·
r−1∑
j=0

#{σ | σbj = aj}

=
1

rn!
· r · (n− 1)! =

1

n
,

because exactly (n− 1)! permutations map aj to bj .
Note that this conclusion also works for a = b.
This derivation shows:
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Proposition 2 (i) The mean value of κ(a, b) over all texts b ∈ Σ∗ of equal
length is 1

n for all a ∈ Σ∗.
(ii) The mean value of κ(a, b) over all a, b ∈ Σr is 1

n for all r ∈ N1.
(iii) The mean value of κ(a, fσ(b)) over all monoalphabetic substitutions

with σ ∈ S(Σ) is 1
n for each pair a, b ∈ Σ∗ of texts of equal length.

(iv) The mean value of κ(fσ(a), fτ (b)) over all pairs of monoalphabetic
substitutions, with σ, τ ∈ S(Σ), is 1

n for each pair a, b ∈ Σ∗ of texts of equal
length.

Interpretation

• For a given text a and a “random” text b of the same length κ(a, b) ≈
1
n .

• For “random” texts a and b of the same length κ(a, b) ≈ 1
n .

• For given texts a and b of the same length and a “random” monoal-
phabetic substitution fσ we have κ(a, fσ(b)) ≈ 1

n . This remark justifies
treating a nontrivially monoalphabetically encrypted text as random
with respect to κ and plaintexts.

• For given texts a and b of the same length and two “random” monoal-
phabetic substitutions fσ, fτ we have κ(fσ(a), fτ (b)) ≈ 1

n .

• The same holds for “random” polyalphabetic substitutions because
counting the coincidences is additive with respect to arbitrary decom-
positions of texts.

Values that significantly differ from these mean values are suspicious for
the cryptanalyst, they could have a non-random cause. For more precise
statements we should assess the variances (or standard deviations) or, more
generally, the distribution of κ-values in certain “populations” of texts.

Variance

First fix a ∈ Σr and vary b over all of Σr. Using the mean value 1
n we

calculate the variance:

VΣr(κ, a) =
1

nr
·
∑
b∈Σr

κ(a, b)2 − 1

n2

=
1

nr
·
∑
b∈Σr

1

r
·
r−1∑
j=0

δajbj

2

− 1

n2

Evaluating the square of the sum in brackets we get the quadratic terms

r−1∑
j=0

δ2
ajbj

=

r−1∑
j=0

δajbj = r · κ(a, b) because δajbj = 0 or 1
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∑
b∈Σr

r−1∑
j=0

δ2
ajbj

= r ·
∑
b∈Σr

κ(a, b) = r · nr · 1

n
= r · nr−1

and the mixed terms

2 ·
r−1∑
j=0

r−1∑
k=j+1

δajbjδakbk where δajbjδakbk =

{
1 if aj = bj and ak = bk

0 else

If we fix two letters bj and bk, we are left with nr−2 different b’s that give
the value 1. The total sum over the mixed terms evaluates as

∑
b∈Σr

2 ·
r−1∑
j=0

r−1∑
k=j+1

δajbjδakbk

 = 2 ·
r−1∑
j=0

r−1∑
k=j+1

∑
b∈Σr

δajbjδakbk︸ ︷︷ ︸
nr−2

Substituting our intermediary results we get

VΣr(κ, a) =
1

nrr2

(
r · nr−1 + r · (r − 1) · nr−2

)
− 1

n2

=
1

rn
+
r − 1

rn2
− 1

n2
=

1

rn
− 1

rn2
=

1

r

(
1

n
− 1

n2

)
Next we let a and b vary and calculate the variance of κ:

VΣr(κ) =
1

n2r

∑
a,b∈Σr

κ(a, b)2 − 1

n2

=
1

nr

∑
a∈Σr

(
1

nr

∑
b∈Σr

κ(a, b)2

)
︸ ︷︷ ︸

1
r

(
1
n
− 1

n2

)
+ 1

n2

− 1

n2

=
1

r

(
1

n
− 1

n2

)
+

1

n2
− 1

n2
=

1

r

(
1

n
− 1

n2

)
We have shown:

Proposition 3 (i) The mean value of κ(a, b) over all texts b of equal length
r ∈ N1 is 1

n with variance 1
r

(
1
n −

1
n2

)
for all a ∈ Σr.

(ii) The mean value of κ(a, b) over all a, b ∈ Σr is 1
n with variance

1
r

(
1
n −

1
n2

)
for all r ∈ N1.

For the 26 letter alphabet A. . . Z we have the mean value 1
26 ≈ 0.0385,

independently from the text length r. The variance is ≈ 0.03370
r , the standard

deviation ≈ 0.19231√
r

. From this we get the second row of Table 20.

For statistical tests (one-sided in this case) we would like to know the 95%
quantiles. If we take the values for a normal distribution as approximations,
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Table 20: Standard deviations and 95% quantiles of κ for random text pairs
of length r

r 10 40 100 400 1000 10000

Std dev 0.0608 0.0304 0.0192 0.0096 0.0061 0.0019

95% quantile 0.1385 0.0885 0.0700 0.0543 0.0485 0.0416

that is “mean value + 1.645 times standard deviation”, we get the values in
the third row of Table 20. These raw estimates show that the κ-statistic in
this form is weak in distinguishing “meaningful” texts from random texts,
even for text lengths of 100 letters, and strong only for texts of several
thousand letters.

Distinguishing meaningful plaintext from random noise is evidently not
the main application of the κ-statistic. The next section will show the true
relevancy of the coincidence index.
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8 Empirical Values for Natural Languages

Examples

Here are some additional explicit examples.

Example 2: Two German Texts

We compare the two poems “Berg und Burgen schaun herunter” by Heinrich
Heine and “Vor Jahren waren wir mal entzweit” by Wilhelm Busch.

BERGU NDBUR GENSC HAUNH ERUNT ERIND ENSPI EGELH ELLEN RHEIN

VORJA HRENW ARENW IRMAL ENTZW EITUN DTATE NUNSM ANCHE SZUMT

| | |

UNDME INSCH IFFCH ENSEG ELTMU NTERR INGSU MGLAE NZTVO NSONN

ORTEW IRSAG TENUN SBEID EZUJE NERZE ITVIE LBITT ERBOE SEWOR

| | | | |

ENSCH EINRU HIGSE HICHZ UDEMS PIELE GOLDN ERWEL LENKR AUSBE

TEDRA UFHAB ENWIR UNSIN EINAN DERGE SCHIC KTWIR SCHLO SSENF

| |

WEGTS TILLE RWACH ENDIE GEFUE HLEDI EICHT IEFIM BUSEN HEGTF

RIEDE NUNDH ABEND IEBIT TERBO ESENW ORTEE RSTIC KTUND FESTU

| | | | | |

REUND LICHG RUESS ENDUN DVERH EISSE NDLOC KTHIN ABDES STROM

NDTIE FBEGR ABENJ ETZTI STESW IRKLI CHREC HTFAT ALDAS SWIED

| | | | | | | | |

ESPRA CHTDO CHICH KENNI HNOBE NGLEI SSEND BIRGT SEINI NNRES

EREIN ZWIST NOTWE NDIGO WEHDI EWORT EVOND AZUMA LDIEW ERDEN

| || | |

TODUN DNACH TOBEN LUSTI MBUSE NTUEC KENST ROMDU BISTD ERLIE

NUNWI EDERL EBEND IGDIE KOMME NNUNE RSTIN OFFNE NSTRE ITUND

| | |

BSTEN BILDD IEKAN NAUCH SOFRE UNDLI CHNIC KENLA ECHEL TAUCH

FLIEG ENAUF ALLED AECHE RNUNB RINGE NWIRS IEINE WIGKE ITNIC

| |

SOFRO MMUND MILD

HTWIE DERIN IHREL OECHE R

The (common) text length is 414, we find 35 coincidences, the coincidence
index is 35

414 = 0.0845.

Example 3: German Text and English Text

We compare the poems by Heine and Kipling (truncated).
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BERGU NDBUR GENSC HAUNH ERUNT ERIND ENSPI EGELH ELLEN RHEIN

IFYOU CANKE EPYOU RHEAD WHENA LLABO UTYOU ARELO OSING THEIR

| || |||

UNDME INSCH IFFCH ENSEG ELTMU NTERR INGSU MGLAE NZTVO NSONN

SANDB LAMIN GITON YOUIF YOUCA NTRUS TYOUR SELFW HENAL LMEND

|| |

ENSCH EINRU HIGSE HICHZ UDEMS PIELE GOLDN ERWEL LENKR AUSBE

OUBTY OUBUT MAKEA LLOWA NCEFO RTHEI RDOUB TINGT OOIFY OUCAN

| |

WEGTS TILLE RWACH ENDIE GEFUE HLEDI EICHT IEFIM BUSEN HEGTF

WAITA NDNOT BETIR EDBYW AITIN GORBE INGLI EDABO UTDON TDEAL

| | | |

REUND LICHG RUESS ENDUN DVERH EISSE NDLOC KTHIN ABDES STROM

INLIE SORBE INGHA TEDDO NTGIV EWAYT OHATI NGAND YETDO NTLOO

| | | |

ESPRA CHTDO CHICH KENNI HNOBE NGLEI SSEND BIRGT SEINI NNRES

KTOOG OODNO RTALK TOOWI SEIFY OUCAN DREAM ANDNO TMAKE DREAM

| | |

TODUN DNACH TOBEN LUSTI MBUSE NTUEC KENST ROMDU BISTD ERLIE

SYOUR MASTE RIFYO UCANT HINKA NDNOT MAKET HOUGH TSYOU RAIMI

| | | |

BSTEN BILDD IEKAN NAUCH SOFRE UNDLI CHNIC KENLA ECHEL TAUCH

FYOUC ANMEE TWITH TRIUM PHAND DISAS TERAN DTREA TTHOS ETWOI

| |

SOFRO MMUND MILD

MPOST ORSAS THES

Text length 414, number of coincidences 28, coincidence index 28
414 = 0.0676.

Example 4: Plaintext and Monoalphabetic Ciphertext

We compare the poem by Heine with a monoalphabetically encrypted ver-
sion of the poem by Busch:

BERGU NDBUR GENSC HAUNH ERUNT ERIND ENSPI EGELH ELLEN RHEIN

UINBG PNZHV GNZHV FNEGD ZHRYV ZFRSH TRGRZ HSHQE GHAPZ QYSER

|

UNDME INSCH IFFCH ENSEG ELTMU NTERR INGSU MGLAE NZTVO NSONN

INRZV FNQGO RZHSH QLZFT ZYSBZ HZNYZ FRUFZ DLFRR ZNLIZ QZVIN

| | | |

ENSCH EINRU HIGSE HICHZ UDEMS PIELE GOLDN ERWEL LENKR AUSBE

RZTNG SKPGL ZHVFN SHQFH ZFHGH TZNOZ QAPFA CRVFN QAPDI QQZHK

|
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WEGTS TILLE RWACH ENDIE GEFUE HLEDI EICHT IEFIM BUSEN HEGTF

NFZTZ HSHTP GLZHT FZLFR RZNLI ZQZHV INRZZ NQRFA CRSHT KZQRS

| |

REUND LICHG RUESS ENDUN DVERH EISSE NDLOC KTHIN ABDES STROM

HTRFZ KLZON GLZHB ZRYRF QRZQV FNCDF APNZA PRKGR GDTGQ QVFZT

ESPRA CHTDO CHICH KENNI HNOBE NGLEI SSEND BIRGT SEINI NNRES

ZNZFH YVFQR HIRVZ HTFOI VZPTF ZVINR ZUIHT GYSEG DTFZV ZNTZH

| |

TODUN DNACH TOBEN LUSTI MBUSE NTUEC KENST ROMDU BISTD ERLIE

HSHVF ZTZND ZLZHT FOTFZ CIEEZ HHSHZ NQRFH IKKHZ HQRNZ FRSHT

|

BSTEN BILDD IEKAN NAUCH SOFRE UNDLI CHNIC KENLA ECHEL TAUCH

KDFZO ZHGSK GDDZT GZAPZ NHSHL NFHOZ HVFNQ FZFHZ VFOCZ FRHFA

SOFRO MMUND MILD

PRVFZ TZNFH FPNZ

Text length 414, number of coincidences 11, coincidence index 11
414 = 0.0266.

Example 5: Two Independent Polyalphabetic Ciphertexts

We encrypt the poems by Heine and by Busch with different polyalphabetic
substitutions and compare the resulting ciphertexts.

YSPHK CBZNS TSKIU XTYUG XCSBJ YSJUB XTQDX YFDRG XXIWB IGDOO

MMIWH HZRCW UNMPD WHJUY MPNLO NZCNP MDSSY ANPEA SLWUM VHFBS

|

PTTZW NOVGG ZUZUE YOVJF XXRZK CVDHS ZTBIK BFMDC GMRLC CUQUO

FNEDD WHRUS EDYFC RVQRC OLLGY AMUHR TSOVM MJWJS YNIQO CXWFN

| |

XTQUE YIPHW AYBIW XIBMN PRAZI FIDRC TAIVB YSEJL DSKTG SWVFC

EDMBS UKUHN OTOFI DXVST XFDLX COBKN JOQIL YJWZN ZBRKD RJQXF

| |

RSBJI KIMRC LJEUE YOCOC TSZKW XLDII XYNEJ NCFOM YGQWB XCGXD

ZWXEY ANPMV STYAL IOOTS LQTNK RINDG YUNRX QJCRB VDLLX RMVNF

|

LSSBV ZIBMF LGAII YOCNO EIAGE YIVEC GRICU AVIOO WPTWI JVUVM

CELVM FJRKQ UMMPU RJKLV ZWOCO FIXVI LVHNW UEFID SIXLZ VDWXE

|

XDMGR VGWIP HWDUE ACPUI ATLSW CFMJI MDABV UIULV MSDBX COUJU

YNMIY LOFJC XQNHX LXVPQ DRAEZ QCQZD XVFAL EHFBA BPRDD RHEYA

|
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OATKB WOAGG OAXWB ZWVXI FPSIW CVYJZ CSKIJ IPOIW YYQJV YSMOC

XXYHT NXQTM OOXLX VPCSR EMCKM PYFCN IBEIY ZYBDQ XVNBX FLDXC

| | |

YDRWB UIMIB ZSGRB CTYGG MAZGW LOCRI HWKXU ACPRT XQCWA KTYGG

PKTNA QXEBS SIBQL EOPAN IANPJ BTLAQ XKSBI FYVXD DWKHY VEPSP

|

MAZGC BMYUB FYIV

ASPVM COBTL ZUTD

Text length 414, number of coincidences 12, coincidence index 12
414 = 0.0290.

Example 6: Two Polyalphabetic Ciphertexts With the Same Key

Now we encrypt the poems by Heine and by Busch with the same polyal-
phabetic substitution and compare the resulting ciphertexts

UNISN PMOLQ AQXVL VSUDU MUBTJ NIVXC OTIOZ QPDWV XIBQX URRTL

MMIWH HZRCW UNMPD WHJUY MPNLO NZCNP MDSSY ANPEA SLWUM VHFBS

| | |

MALOO WCRWU RFPPA NDBMG OKJJM AEDZB TLABN OQKSN DJEYK TIMDA

FNEDD WHRUS EDYFC RVQRC OLLGY AMUHR TSOVM MJWJS YNIQO CXWFN

| | | | |

MPEPA NZATX RWKRY URBRL LEYKZ RSRNN ATVCY RHWYY VDYYH AMBID

EDMBS UKUHN OTOFI DXVST XFDLX COBKN JOQIL YJWZN ZBRKD RJQXF

| |

DRKSJ CRMWR HWUOQ DYQTN AQOXO VNNXV MILVJ FYRRO JFIND UMGNS

ZWXEY ANPMV STYAL IOOTS LQTNK RINDG YUNRX QJCRB VDLLX RMVNF

| | | | | |

HNMAL MSPAC IDMVE RCEMA LYOBA NZBZD YQNMW XEHST STXQZ VNBDJ

CELVM FJRKQ UMMPU RJKLV ZWOCO FIXVI LVHNW UEFID SIXLZ VDWXE

| | | | | | | | |

YBKUI PASXT JHSPA HYAXI RTDTY APMOW IRYAL NSBKS JQRPS TCQYB

YNMIY LOFJC XQNHX LXVPQ DRAEZ QCQZD XVFAL EHFBA BPRDD RHEYA

| || | |

EQMFC EDLJH NZUND YNVNW BTMBM PNFXZ NQXVN BDJXD IIEDW NIYRD

XXYHT NXQTM OOXLX VPCSR EMCKM PYFCN IBEIY ZYBDQ XVNBX FLDXC

| | |

JCJND MRMMQ TNNLX PIFVD JTOUO FCEBV JHYWV HYAVE OPANB CHXLV

PKTNA QXEBS SIBQL EOPAN IANPJ BTLAQ XKSBI FYVXD DWKHY VEPSP

| |

IMKNY OXFCE CVVC

ASPVM COBTL ZUTD

Text length 414, number of coincidences 35, coincidence index 35
414 =

0.0845—an expected result because identical plaintext letters are trans-
formed to identical ciphertext letters.
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Empirical Observations

These examples show some tendencies that will be empirically or mathe-
matically founded later in this section:

• The typical coincidence index of two German texts is about 0.08.

• The typical coincidence index of two English texts is about 0.06.

• The typical coincidence index of a German and an English text is
about 0.06 to 0.07.

• The typical coincidence index of a plaintext and ciphertext is about
0.03 to 0.05, that is near the “random” value 1

26 ≈ 0.0385. The same
is true for two independent ciphertexts.

• If the same key is used for two polyalphabetic ciphertexts this fact re-
veals itself by a coincidence index that resembles that of two plaintexts.

This latter statement is the first application of coincidence counts. No mat-
ter whether the encryption is periodic or not—if we get several ciphertexts
encrypted in the same way, we can arrange them in parallel rows and get
monoalphabetically encrypted columns that eventually can be decrypted.

Historical Example

The Polish cryptanalyst Rejewski was the first who successfully broke early
military versions of the German cipher machine Enigma, see Chapter 6.
He detected that ciphertexts were “in phase” by coincidence counts. It is
unknown whether he knew Friedman’s approach, or whether he found it
for himself. Friedman’s early publications were not classified and published
even in France.

For example Rejewski noted that the two ciphertexts

RFOWL DOCAI HWBGX EMPTO BTVGG INFGR OJVDD ZLUWS JURNK KTEHM

RFOWL DNWEL SCAPX OAZYB BYZRG GCJDX NGDFE MJUPI MJVPI TKELY

besides having the initial six letters identical also had a suspicious number
of coincidences between the remaining 44 letters (5/44 ≈ 0.114).

Exercise. How many coincidences among 44 letters would you expect for
independently encrypted texts?

Rejewski assumed that the first six letters denoted a “message key”
that was identical for the two messages, and from this, that the Enigma
operators prefixed their messages by a six letter message key. (Later on he
even detected that in fact they used a repeated three letter key.)

Source : F. L. Bauer: Mathematik besiegte in Polen die
unvernünftig gebrauchte ENIGMA. Informatik Spektrum 1.
Dezember 2005, 493–497.]
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Figure 7: Frequency of coincidence counts for 2000 English text pairs of 100
letters—to get coincidence indices divide x-values by 100

The Kappa Distribution for English Texts

We want to learn more about the distribution of coincidence indices
κ(a, b) for English texts (or text chunks) a and b. To this end we
take a large English text—in this case the book The Poisoned Pen by
Arthur B. Reeve (that by the way contains a cryptogram) from Project
Gutenberg—and chop it into chunks a, b, c, d, . . . of r letters each. Then
we count κ(a, b), κ(c, d), . . . and list the values in the first column of
a spreadsheet for easy evaluation. See the Perl program kapstat.pl in
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

and the spreadsheet EnglKap.xls in http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Files/

In fact we also record the pure incidence counts as integers.
This makes it easier drawing a histogram without generating
discretization artefacts.

The text has 449163 letters. Taking r = 100 we get 2245 text pairs. We take
the first 2000 of them. Table 21 and Figure 7 show some characteristics of
the distribution.

The Kappa Distribution for German Texts

We repeat this procedure for German texts, using Scepter und Hammer by
Karl May from the web page of the Karl-May-Gesellschaft. We take the first
2000 text pairs. The results are in Table 22 and Figure 8.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kapstat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/EnglKap.xls
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Table 21: Distribution of κ for 2000 English text pairs of 100 letters

Minimum: 0.00
Median: 0.06 Mean value: 0.0669
Maximum: 0.25 Standard dev: 0.0272
1st quartile: 0.05 5% quantile: 0.0300
3rd quartile: 0.08 95% quantile: 0.1200

Figure 8: Frequency of coincidence counts for 2000 German text pairs of 100
letters—to get coincidence indices divide x-values by 100

Table 22: Distribution of κ for 2000 German text pairs of 100 letters

Minimum: 0.00
Median: 0.08 Mean value: 0.0787
Maximum: 0.26 Standard dev: 0.0297
1st quartile: 0.06 5% quantile: 0.0300
3rd quartile: 0.10 95% quantile: 0.1300
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Figure 9: Frequency of coincidence counts for 2000 random text pairs of 100
letters—to get coincidence indices divide x-values by 100

Table 23: Distribution of κ for 2000 random text pairs of 100 letters

Minimum: 0.00
Median: 0.04 Mean value: 0.040
Maximum: 0.12 Standard dev: 0.020
1st quartile: 0.03 5% quantile: 0.010
3rd quartile: 0.05 95% quantile: 0.070

The Kappa Distribution for Random Texts

Finally the same procedure for random texts. To this end we generate a
400000 character text by the built-in (pseudo-) random generator of Perl.
Since the simulation might depend on the quality of the random generator
we enhance the random text in the following way: We generate 8132 random
letters by the cryptographically strong BBS-generator and use them as key
for a Belaso encryption of our random text, repeating the key several
times. In spite of this periodicity we may assume that the result gives a
400000 character random text of good quality. This provides us with 2000
text pairs of length 100. The results are in Table 23 and Figure 9. Note that
the values fit the theoretical values almost perfectly.

Applications

To test whether a text a belongs to a certain language we would take one (or
maybe several) fixed texts of the language and would test a against them.
Because the values for natural languages are quite similar this test would
only make sense for testing against random. This test is much weaker then
the MFL, LW and BLW tests.



K. Pommerening, Language Statistics 40

Also adjusting the columns of a disk cipher could be tested this way:
If two alphabets are relatively shifted, the corresponding columns behave
like random texts with respect to each other. If the alphabets are properly
adjusted, the columns represent meaningful texts encrypted by the same
monoalphabetic substitution, therefore they belong to the same language
and show the typical coincidence index—up to statistical noise. Note that
we need quite long columns for this test to work in a sensible way!

In the following sections we’ll see some better tests for these problems.
The main application of the coincidence index in its pure form is detecting
identically encrypted polyalphabetic ciphertexts. Moreover it is the basis of
some refined methods.
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9 Autoincidence of a Text

Introduction

For the cryptanalysis of periodic polyalphabetic ciphers the following con-
struction is of special importance: Let a ∈ Σ∗, and let a(q) and a(−q) be the
cyclic shifts of a by q positions to the right resp. to the left. That is

a = a0 a1 a2 . . . aq−1 aq aq+1 . . . ar−1

a(q) = ar−q ar−q+1 ar−q+2 . . . ar−1 a0 a1 . . . ar−q−1

a(−q) = aq aq+1 aq+2 . . . a2q−1 a2q a2q+1 . . . aq−1

Clearly κ(a, a(q)) = κ(a, a(−q)).

Definition. For a text a ∈ Σ∗ and a natural number q ∈ N the number
κq(a) := κ(a, a(q)) is called the q-th autocoincidence index of a.

Note. This is not a common notation. Usually this concept is not given an
explicit name.

Example. We shift a text by 6 positions to the right:

COINCIDENCESBETWEENTHETEXTANDTHESHIFTEDTEXT <-- original text

EDTEXTCOINCIDENCESBETWEENTHETEXTANDTHESHIFT <-- shifted by 6

| | | | | | <-- 6 coincidences

Properties

The q-th autocoincidence index κq defines a map

κq : Σ∗ −→ Q.

Clearly κq(a) = κr−q(a) for a ∈ Σr and 0 < q < r, and κ0 is a constant map.

Application

Take a ciphertext c that is generated by a periodic polyalphabetic substi-
tution. If we determine κq(c), we encounter two different situations: In the
general case q is not a multiple of the period l. Counting the coincidences
we encounter letter pairs that come from independent monoalphabetic sub-
stitutions. By the results of Section 7 we expect an index κq(c) ≈ 1

n .
In the special case where l|q however we encounter the situation

σ0a0 σ1a1 . . . σ0aq σ1aq+1 . . .
σ0a0 σ1a1 . . .
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where the letters below each other come from the same monoalphabetic sub-
stitution. Therefore they coincide if and only if the corresponding plaintext
letters coincide. Therefore we expect an index κq(c) near the coincidence
index κM that is typical for the plaintext language M .

More precisely for a polyalphabetic substitution f of period l, plaintext
a, and ciphertext c = f(a):

1. For l not a divisor of q or r − q we expect κq(c) ≈ 1
n .

2. For l|q and q small compared with r we expect κq(c) ≈ κq(a), and this
value should be near the typical coincidence index κM .

This is the second application of coincidence counts, detecting the period of
a polyalphabetic substitution by looking at the autocoincidence indices of
the ciphertext. Compared with the search for repetitions after Kasiski this
method also takes account of repetitions of length 1 or 2. In this way we
make much more economical use of the traces that the period leaves in the
ciphertext.

Example

We want to apply these considerations to the autocoincidence analy-
sis of a polyalphabetic ciphertext using the Perl program coinc.pl from
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.
We start with the cryptogram that we already have solved in Chapter 2 by
repetition analysis:

00 05 10 15 20 25 30 35 40 45

0000 AOWBK NLRMG EAMYC ZSFJO IYYVS HYQPY KSONE MDUKE MVEMP JBBOA

0050 YUHCB HZPYW MOOKQ VZEAH RMVVP JOWHR JRMWK MHCMM OHFSE GOWZK

0100 IKCRV LAQDX MWRMH XGTHX MXNBY RTAHJ UALRA PCOBJ TCYJA BBMDU

0150 HCQNY NGKLA WYNRJ BRVRZ IDXTV LPUEL AIMIK MKAQT MVBCB WVYUX

0200 KQXYZ NFPGL CHOSO NTMCM JPMLR JIKPO RBSIA OZZZC YPOBJ ZNNJP

0250 UBKCO WAHOO JUWOB CLQAW CYTKM HFPGL KMGKH AHTYG VKBSK LRVOQ

0300 VOEQW EALTM HKOBN CMVKO BJUPA XFAVK NKJAB VKNXX IJVOP YWMWQ

0350 MZRFB UEVYU ZOORB SIAOV VLNUK EMVYY VMSNT UHIWZ WSYPG KAAIY

0400 NQKLZ ZZMGK OYXAO KJBZV LAQZQ AIRMV UKVJO CUKCW YEALJ ZCVKJ

0450 GJOVV WMVCO ZZZPY WMWQM ZUKRE IWIPX BAHZV NHJSJ ZNSXP YHRMG

0500 KUOMY PUELA IZAMC AEWOD QCHEW OAQZQ OETHG ZHAWU NRIAA QYKWX

0550 EJVUF UZSBL RNYDX QZMNY AONYT AUDXA WYHUH OBOYN QJFVH SVGZH

0600 RVOFQ JISVZ JGJME VEHGD XSVKF UKXMV LXQEO NWYNK VOMWV YUZON

0650 JUPAX FANYN VJPOR BSIAO XIYYA JETJT FQKUZ ZZMGK UOMYK IZGAW

0700 KNRJP AIOFU KFAHV MVXKD BMDUK XOMYN KVOXH YPYWM WQMZU EOYVZ

0750 FUJAB YMGDV BGVZJ WNCWY VMHZO MOYVU WKYLR MDJPV JOCUK QELKM

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coinc.pl
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0800 AJBOS YXQMC AQTYA SABBY ZICOB XMZUK POOUM HEAUE WQUDX TVZCG

0850 JJMVP MHJAB VZSUM CAQTY AJPRV ZINUO NYLMQ KLVHS VUKCW YPAQJ

0900 ABVLM GKUOM YKIZG AVLZU VIJVZ OGJMO WVAKH CUEYN MXPBQ YZVJP

0950 QHYVG JBORB SIAOZ HYZUV PASMF UKFOW QKIZG ASMMK ZAUEW YNJAB

1000 VWEYK GNVRM VUAAQ XQHXK GVZHU VIJOY ZPJBB OOQPE OBLKM DVONV

1050 KNUJA BBMDU HCQNY PQJBA HZMIB HWVTH UGCTV ZDIKG OWAMV GKBBK

1100 KMEAB HQISG ODHZY UWOBR ZJAJE TJTFU K

The Autocoincidence Indices

This is the sequence of autocoincidence indices of our cryptogram
κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8

0.0301 0.0345 0.0469 0.0354 0.0371 0.0354 0.0822 0.0416
κ9 κ10 κ11 κ12 κ13 κ14 κ15 κ16

0.0265 0.0309 0.0416 0.0389 0.0327 0.0787 0.0460 0.0345
κ17 κ18 κ19 κ20 κ21 κ22 κ23 κ24

0.0460 0.0309 0.0327 0.0309 0.0769 0.0318 0.0309 0.0327
κ25 κ26 κ27 κ28 κ29 κ30 κ31 κ32

0.0318 0.0309 0.0416 0.0875 0.0477 0.0416 0.0442 0.0354
κ33 κ34 κ35 κ36

0.0318 0.0389 0.0610 0.0371
The period 7 stands out, as it did with the period analysis after Kasiski
in the last chapter. This is also clearly seen in the graphical representation,
see Figure 10.

0 10 20 30 40

0.03

0.04

0.05

0.06

0.07

0.08

Figure 10: Autocoincidence spectrum of a sample ciphertext

The values other than at multiples of 7 fluctuate around the “random”
value 1

26 ≈ 0.0385 as expected. The values in the peaks fluctuate around the
typical coincidence index near 0.08 of the plaintext language German, for
which we gave empirical evidence in the last section. This effect has an easy
explanation.
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The Autocoincidence Spectrum

To analyze the effect seen in Figure 10, let c be the ciphertext from a polyal-
phabetic encryption of a text a ∈ M with period l. What values can we
expect for the κq(c)?

c = c0 . . . cq−1 | cq . . . cr−1

c(q) = cr−q . . . cr−1 | c0 . . . cr−q−1

expected coinc.: q · κM if l|r − q, | (r − q) · κM if l|q,
q · κΣ∗ else | (r − q) · κΣ∗ else

Adding these up we get the following expected values for the autocoin-
cidence spectrum:

1. case, l|r

κq(c) ≈

{
q·κM+(r−q)·κM

r = κM if l|q,
q·κΣ∗+(r−q)·κΣ∗

r = κΣ∗ else.

2. case, l 6 | r

κq(c) ≈


q·κΣ∗+(r−q)·κM

r if l|q,
q·κM+(r−q)·κΣ∗

r if l|r − q,
κΣ∗ else.

In particular for q << r

κq(c) ≈

{
κM if l|q,
κΣ∗ else.

This explains the autocoincidence spectrum that we observed in the exam-
ple. Typical autocoincidence spectra are shown in Figures 11 and 12.

Since in the second case the resulting image may be somewhat blurred,
one could try to calculate autocoincidence indices not by shifting the text
cyclically around but by simply cutting off the ends.

Definition. The sequence (κ1(a), . . . , κr−1(a)) of autocoincidence indices
of a text a ∈ Σr of length r is called the autocoincidence spectrum
of a.

Note. that this notation too is not common in the literature, but seems
adequate for its evident cryptanalytical importance.

Exercise 1. Determine the autocoincidence spectrum of the ciphertext that
you already broke by a KASISKI analysis. Create a graphical repre-
sentation of it using graphic software of your choice.

Exercise 2. Cryptanalyze the ciphertext
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0

1/n

κ
M

l 2l0 rr-l

Figure 11: Text length is multiple of period

0

1/n

κ
M

l 2l0 rr-l

Figure 12: Text length not multiple of period
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ECWUL MVKVR SCLKR IULXP FFXWL SMAEO HYKGA ANVGU GUDNP DBLCK

MYEKJ IMGJH CCUJL SMLGU TXWPN FQAPU EUKUP DBKQO VYTUJ IVWUJ

IYAFL OVAPG VGRYL JNWPK FHCGU TCUJK JYDGB UXWTT BHFKZ UFSWA

FLJGK MCUJR FCLCB DBKEO OUHRP DBVTP UNWPZ ECWUL OVAUZ FHNQY

XYYFL OUFFL SHCTP UCCWL TMWPB OXNKL SNWPZ IIXHP DBSWZ TYJFL

NUMHD JXWTZ QLMEO EYJOP SAWPL IGKQR PGEVL TXWPU AODGA ANZGY

BOKFH TMAEO FCFIH OTXCT PMWUO BOK
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10 The Inner Coincidence Index of a Text

Definition

Let a ∈ Σr (r ≥ 2) be a text, and (κ1(a), . . . , κr−1(a)) be its autocoincidence
spectrum. Then the mean value

ϕ(a) :=
1

r − 1
[κ1(a) + · · ·+ κr−1(a)]

is called the (inner) coincidence index of a.
It defines a map

ϕ : Σ(≥2) −→ Q.
See the Perl program phi.pl from http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/.

Another description

Pick up the letters from two random positions of a text a. How many “twins”
will you find? That means the same letter s ∈ Σ at the two positions, or a
“coincidence”?

Let ms = ms(a) = #{j | aj = s} be the number of occurrences of s in a.
Then the answer is

ms · (ms − 1)

2
times. Therefore the total number of coincidences is∑

s∈Σ

ms · (ms − 1)

2
=

1

2
·
∑
s∈Σ

m2
s −

1

2
·
∑
s∈Σ

ms =
1

2
·
∑
s∈Σ

m2
s −

r

2

We count these coincidences in another way by the following algorithm:
Let zq be the number of already found coincidences with a distance of q for
q = 1, . . . , r − 1, and initialize it as zq := 0. Then execute the nested loops

for i = 0, . . . , r − 2 [loop through the text a]
for j = i+ 1, . . . , r − 1 [loop through the remaining text]

if ai = aj [coincidence detected]
increment zj−i [with distance j − i]
increment zr+i−j [and with distance r + i− j]

After running through these loops the variables z1, . . . , zr−1 have values
such that

Lemma 1 (i) z1 + · · ·+ zr−1 =
∑

s∈Σms · (ms − 1).
(ii) κq(a) =

zq
r for q = 1, . . . , r − 1.

Proof. (i) We count all coincidences twice.
(ii) κq(a) = 1

r ·#{j |aj+q = aj} by definition (where the indices are taken
mod r). 3

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phi.pl
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The Kappa-Phi Theorem

Theorem 1 (Kappa-Phi Theorem) The inner coincidence index of a
text a ∈ Σ∗ of length r ≥ 2 is the proportion of coincidences among all
letter pairs of a.

Proof. The last term of the equation

ϕ(a) =
κ1(a) + · · ·κr−1(a)

r − 1
=
z1 + · · ·+ zr−1

r · (r − 1)

=

∑
s∈Σms · (ms − 1)

r · (r − 1)
=

∑
s∈Σ

ms·(ms−1)
2

r·(r−1)
2

has the total number of coincidences in its numerator, and the total number
of letter pairs in its denominator. 3

Corollary 1 The inner coincidence index may be expressed as

ϕ(a) =
r

r − 1
·
∑
s∈Σ

(ms

r

)2
− 1

r − 1

Proof. This follows via the intermediate step

ϕ(a) =

∑
s∈Σm

2
s − r

r · (r − 1)

3

Note that this corollary provides a much faster algorithm for determin-
ing ϕ(a). The definition formula needs r − 1 runs through a text of length
r, making r · (r− 1) comparisons. The above algorithm reduces the costs to
r·(r−1)

2 comparisons. Using the formula of the corollary we need only one
pass through the text, the complexity is linear in r. For a Perl program
implementing this algorithm see the Perl script coinc.pl from the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

Corollary 2 The inner coincidence index of a text is invariant under
monoalphabetic substitution.

Proof. The number of letter pairs is unchanged. 3

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coinc.pl
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11 The Distribution of the Inner Coincidence In-
dex

First we calculate the exact mean value of the inner coincidence index ϕ(a)
for a ∈ Σr. Then we determine empirical values for mean value and variance
for English, German, and random texts by simulation, as we did for κ.

The exact value of the variance leads to a somewhat more complicated
calculation. We omit it.

Mean Value

We calculate the mean value of the letter frequencies ms(a) over a ∈ Σr

for each s ∈ Σ. Because of the symmetry in s all these values are identical,
therefore we have

n ·
∑
a∈Σr

ms(a) =
∑
s∈Σ

∑
a∈Σr

ms(a) =
∑
a∈Σr

∑
s∈Σ

ms(a)︸ ︷︷ ︸
r

= r · nr

This gives the mean value

1

nr

∑
a∈Σr

ms(a) =
r

n

for each letter s ∈ Σ.
Next we calculate the mean value of κq(a) over a ∈ Σr. We treat the

indices of the letters of the texts a as elements of the cyclic additive group
Z/nZ. Then we have∑

a∈Σr

κq(a) =
∑
a∈Σr

1

r
#{j ∈ Z/nZ | aj+q = aj}

=
1

r

∑
j∈Z/nZ

∑
a∈Σr

δaj+q ,aj

=
1

r

∑
j∈Z/nZ

#{a ∈ Σr | aj+q = aj}︸ ︷︷ ︸
nr−1

= nr−1

because in the underbraced count for a we may choose r − 1 letters freely,
and then the remaining letter is fixed. This gives the mean value

1

nr

∑
a∈Σr

κq(a) =
1

n

for each q = 1, . . . , r − 1.
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Now for ϕ. We use the additivity of the mean value.

1

nr

∑
a∈Σr

ϕ(a) =
1

r − 1

[
1

nr

∑
a∈Σr

κ1(a) + · · ·+ 1

nr

∑
a∈Σr

κr−1(a)

]

=
1

r − 1
· (r − 1) · 1

n
=

1

n

We have shown:

Proposition 4 The mean values of the q-th autocoincidence index for q =
1, . . . , r − 1 and of the inner coincidence index over a ∈ Σr each are 1

n .

And for the letter frequencies we have:

Corollary 3 The sum of the letter frequencies ms(a) over a ∈ Σr is∑
a∈Σr

ms(a) = r · nr−1

for all letters s ∈ Σ.

Corollary 4 The sum of the squares ms(a)2 of the letter frequencies over
a ∈ Σr is ∑

a∈Σr

ms(a)2 = r · (n+ r − 1) · nr−2

for all letters s ∈ Σ.

Proof. By the Kappa-Phi Theorem we have

∑
t∈Σ

[∑
a∈Σr

ms(a)2 −
∑
a∈Σr

ms(a)

]
= r · (r − 1) ·

∑
a∈Σr

ϕ(a) = r · (r − 1) · nr−1

Substituting the result of the previous corollary and using the symmetry of
the sum of squares with respect to s we get

n·
∑
a∈Σr

ms(a)2 =
∑
t∈Σ

∑
a∈Σr

ms(a)2 = r·(r−1)·nr−1+rn·nr−1 = r·nr−1·(r−1+n)

Dividing by n we get the above formula. 3
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Figure 13: Frequency of inner coincidence counts for 2000 English texts of
100 letters—to get ϕ values divide x-values by 4950

Table 24: Distribution of ϕ for 2000 English texts of 100 letters

Minimum: 0.0481
Median: 0.0634 Mean value: 0.0639
Maximum: 0.0913 Standard dev: 0.0063
1st quartile: 0.0594 5% quantile: 0.0549
3rd quartile: 0.0677 95% quantile: 0.0750

The Phi Distribution for English Texts

For empirically determining the distribution of the inner coin-
cidence index ϕ(a) we use the Perl program phistat.pl from
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.
For English texts (or text chunks) a, we again take a large English text—
in this case the book The Fighting Chance by Robert W. Chambers
from Project Gutenberg—and chop it into chunks a, b, c, d, . . . of r let-
ters each. Then we count ϕ(a), ϕ(b), . . . and list the values in the
first column of a spreadsheet. See the file EnglPhi.xls in http://

www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/. The
text has 602536 letters. We take the first 262006 of them and consider the
first 2000 pieces of 100 letters each. Table 24 and Figure 13 show some
characteristics of the distribution.

The Phi Distribution for German Texts

We repeat this procedure for German texts, using Scepter und Hammer by
Karl May. We already consumed its first 400000 letters for κ. Now we take
the next 200000 letters—in fact we skip 801 letters in between—and form

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phistat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/EnglPhi.xls
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Figure 14: Frequency of inner coincidence counts for 2000 German texts of
100 letters—to get ϕ values divide x-values by 4950

Table 25: Distribution of ϕ for 2000 German texts of 100 letters

Minimum: 0.0517
Median: 0.0752 Mean value: 0.0763
Maximum: 0.1152 Standard dev: 0.0099
1st quartile: 0.0689 5% quantile: 0.0618
3rd quartile: 0.0828 95% quantile: 0.0945

2000 text chunks with 100 letters each. The results are in Table 25 and
Figure 14.

The Phi Distribution for Random Texts

And now the same procedure for random text. The results are in Table 26
and Figure 15.

Table 26: Distribution of ϕ for 2000 random texts of 100 letters

Minimum: 0.0331
Median: 0.0398 Mean value: 0.0401
Maximum: 0.0525 Standard dev: 0.0028
1st quartile: 0.0382 5% quantile: 0.0360
3rd quartile: 0.0418 95% quantile: 0.0451
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Figure 15: Frequency of inner coincidence counts for 2000 random texts of
100 letters—to get ϕ values divide x-values by 4950

Applications

To which questions from the introduction do these results apply?
We can decide whether a text is from a certain language. This includes

texts that are monoalphabetically encrypted because ϕ is invariant under
monoalphabetic substitution. And we can recognize a monoalphabetically
encrypted ciphertext.

For both of these decision problems we calculate the coincidence index
ϕ(a) of our text a and decide “belongs to language” or “is monoalphabetic
encrypted”—depending on our hypothesis—if ϕ(a) reaches or surpasses the
95% quantile of ϕ for random texts of the same length—if we are willing to
accept an error rate of the first kind of 5%.

For a text of 100 letters the threshold for ϕ is about 0.0451 by Table 26.
Tables 24 and 25 show that English or German texts surpass this threshold
with high probability: For both languages the test has a power of nearly
100%.

It makes sense to work with the more ambitious “significance level” of
1% = bound for the error of the first kind. For this we set the threshold to
the 99% quantile of the ϕ distribution for random texts. Our experiment for
texts of length 100 gives the empirical value of 0.0473, failing the empirical
minimum for our 2000 English 100 letter texts, and sitting far below the
empirical minimum for German. Therefore even at the 1%-level the test has
a power of nearly 100%.

The Phi Distribution for 26 Letter Texts

Since the ϕ test performs so excellently for 100 letter texts we dare to look at
26 letter texts—a text length that occurs in the Meet-in-the-Middle attack
against rotor machines.
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Table 27: Distribution of ϕ for 2000 English texts of 26 letters

Minimum: 0.0227
Median: 0.0585 Mean value: 0.0606
Maximum: 0.1385 Standard dev: 0.0154
1st quartile: 0.0492 5% quantile: 0.0400
3rd quartile: 0.0677 95% quantile: 0.0892

Table 28: Distribution of ϕ for 2000 German texts of 26 letters

Minimum: 0.0308
Median: 0.0708 Mean value: 0.0725
Maximum: 0.1785 Standard dev: 0.0204
1st quartile: 0.0585 5% quantile: 0.0431
3rd quartile: 0.0831 95% quantile: 0.1108

Here we give the results as tables only.
The decision threshold on the 5%-level is 0.0585. For English texts the

test has a power of only 50%, for German, near 75%. So we have a method
to recognize monoalphabetic ciphertext that works fairly well for texts as
short as 26 letters.

Table 29: Distribution of ϕ for 2000 random texts of 26 letters

Minimum: 0.0154
Median: 0.0400 Mean value: 0.0401
Maximum: 0.0954 Standard dev: 0.0112
1st quartile: 0.0338 5% quantile: 0.0246
3rd quartile: 0.0462 95% quantile: 0.0585
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12 Sinkov’s Formula

Let’s apply the approximative formulas for κq(c) from Section 9 to the co-
incidence index of a periodically polyalphabetically encrypted text c = f(a)
with a ∈M of length r. In the case l|r we get:

ϕ(c) =
1

r − 1
· [κ1(c) + · · ·+ κr−1(c)]

≈ 1

r − 1
·
[
(
r

l
− 1) · κM + (r − r

l
) · κΣ∗

]
=

r − l
r − 1

· 1

l
· κM +

r(l − 1)

l(r − 1)
· κΣ∗

≈ 1

l
· κM +

l − 1

l
· κΣ∗ ,

since r
l − 1 summands scatter around κM , the other r− r

l ones around κΣ∗ .
In the same way for l 6 | r we get:

ϕ(c) ≈ 1

r − 1
·
[
r − 1

l
· q · κΣ∗ + (r − q) · κM

r

+
r − 1

l
· q · κM + (r − q) · κΣ∗

r
+ (r − 1) · (1− 2

l
) · κΣ∗

]
=

1

l
· r · κΣ∗ + r · κM

r
+ (1− 2

l
) · κΣ∗

=
1

l
· κM +

l − 1

l
· κΣ∗ ,

that is the same approximative formula in both cases. Note that this is a
weighted mean.

ϕ(c) ≈ 1

l
· κM +

l − 1

l
· κΣ∗

For the example M = “German” and l = 7 we therefore expect

ϕ(c) ≈ 1

7
· 0.0762 +

6

7
· 0.0385 ≈ 0.0439,

and this is in accordance with the empirical value from the former example.
In general Table 30 and Figure 16 show the connection between period and
expected coincidence index for a polyalphabetically encrypted German text.
The situation for English is even worse.

If we solve the above formula for the period length l, we get Sinkov’s
formula:

l · ϕ(c) ≈ κM + (l − 1) · κΣ∗ ,

l · [ϕ(c)− κΣ∗ ] ≈ κM − κΣ∗ ,
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Table 30: Coincidence index and period length (for German)

period 1 2 3 4 5
Coinc. index 0.0762 0.0574 0.0511 0.0479 0.0460

6 7 8 9 10
0.0448 0.0439 0.0432 0.0427 0.0423

period 10 20 30 40 50
Coinc index 0.0423 0.0404 0.0398 0.0394 0.0393

60 70 80 90 100
0.0391 0.0390 0.0390 0.0389 0.0389

2 4 6 8 10

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Figure 16: Coincidence index and period length (for German)
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l ≈ κM − κΣ∗

ϕ(c)− κΣ∗
.

Remark. There are “more exact” versions of this formula. But these don’t
give better results due to the variation of ϕ(c) and the numerical in-
stability of the small denominator.

For our sample cryptanalysis we get

l ≈ 0.0762− 0.0385

0.0440− 0.0385
≈ 6.85.

This is also evidence for 7 being the length of the period.
The problem with Sinkov’s formula is the lack of numerical stability:

the larger the period, the closer the coincidence index is to the value for
random texts, as the table shows, that is, the closer the denominator in the
formula is to 0.

Therefore the autocoincidence spectrum usually yields a better guess of
the period. In fact Sinkov himself in his book [8] uses “his” formula—or
rather the English equivalents of Table 30 and Figure 16—only for distin-
guishing between monoalphabetic and polyalphabetic ciphertexts. For de-
termining the period he gives a very powerful test, see Section 13.
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13 Sinkov’s Test for the Period

We want to test a pretended period l whether it is the real period. We write
the text in rows of width l and consider the columns.

• If l is the correct period, each column is monoalphabetically encrypted
and has its coincidence index near the coincidence index of the plain-
text language.

• Otherwise the columns are random garbage and have coincidence in-
dices near the random value 1

n . Or rather near the value for a polyal-
phabetic ciphertext of period (the true) l.

Maybe the columns are quite short, thus their coincidence indices are diffuse
and give no clear impression. However we can put all the indices together
without bothering about the different monoalphabets, and get a much more
precise value, based on all the letters of the text.

Definition For a text a ∈ Σ∗ and l ∈ N1 the mean value

ϕ̄l(a) :=
1

l
·
l−1∑
i=0

ϕ(aiai+lai+2l . . .)

is called the Sinkov statistic of a of order l.

Note that ϕ̄1 = ϕ.
A Perl program, phibar.pl, is in http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/.

Example

Let us again examine the ciphertext from Section 9. We get the values:

ϕ̄1(a) 0.0442 ϕ̄7(a) 0.0829 ϕ̄13(a) 0.0444
ϕ̄2(a) 0.0439 ϕ̄8(a) 0.0443 ϕ̄14(a) 0.0839
ϕ̄3(a) 0.0440 ϕ̄9(a) 0.0427 ϕ̄15(a) 0.0432
ϕ̄4(a) 0.0438 ϕ̄10(a) 0.0421 ϕ̄16(a) 0.0439
ϕ̄5(a) 0.0430 ϕ̄11(a) 0.0426 ϕ̄17(a) 0.0444
ϕ̄6(a) 0.0435 ϕ̄12(a) 0.0432 ϕ̄18(a) 0.0419

The period 7 is overwhelmingly evident. The values other than at the
multiples of 7 are in almost perfect compliance with a (German) ciphertext
of period around 7.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phibar.pl
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A Short Ciphertext

Our example ciphertext was quite long, and it is no surprise that the sta-
tistical methods perform very well. To get a more realistic picture let us
examine the following ciphertext of length 148:

MDJJL DSKQB GYMZC YKBYT ZVRYU PJTZN WPZXS KCHFG EFYFS ENVFW

KORMX ZQGYT KEDIQ WRVPM OYMQV DQWDN UBQQM XEQCA CXYLP VUOSG

EJYDS PYYNA XOREC YJAFA MFCOF DQKTA CBAHW FYJUI LXBYA DTT

The Kasiski test finds no reptitions of length 3 or more. It finds 16
repetitions of length 2 and no eye-catching pattern. The common factors 10
or 20 could be a hint at the correct period, but repetitions of length 2 are
not overly convincing.

Repetition: DS SK GY YM CY BY YT TZ
Distance: 98 28 47 60 100 125 40 8

Repetition: GE FY OR MX QW DQ AC YJ
Distance: 60 94 60 31 12 50 40 21

The coincidence index of the text is 0.0386 and doesn’t distinguish the
ciphertext from random text. The first 40 values of the autocoincidence
spectrum are

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8

0.0270 0.0203 0.0541 0.0405 0.0405 0.0338 0.0405 0.0676

κ9 κ10 κ11 κ12 κ13 κ14 κ15 κ16

0.0270 0.0473 0.0270 0.0676 0.0405 0.0473 0.0541 0.0541

κ17 κ18 κ19 κ20 κ21 κ22 κ23 κ24

0.0203 0.0203 0.0608 0.0473 0.0473 0.0135 0.0541 0.0270

κ25 κ26 κ27 κ28 κ29 κ30 κ31 κ32

0.0338 0.0405 0.0541 0.0811 0.0338 0.0338 0.0405 0.0203

κ33 κ34 κ35 κ36 κ37 κ38 κ39 κ40

0.0068 0.0473 0.0473 0.0270 0.0405 0.0066 0.0203 0.0473

Values above 0.06 occur for shifts of 8, 12, 19, 28, the latter being the
largest one. This makes a diffuse picture, giving slight evidence for a period
of 28. Finally let’s try Sinkov’s test. It gives as its first 40 values:
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ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6 ϕ̄7 ϕ̄8

0.0386 0.0413 0.0386 0.0492 0.0421 0.0441 0.0433 0.0471

ϕ̄9 ϕ̄10 ϕ̄11 ϕ̄12 ϕ̄13 ϕ̄14 ϕ̄15 ϕ̄16

0.0330 0.0505 0.0265 0.0591 0.0333 0.0486 0.0444 0.0410

ϕ̄17 ϕ̄18 ϕ̄19 ϕ̄20 ϕ̄21 ϕ̄22 ϕ̄23 ϕ̄24

0.0280 0.0395 0.0439 0.0589 0.0357 0.0264 0.0476 0.0548

ϕ̄25 ϕ̄26 ϕ̄27 ϕ̄28 ϕ̄29 ϕ̄30 ϕ̄31 ϕ̄32

0.0507 0.0359 0.0444 0.0488 0.0368 0.0622 0.0312 0.0323

ϕ̄33 ϕ̄34 ϕ̄35 ϕ̄36 ϕ̄37 ϕ̄38 ϕ̄39 ϕ̄40

0.0091 0.0294 0.0429 0.0611 0.0541 0.0307 0.0256 0.0542

The values for 12, 20, 30, and 36 stand somewhat out, followed by the
values for 24, 37, and 40, then 10 and 25—again there is no clear favorite.
Let’s discuss the candidate values for the period and rate each criterion as
“good”, “weak”, or “prohibitive”.
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Period? Pros and cons

8 ϕ(c) should be slightly larger (weak).
Only 3 repetition distances are multiples of 8 (weak).
κ8 and κ16 are good, κ40 is weak, κ24 and κ32 are prohibitive.
ϕ̄8 is weak, ϕ̄16 and ϕ̄32 are prohibitive, ϕ̄24 and ϕ̄40 are good.

10 ϕ(c) should be slightly larger (weak).
7 repetition distances are multiples of 10 (good).
κ10, κ20, and κ40 are weak, κ30 is prohibitive.
ϕ̄10, ϕ̄20, ϕ̄30, and ϕ̄40 are good.

12 ϕ(c) should be slightly larger (weak).
4 repetition distances are multiples of 12 (good).
κ12 is good, κ24 and κ36 are prohibitive.
ϕ̄12, ϕ̄24, and ϕ̄36 are good.

19 0 repetition distances are multiples of 19 (prohibitive).
κ19 is good, κ38 is prohibitive.
ϕ̄19 and ϕ̄38 are prohibitive.

20 6 repetition distances are multiples of 20 (good).
κ20 and κ40 are weak.
ϕ̄20 and ϕ̄40 are good.

24 0 repetition distances are multiples of 24 (prohibitive).
κ24 is prohibitive.
ϕ̄24 is good.

28 Only 1 repetition distance is a multiple of 28 (weak).
κ28 is good.
ϕ̄28 is weak.

30 3 repetition distances are multiples of 30 (good).
κ30 is prohibitive.
ϕ̄30 is good.

36 0 repetition distances are multiples of 36 (prohibitive).
κ36 is prohibitive.
ϕ̄36 is good.

37 0 repetition distances are multiples of 37 (prohibitive).
κ37 is prohibitive.
ϕ̄37 is good.

To assess these findings let us score the values “good” as +1, “weak” as
0, and “prohibitive” as −1. Note that 3 repetitions for period 8 are weaker
than 3 repetitions for period 30. The candidates 19, 24, 36, and 37 have
negative weights, the candidates 8 and 28, zero weights. We skip them in
the first round. Positive weights have 10 (3 of 9), 12 (3 of 8), 20 (3 of 5), and
30 (1 of 3). We rank them by their relative weights: 20 with score 0.6 = 3/5,
then 12 with score 0.375, then 10 and 30 with scores 0.333.
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The most promising approach to further cryptanalysis starts from the
hypothetical period 20, see Section 15.
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14 Kullback’s Cross-Product Sum Statistic

For a decision whether two texts a ∈ Σr, b ∈ Σq belong to the same language
we could consider ϕ(a||b), the coincidence index of the concatenated string
a||b. It should approximately equal the coincidence index of the language,
or—in the negative case—be significantly smaller. This index evaluates as

(q + r)(q + r − 1) · ϕ(a||b) =
∑
s∈Σ

[ms(a) +ms(b)] [ms(a) +ms(b)− 1]

=
∑
s∈Σ

ms(a)2 +
∑
s∈Σ

ms(b)
2 + 2 ·

∑
s∈Σ

ms(a)ms(b)− r − q

In this expression we consider terms depending on only one of the texts
as irrelevant for the decision problem. Omitting them we are left with the
“cross-product sum” ∑

s∈Σ

ms(a)ms(b)

From another viewpoint we could consider the “Euclidean distance” of a
and b in the n-dimensional space of single letter frequencies

d(a, b) =
∑
s∈Σ

[ms(a)−ms(b)]
2 =

∑
s∈Σ

ms(a)2+
∑
s∈Σ

ms(b)
2−2·

∑
s∈Σ

ms(a)ms(b)

and this also motivates considering the cross-product sum. It should be large
for texts from the same language, and small otherwise.

Definition

Let Σ be a finite alphabet. Let a ∈ Σr and b ∈ Σq be two texts of lengths
r, q ≥ 1. Then

χ(a, b) :=
1

rq
·
∑
s∈Σ

ms(a)ms(b),

where ms denotes the frequency of the letter s in a text, is called cross-
product sum of a and b.

For each pair r, q ∈ N1 this defines a map

χ : Σr × Σq −→ Q.

A Perl program, chi.pl, is in http://www.staff.uni-mainz.de/pommeren/

Cryptology/Classic/Perl/.
Transforming a and b by the same monoalphabetic substitution permutes

the summands of χ(a, b). Therefore χ is invariant under monoalphabetic
substitution.

Lemma 2 Always χ(a, b) ≤ 1. Equality holds if and only if a and b consist
of repetitions of the same single letter.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/chi.pl


K. Pommerening, Language Statistics 64

Proof. We use the Cauchy-Schwartz inequality:

χ(a, b)2 =

(∑
s∈Σ

ms(a)

r

ms(b)

q

)2

≤
∑
s∈Σ

(
ms(a)

r

)2

·
∑
s∈Σ

(
ms(b)

q

)2

≤
∑
s∈Σ

ms(a)

r
·
∑
s∈Σ

ms(b)

q
= 1

Equality holds if and only if

• ms(a) = c ·ms(b) for all s ∈ Σ with a fixed c ∈ R,

• and all ms(a)
r and ms(b)

q are 0 or 1.

These two conditions together are equivalent with both of a and b consisting
of only one—the same—repeated letter. 3

Considering the quantity ψ(a) := χ(a, a) =
∑

sms(a)2/r2 doesn’t make
much sense for Corollary 1 of the Kappa-Phi-Theorem gives a linear (more
exactly: affine) relation between ψ and ϕ:

Lemma 3 For all a ∈ Σr, r ≥ 2,

ϕ(a) =
r

r − 1
· ψ(a)− 1

r − 1

Side Remark: Cohen’s Kappa

In statistical texts one often encounters a related measure of coincidence
between two series of observations: Cohen’s kappa. It combines Friedman’s
kappa and Kullback’s chi. Let a = (a1, . . . , ar), b = (b1, . . . , br) ∈ Σr be
two texts over the alphabet Σ (or two series of observations of data of some
type). Then consider the matrix of frequencies

mst(a, b) = #{i | ai = s, bi = t} for s, t ∈ Σ.

Its row sums are

ms(a) = #{i | ai = s} =
∑
t∈Σ

mst(a, b),

its column sums are

mt(b) = #{i | bi = t} =
∑
s∈Σ

mst(a, b),

its diagonal sum is∑
s∈Σ

mss(a, b) =
∑
s∈Σ

#{i | ai = bi = s} = #{i | ai = bi}.
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The intermediate values from which Cohen’s kappa is calculated are

p0 =
1

r
·
∑
s∈Σ

mss(a, b) = κ(a, b) and pe =
1

r2
·
∑
s∈Σ

ms(a)ms(b) = χ(a, b)

Cohen’s kappa is defined for a 6= b by

K(a, b) :=
p0 − pe
1− pe

=
κ(a, b)− χ(a, b)

1− χ(a, b)

If a and b are random strings with not necessarily uniform letter probabilities
ps, then K is asymptotically normally distributed with expectation 0 and
variance

p0 · (1− p0)

r · (1− p0)2

Therefore its use is convenient for large series of observations—or large
strings—but in cryptanalysis we mostly have to deal with short strings,
and considering κ and χ separately may retain more information.

Mean Values

For a fixed a ∈ Σr we determine the mean value of κ(a, b) taken over all
b ∈ Σq:

1

nq
·
∑
b∈Σq

χ(a, b) =
1

nq
·
∑
b∈Σq

[
1

rq
·
∑
s∈Σ

ms(a)ms(b)

]

=
1

rqnq
·
∑
s∈Σ

ms(a)
∑
b∈Σq

ms(b)︸ ︷︷ ︸
q·nq−1

=
1

rqnq
· r · q · nq−1 =

1

n

where we used the corollary of Proposition 4.
In an analogous way we determine the mean value of χ(a, fσ(b)) for fixed

a, b ∈ Σr over all permutations σ ∈ S(Σ):

1

n!
·
∑

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·
∑

σ∈S(Σ)

∑
s∈Σ

ms(a)ms(fσ(b))

As usual we interchange the order of summation, and evaluate the sum∑
σ∈S(Σ)

ms(fσ(b)) =
1

n
·
∑
t∈Σ

∑
σ∈S(Σ)

mt(fσ(b))

=
1

n
·
∑

σ∈S(Σ)

∑
t∈Σ

mt(fσ(b))︸ ︷︷ ︸
q

=
1

n
· n! · q = (n− 1)! · q
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using the symmetry with respect to s. Therefore

1

n!
·
∑

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·
∑
s∈Σ

ms(a) ·
∑

σ∈S(Σ)

ms(fσ(b))

=
1

rqn!
· r · (n− 1)! · q =

1

n

Note that this conclusion also holds for a = b.
This derivation shows:

Proposition 5 (i) The mean value of χ(a, b) over all texts b ∈ Σ∗ of a fixed
length q is 1

n for all a ∈ Σ∗.
(ii) The mean value of χ(a, b) over all a ∈ Σr and b ∈ Σq is 1

n for all
r, q ∈ N1.

(iii) The mean value of χ(a, fσ(b)) over all monoalphabetic substitutions
with σ ∈ S(Σ) is 1

n for each pair a, b ∈ Σ∗.
(iv) The mean value of χ(fσ(a), fτ (b)) over all pairs of monoalphabetic

substitutions, with σ, τ ∈ S(Σ), is 1
n for each pair a, b ∈ Σ∗.

Interpretation

• For a given text a and a “random” text b we have χ(a, b) ≈ 1
n .

• For “random” texts a and b we have χ(a, b) ≈ 1
n .

• For given texts a and b and a “random” monoalphabetic substitution
fσ we have χ(a, fσ(b)) ≈ 1

n . This remark justifies treating a nontrivially
monoalphabetically encrypted text as random with respect to χ and
plaintext.

• For given texts a and b and two “random” monoalphabetic substitu-
tions fσ, fτ we have χ(fσ(a), fτ (b)) ≈ 1

n .

Empirical Results

We collect empirical results for 2000 pairs of 100 letter texts us-
ing chistat.pl, from http://www.staff.uni-mainz.de/pommeren/

Cryptology/Classic/Perl/. For English we use the book Dr Thorndyke
Short Story Omnibus by R. Austin Freeman from Project Gutenberg.
We extract a first part of 402347 letters (Thorn1.txt) and take the
first 400000 of them for our statistic. In the same way for German
we use Die Juweleninsel by Karl May from Karl-May-Gesellschaft
(Juwelen1.txt, 434101 letters). For random texts we generate 400000
letters by Perl’s random generator (RndT400K.txt). (All texts in
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/.)

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/chistat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Thorn1.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Juwelen1.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/RndT400K.txt
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The results are in Tables 31, 32, and 33. We see that χ—in contrast with
the coincidence index κ—performs extremely well, in fact in our experiments
it even completely separates English and German texts from random texts
of length 100. It is a test with power near 100% and error probability near
0%. The χ test even distinguishes between English and German texts at the
5% error level with a power of almost 75%. For this assertion compare the
95% quantile for English with the first quartile for German.

Table 31: Distribution of χ for 2000 English text pairs of 100 letters

Minimum: 0.0500
Median: 0.0660 Mean value: 0.0663
Maximum: 0.0877 Standard dev: 0.0049
1st quartile: 0.0630 5% quantile: 0.0587
3rd quartile: 0.0693 95% quantile: 0.0745

The results for 100 letter texts encourage us to try 26 letter texts. To this
end we need 104000 letters for each language. We extract the next 104009
letters from Dr Thorndyke Short Story Omnibus (Thorn2.txt), and the next
104293 letters from Die Juweleninsel (Juwelen2.txt). We construct random
text by taking 104000 random numbers between 0 and 25 from random.org

(RndT104K.txt). The results are in Tables 34, 35, and 36. The χ-test is quite
strong even for 26 letters: At the 5% error level its power is around 91% for
English, 98% for German.

Table 32: Distribution of χ for 2000 German text pairs of 100 letters

Minimum: 0.0578
Median: 0.0792 Mean value: 0.0794
Maximum: 0.1149 Standard dev: 0.0074
1st quartile: 0.0742 5% quantile: 0.0677
3rd quartile: 0.0840 95% quantile: 0.0923

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Thorn2.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Juwelen2.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/RndT104K.txt


K. Pommerening, Language Statistics 68

Table 33: Distribution of χ for 2000 random text pairs of 100 letters

Minimum: 0.0337
Median: 0.0400 Mean value: 0.0400
Maximum: 0.0475 Standard dev: 0.0020
1st quartile: 0.0387 5% quantile: 0.0367
3rd quartile: 0.0413 95% quantile: 0.0433

Table 34: Distribution of χ for 2000 English text pairs of 26 letters

Minimum: 0.0266
Median: 0.0666 Mean value: 0.0666
Maximum: 0.1169 Standard dev: 0.0120
1st quartile: 0.0577 5% quantile: 0.0488
3rd quartile: 0.0740 95% quantile: 0.0873

Table 35: Distribution of χ for 2000 German text pairs of 26 letters

Minimum: 0.0325
Median: 0.0784 Mean value: 0.0793
Maximum: 0.1538 Standard dev: 0.0154
1st quartile: 0.0680 5% quantile: 0.0562
3rd quartile: 0.0888 95% quantile: 0.1065

Table 36: Distribution of χ for 2000 random text pairs of 26 letters

Minimum: 0.0178
Median: 0.0385 Mean value: 0.0386
Maximum: 0.0680 Standard dev: 0.0075
1st quartile: 0.0340 5% quantile: 0.0266
3rd quartile: 0.0429 95% quantile: 0.0518
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15 Adjusting the Columns of a Disk Cipher

As a last application in this chapter we look at the problem: How to adjust
the alphabets in the columns of a disk cipher? From Chapter 2 we know
that this works only when the primary alphabet is known.

Imagine a ciphertext from a disk cipher whose period l we know already.
Write the ciphertext in rows of length l. Then the columns are monoalpha-
betically encrypted, each with (in most cases) another alphabet. By Propo-
sition 5 (iv) we expect a χ-value of about 1

n for each pair of columns. Since
the alphabets for the columns are secondary alphabets of a disk cipher they
differ only by a relative shift in the alphabet. There are 26 different possi-
ble shifts. These can be checked by exhaustion: We try all 26 possibilities
(including the trivial one, bearing in mind that two columns can have the
same alphabet). The perfect outcome would be 25 values near 1

n , and one
outcome around the coincidence index of the plaintext language, clearly in-
dicating the true alphabet shift. The experimental results of Section 14 give
hope that real outcome should approximate the ideal one in a great number
of cases.

Example 1

Let us try out this idea for the ciphertext from Section 9. We are pretty sure
that the period is 7. (And we also adjusted the columns by visual inspection
in Chapter 2.) The first two columns are

ARCYPMEAZKRWKHZLRXTRTMYYRLMTVYCMRBZZKOLKKTKOTCUKKOMVBLYUYYZALR

OEKWZMWZZRYZOOTUYURMTYYSOZEKLYVUYBYTZYKOVMYYMZMZVYROKYTYMUWZ

PZTZLSPLYLZVYYYBYMQMWWRXZYOKKMYZTZAKQZZT

OMZYYDMYPQMHMFKAMMAACDNNZPIMYZHCJSCNCJQMMYLEMMPNNPZYSNYHPNMOAM

CAJMPZIVNMPADAHNKFNNAHNVFJHFXNYPNSYFMKNFMDNPZFGJMVMCMXYZZMQC

MSYIMVAMKZOANZVSZFKMYEMQHZQMNDPMHDMKIYJF

Using the Perl script adjust.pl we get the results

Shift: 0 1 2 3 4 5 6
χ: 0.0499 0.0365 0.0348 0.0285 0.0320 0.0341 0.0298

7 8 9 10 11 12 13 14
0.0416 0.0307 0.0421 0.0402 0.0448 0.0799 0.0495 0.0373

15 16 17 18 19 20 21 22
0.0375 0.0293 0.0330 0.0276 0.0307 0.0306 0.0316 0.0352

23 24 25
0.0338 0.0461 0.0529

The result is clear without ambiguity: The correct shift is 12. Going
through all 7× 6/2 = 21 pairs of columns we use the Perl script coladj.pl
and get results in Table 37 that are consistent with each other and with the
results of Chapter 2.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/adjust.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coladj.pl
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Table 37: The optimal alphabet shifts for 7 columns

Column: 0 1 2 3 4 5

1 12
2 4 18
3 15 3 11
4 10 24 6 21
5 24 12 20 9 14
6 3 17 25 14 19 5

Example 2

The best guess for the period of the short ciphertext of Section 13 was l = 20.
Therefore we consider 20 columns of lengths 8 or 7:

M D J J L D S K Q B G Y M Z C Y K B Y T

Z V R Y U P J T Z N W P Z X S K C H F G

E F Y F S E N V F W K O R M X Z Q G Y T

K E D I Q W R V P M O Y M Q V D Q W D N

U B Q Q M X E Q C A C X Y L P V U O S G

E J Y D S P Y Y N A X O R E C Y J A F A

M F C O F D Q K T A C B A H W F Y J U I

L X B Y A D T T

We have to assume the primary alphabet as known in order to know how
to shift the columns, that is, how to identify the distance of the secondary
alphabets of two columns relative to each other. The primary alphabet is
QWERTZUABCDFGHIJKLMNOPSVXY, the complete alphabet table is in Table 38.

The method from Example 1 gives 20×19/2 = 190 proposals for optimal
shifts between columns. However even for the first columns we already get
inconsistent results. We face a complex optimization problem. Instead of
continuing with the next columns we better would follow a proposal by
Sinkov: Pick up the highest χ-values and try to build clusters of fitting
columns. But also this approach fails. After several hours off the track we
try to understand why.

Let us imagine a plaintext of the same length, written in rows of length
20, columns of length 7 or 8. Take two columns that each have one letter
twice and five or six single letters. Shifting the alphabets in such a way that
the “twins” become identical letters, they contribute a summand of

4

49
≈ 0.0818 for lengths 7/7,

4

56
≈ 0.0714 for 8/7,

4

64
≈ 0.0625 for 8/8,
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Table 38: The alphabet table used in the example

---------------------------------------------------

a b c d e f g h i j k l m n o p q r s t u v w x y z

---------------------------------------------------

Q W E R T Z U A B C D F G H I J K L M N O P S V X Y

W E R T Z U A B C D F G H I J K L M N O P S V X Y Q

E R T Z U A B C D F G H I J K L M N O P S V X Y Q W

R T Z U A B C D F G H I J K L M N O P S V X Y Q W E

T Z U A B C D F G H I J K L M N O P S V X Y Q W E R

Z U A B C D F G H I J K L M N O P S V X Y Q W E R T

U A B C D F G H I J K L M N O P S V X Y Q W E R T Z

A B C D F G H I J K L M N O P S V X Y Q W E R T Z U

B C D F G H I J K L M N O P S V X Y Q W E R T Z U A

C D F G H I J K L M N O P S V X Y Q W E R T Z U A B

D F G H I J K L M N O P S V X Y Q W E R T Z U A B C

F G H I J K L M N O P S V X Y Q W E R T Z U A B C D

G H I J K L M N O P S V X Y Q W E R T Z U A B C D F

H I J K L M N O P S V X Y Q W E R T Z U A B C D F G

I J K L M N O P S V X Y Q W E R T Z U A B C D F G H

J K L M N O P S V X Y Q W E R T Z U A B C D F G H I

K L M N O P S V X Y Q W E R T Z U A B C D F G H I J

L M N O P S V X Y Q W E R T Z U A B C D F G H I J K

M N O P S V X Y Q W E R T Z U A B C D F G H I J K L

N O P S V X Y Q W E R T Z U A B C D F G H I J K L M

O P S V X Y Q W E R T Z U A B C D F G H I J K L M N

P S V X Y Q W E R T Z U A B C D F G H I J K L M N O

S V X Y Q W E R T Z U A B C D F G H I J K L M N O P

V X Y Q W E R T Z U A B C D F G H I J K L M N O P S

X Y Q W E R T Z U A B C D F G H I J K L M N O P S V

Y Q W E R T Z U A B C D F G H I J K L M N O P S V X

---------------------------------------------------
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to the χ-value. If accidentally there is another common letter, these values
rise to

5

49
≈ 0.1020 for lengths 7/7,

5

56
≈ 0.0893 for 8/7,

5

64
≈ 0.0781 for 8/8.

And therefore we’ll get many false alarms that will make the task of finding
the correct solution very time-consuming. An experiment with plaintext
comfirms this. Here all shifts should be 0, however we found the maximal
χ-value for a shift of 0 in less then 20% of all cases.

To get better chances for success we need some known plaintext or more
ciphertext or luck. We had luck and got more ciphertext. The following two
messages b and c,

AWYFN DHZPE PENES YGAVO YHGAD VTNLL TFKKH FHGYT DOGJI HJHHB

OOYFV EWDSJ MOIFY DRTLA BRRFE ZQGYQ AVYCH BQZPR RZTTH IONZE

SCEFH EFJBJ RNRWE TGVZR EYIIQ IZRWT OLGOC ICLFS EMYAH E

LIGJC KTNLF KBMZH XYWFB UWVPC RNYAJ WEVKV BRVPN PXYOT KVGLE

MBVHE WFZSM UOWFI EYXLB XRRKC XKGPT YONFY DKZLU CXRDC YJWZT

UWPDS VZWNU KORLK WUXUO WVHFL IEGXJ ZUKGC YJVDN EFYDK GJZON

BYXEV EWQSD MMHSS GJ

could be encrypted with the same key. Number 1 and 2 have a coincidence
index κ(a, b) ≈ 0.0411 only. But κ(a, c) ≈ 0.0811, κ(b, c) ≈ 0.1027. For
both b and c the period 20 is confirmed by the Sinkov statistic and also by
the autocoincidence spectrum. Therefore we align all three messages below
each other with rows of length 20. From bad experience we know we should
proceed very thoughtfully. Therefore we first look at the letter frequencies
in the single columns (of lengths 22 to 25). The columns 2, 3, and 12 contain
a letter in 7 exemplars. We try to adjust these columns in such a way that
the most frequent letters match. For column 3 relative to column 2 we get a
χ-value of 0.1072 for a shift of 14, the next χ-value being 0.0608. If we write
the columns as rows, the result looks like this

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH

Column 03: JYFIQDOYFAJFCFIAJPOFFDFDS

shifted: RHYEIXBHYPRYVYEPRCBYYXYXD

In both cases the most frequent letter with 7 occurrences is Y. For column
12 we get the optimal shift 22 relative to column 2 with a χ-value of 0.1273,
the next χ-value being 0.0836. This also looks good and gives the result

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH

Column 12: MZRMYRANKYRTRGMVVRRRKX

shifted: IWYIPYRJGPYQYBINNYYYGO
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Also in the shifted column 12 the letter Y occurs 7 times. If we are right,
comparing columns 3 and 12 should lead to the same result. Indeed the
optimal shift is 8 with χ ≈ 0.1109, the next χ-value being 0.0727.

This makes us confident that we are on the right track, and encourages
us to set Y it to plaintext e. We continue our task under the hypothesis that
columns 2, 3, and 12 match with the given shifts as

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

...

IWYIPYRJGPYQYBINNYYYGO

...

We take this text fragment as cluster “A” and try to match further columns.
First we take columns where the most frequent letters occur 6 or 5 times.

A vs 5: Optimal shift is 15 with chi = 0.0906 (next is 0.0683)

A vs 8: Optimal shift is 8 with chi = 0.1092 (next is 0.0758)

A vs 14: Optimal shift is 16 with chi = 0.1092 (next is 0.0859)

A vs 0: Optimal shift is 23 with chi = 0.0878 (next is 0.0817)

A vs 5: Optimal shift is 0 with chi = 0.0809 (next is 0.0619)

A vs 9: Optimal shift is 21 with chi = 0.0966 (next is 0.0663)

The most convincing match is with column 8, therefore we join it to our
cluster, forming cluster “B”:

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

...

BHNRLWGRYPYRKCYJYYYWUE

...

IWYIPYRJGPYQYBINNYYYGO

...

Looking at the distribution of letters the Y stands out by far—that is no sur-
prise because we picked columns with the most frequent letters and matched
these. As a more meaningful check we transform our cluster to (presumed)
plaintext; this means decrypting the fragments with the secondary alphabet
that transforms e to Y, that is PSVXYQWERTZUABCDFGHIJKLMNO. This gives
the supposed plaintext fragment (to be read top down):
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...

uiepfeonerrtehtercegyases

isehtdnseaiecehaioneededp

...

nsyiwgrieaeivoeueeeglh

...

tgetaeiuraefentyyeeerz

...

This looks promising. Trying to extend this cluster by a formal procedure is
dangerous because there could be columns with a most frequent (plaintext)
letter other then e. Instead we look at neighboring columns, say at column
4 that should give a readable continuation of columns 2 and 3, in particular
extending the digraph th in a meaningful way. The proposed shift should
have a Y (for e) as 15th letter, or maybe a P (for a), or an R (for i).

Cluster B versus column 4 yields the optimal shift 3 with χ ≈ 0.0753, the
15th letter being R (for i). The next best values are χ ≈ 0.0664 for a shift
of 12, the 15th letter then being G (for r), and χ ≈ 0.0604 for a shift of 25,
the 15th letter being Y (for e). To decide between these possible solutions
we decrypt the shifted columns and get the proposed cleartext columns

zoeiaetpbswhvvivrrmwhezye

ixnrjncykbfqeereaavfqnihn

vkaewaplxosdrrernnisdavua

Joining them to columns 3 and 4 the first one looks somewhat inauspicuous
but possible, the second one looks awkward, the third one looks best and is
our first choice. This gives the three adjacent columns

uiepfeonerrtehtercegyases

isehtdnseaiecehaioneededp

vkaewaplxosdrrernnisdavua

and the new cluster “C” of (monoalphabetic) ciphertext, comprising columns
2, 3, 4, 8, 12:

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

KZPYLPDUMCHXGGYGBBRHXPKJP

...

BHNRLWGRYPYRKCYJYYYWUE

...

IWYIPYRJGPYQYBINNYYYGO

...
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Note that for joining further columns we must not work with the (proposed)
plaintext columns because the transformation between plaintext and cipher-
text is not a simple shift.

Comparing the adjacent columns with cluster C we obtain

C vs 1: Optimal shift is 1 with chi = 0.0642 (next is 0.0632)

C vs 5: Optimal shift is 15 with chi = 0.0844 (next is 0.0686)

C vs 7: Optimal shift is 20 with chi = 0.0676 (next is 0.0621)

C vs 9: Optimal shift is 6 with chi = 0.0695 (next is 0.0653)

C vs 11: Optimal shift is 5 with chi = 0.0695 (next is 0.0638)

C vs 13: Optimal shift is 23 with chi = 0.0684 (next is 0.0588)

The best value seems that for column 13, so let’s try this one first (skipping
the dead end via column 5). The new cluster D is

...

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

...

This looks good, and detecting the two th’s between the cleartext columns
12 and 13 we try column 14 next.

D vs 14: Optimal shift is 16 with chi = 0.0945 (next is 0.0793)

If we rely on this result, we get the next cluster E:

...

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

Good! Let’s continue with column 15:

E vs 15: Optimal shift is 0 with chi = 0.0719 (next is 0.0574)
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Joining the resulting “cleartext” to columns 12, 13, 14 gives the disturbing
result

tgetaeiuraefentyyeeerz

hauctepesnngdwhspsmtoe

anpomasneotetaeotaahao

evkpceqeqhktjtdngdegeh

Therefore we dismiss this proposal. Unfortunately also the next best χ-
value gives no sensible result. On the other hand the shifts giving a possible
complement to the th have a quite small χ-value. Therefore we leave column
15 and retry column 1:

E vs 1: Optimal shift is 1 with chi = 0.0631 (next is 0.0577)

This would give us cluster F:

...

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

The plaintext now begins with .quiv.... A dictionary search finds hits
such as “equivalent”, “equivocal”, and “a quiver”. We compare cluster F
with column 1 and look for shifts that make the first letter a (P in our
secondary alphabet) or e (Y). We have luck! The optimal shift gives e, so
we take this as our favourite solution:

F vs 0: Optimal shift is 7 with chi = 0.0717 (next is 0.0696)

and form the next cluster G:
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YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

Noting the fragments ciphe in “line” 4 (fourth column in the schema above)
and ipher in “line” 14, we cannot resist completing them as cipher.

G vs 5: Optimal shift is 11 with chi = 0.0708 (next is 0.0697)

G vs 19: Optimal shift is 21 with chi = 0.0775 (next is 0.0585)

Note that we now see how misleading our former results for column 5 were.
This is caused by the six a’s in this column that the χ-method tried to
associate with the e’s of other columns.

Adding both of these results in one step gives cluster H:

YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

YDLKHDYYYGEYVLRLZMZLYGRWW alsrolaaandaysesgtgsanecc

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

YAYIAECJYDPVXLRIHYYJIZ emetmhouepacdwitseeutk

We see that column 6 should start with l (U). And this is also the “χ-
optimal” solution:

H vs 6: Optimal shift is 10 with chi = 0.0734 (next is 0.0554)

And column 7 should start with e (Y):

H vs 7: Optimal shift is 20 with chi = 0.0647 (next is 0.0639)
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We are not amused, also the next best χ is unwanted. However the shift that
gives e has a χ-value of 0.0639 that is acceptable. We fill in columns 6 and
7:

YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

YDLKHDYYYGEYVLRLZMZLYGRWW alsrolaaandaysesgtgsanecc

UYRHGCDIVIYHDPJIRACQJGYY leisroptctespautimofuree

YHUUCBYHIESHIXGEBPAIDPI esllonesthbstdrhnamtpat

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

YAYIAECJYDPVXLRIHYYJIZ emetmhouepacdwitseeutk

It’s time, for easier reading, to arrange our findings in the right order
where ”columns” are columns:

equivalen...tha....e rdiskless...gan....m

oreeasily...eup....e ciphersli...tco....t

softworow...atm....m ovedalong...eea....h

eronpaper...ips....o denslats

theexacti...uen....u ltraonthe...rse....e

warisdeba...ano....p eatedasse...ent....a

tdecrypti...fge....c iphersadv...edt....d

oftheeuro...nwa....w oyears

duringthe...the....i shcontinu...yso....t

heenigmae...ypt....s sagessome...esa....e

layedafte...ema....e shadanupg...eth....u

ndseveral...roa....t oreduceth...zeo....k

eyspace

Now its easy to complete the text: In the first row read equivalent

and complete column 9. In the fourth row read cipher slide and complete
column 10. Then read with in the first row and complete column 11. Then
in the last two rows we recognize the size of ... keyspace, this allows
us to complete column 15. Now in the first two rows we read cipher disk

and complete the remaining columns 16, 17, 18.
This is the final solution:
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equivalentwithaciphe rdisklesselegantbutm

oreeasilymadeupisthe cipherslideitconsist

softworowsthatmaybem ovedalongsideeachoth

eronpaperstripsorwoo denslats

theexactinfluenceofu ltraonthecourseofthe

warisdebatedanoftrep eatedassessmentistha

tdecryptionofgermanc iphersadvancedtheend

oftheeuropeanwarbytw oyears

duringthewarthebriti shcontinuallysolvedt

heenigmaencryptedmes sagessometimesabitde

layedafterthemachine shadanupgradetheyfou

ndseveralapproachest oreducethesizeofthek

eyspace
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16 Modeling a Language by a Markov Process

For deriving theoretical results a common model of language is the interpre-
tation of texts as results of Markov processes. This model was introduced
by Shannon in his fundamental papers published after World War II.

If we look at letter frequencies only, we define a Markov process of order
0. If we also incorporate bigram frequencies into our model, it becomes a
Markov process of order 1, if we include trigram frequencies, of order 2,
and so on.

In this section we want to derive theoretical expectation values for κ, ϕ,
and χ. For this the order of the Markov model is irrelevant.

Message Sources

Let the alphabet Σ be equipped with a probability distribution, assigning
the probability ps to the letter s ∈ Σ. In particular

∑
s∈Σ ps = 1. We call

(Σ, p) a message source and consider random variables X in Σ, that is
mappings X: Ω −→ Σ where Ω is a finite probability space with probability
measure P , such that P (X−1s) = ps for all s ∈ Σ.

Picking a letter of Σ at random from the message source is modeled as
evaluating X(ω) for some ω ∈ Ω. We calculate the expectation values of the
Kronecker symbols for random variables X,Y: Ω −→ Σ and letters s ∈ Σ
where Y may belong to a message source (Σ, q) with a possibly different
probability distribution q = (qs)s∈Σ:

δsX(ω) =

{
1 if X(ω) = s

0 otherwise
δXY (ω) =

{
1 if X(ω) = Y (ω)

0 otherwise

Lemma 4 (i) E(δsX) = ps for all s ∈ Σ.
(ii) If X and Y are independent, then E(δXY ) =

∑
s∈Σ psqs.

(ii) If X and Y are independent, then δsX and δsY are independent.

Proof. (i) Since δ takes only the values 0 and 1, we have

E(δsX) = 1 · P (X−1s) + 0 · P (Ω−X−1s) = P (X−1s) = ps.

(ii) In the same way, using the independence of X and Y ,

E(δX,Y ) = 1 · P (ω |X(ω) = Y (ω)) + 0 · P (ω |X(ω) 6= Y (ω))

= P (X = Y ) =
∑
s∈Σ

P (X−1s ∩ Y −1s)

=
∑
s∈Σ

P (X−1s) · P (Y −1s) =
∑
s∈Σ

psqs
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(iii) δ−1
sX(1) = {ω |X(ω) = s} = X−1s, and δ−1

sX(0) = Ω−X−1s. The same
for Y . The assertion follows because P (X−1s∩Y −1s) = P (X−1s) ·P (Y −1s).
3

Picking a random text of length r is modeled by evaluating an r-tuple
of random variables at some ω. This leads to the following definition:

Definition. A message of length r from the message source (Σ, p) is a
sequence X = (X1, . . . , Xr) of random variables X1, . . . , Xr: Ω −→ Σ
such that P (X−1

i s) = ps for all i = 1, . . . , r and all s ∈ Σ.

Note. In particular the Xi are identically distributed. They are not neces-
sarily independent.

The Coincidence Index of Message Sources

Definition. Let Y = (Y1, . . . , Yr) be another message of length r from a
possibly different message source (Σ, q). Then the coincidence index
of X and Y is the random variable

KXY : Ω −→ R

defined by

KXY (ω) :=
1

r
·#{i = 1, . . . , r |Xi(ω) = Yi(ω)} =

1

r
·

r∑
i=1

δXi(ω),Yi(ω)

We calculate its expectation under the assumption that each pair of Xi

and Yi is independent. From Lemma 4, using the additivity of E, we get

E(KXY ) =
1

r
·

r∑
i=1

E(δXi,Yi) =
1

r
· r ·

∑
s∈Σ

psqs =
∑
s∈Σ

psqs

independently of the length r. Therefore it is adequate to call this expecta-
tion the coincidence index κLM of the two message sources L,M . We
have proven:

Theorem 2 The coincidence index of two message sources L = (Σ, p) and
M = (Σ, q) is

κLM =
∑
s∈Σ

psqs

Now we are ready to calculate theoretical values for the “typical” coin-
cidence indices of languages under the assumption that the model “message
source” fits their real behaviour:
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Example 1, random texts versus any language M : Here all ps =
1/n, therefore κΣ∗ = n ·

∑
s∈Σ 1/n · qs = 1/n.

Example 2, English texts versus English: From Table 39 we get the
value 0.0653.

Example 3, German texts versus German: The table gives 0.0758.

Example 4, English versus German: The table gives 0.0664.

Note that these theoretical values for the real languages differ slightly
from the former empirical values. This is due to two facts:

• The model—as every mathematical model—is an approximation to
the truth.

• The empirical values underly statistical variations and depend on the
kind of texts that were evaluated.

The Cross-Product Sum of Message Sources

For a message X = (X1, . . . , Xr) from a message source (Σ, p) we define the
(relative) letter frequencies as random variables

MsX: Ω −→ R, MsX =
1

r
·

r∑
i=1

δsXi ,

or more explicitly,

MsX(ω) =
1

r
·#{i |Xi(ω) = s} for all ω ∈ Ω.

We immediately get the expectation

E(MsX) =
1

r
·

r∑
i=1

E(δsXi) = ps.

Definition. Let X = (X1, . . . , Xr) be a message from the source (Σ, p), and
Y = (Y1, . . . , Yt), a message from the source (Σ, q). Then the cross-
product sum of X and Y is the random variable

XXY : Ω −→ R, XXY :=
1

rt
·
∑
s∈Σ

MsXMsY .
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Table 39: Calculating theoretical values for coincidence indices

Letter s English German Square Square Product
ps qs p2

s q2
s psqs

A 0.082 0.064 0.006724 0.004096 0.005248
B 0.015 0.019 0.000225 0.000361 0.000285
C 0.028 0.027 0.000784 0.000729 0.000756
D 0.043 0.048 0.001849 0.002304 0.002064
E 0.126 0.175 0.015876 0.030625 0.022050
F 0.022 0.017 0.000484 0.000289 0.000374
G 0.020 0.031 0.000400 0.000961 0.000620
H 0.061 0.042 0.003721 0.001764 0.002562
I 0.070 0.077 0.004900 0.005929 0.005390
J 0.002 0.003 0.000004 0.000009 0.000006
K 0.008 0.015 0.000064 0.000225 0.000120
L 0.040 0.035 0.001600 0.001225 0.001400
M 0.024 0.026 0.000576 0.000676 0.000624
N 0.067 0.098 0.004489 0.009604 0.006566
O 0.075 0.030 0.005625 0.000900 0.002250
P 0.019 0.010 0.000361 0.000100 0.000190
Q 0.001 0.001 0.000001 0.000001 0.000001
R 0.060 0.075 0.003600 0.005625 0.004500
S 0.063 0.068 0.003969 0.004624 0.004284
T 0.091 0.060 0.008281 0.003600 0.005460
U 0.028 0.042 0.000784 0.001764 0.001176
V 0.010 0.009 0.000100 0.000081 0.000090
W 0.023 0.015 0.000529 0.000225 0.000345
X 0.001 0.001 0.000001 0.000001 0.000001
Y 0.020 0.001 0.000400 0.000001 0.000020
Z 0.001 0.011 0.000001 0.000121 0.000011

Sum 1.000 1.000 0.0653 0.0758 0.0664
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To calculate its expectation we assume that each Xi is independent of all
Yj , and each Yj is independent of all Xi. Under this assumption let us call
the messages X and Y independent. Then from Lemma 4 and the formula

XXY :=
1

rt
·
∑
s∈Σ

r∑
i=1

t∑
j=1

δsXiδsYj

we get

E(XXY ) =
1

rt
·
∑
s∈Σ

r∑
i=1

t∑
j=1

E(δsXi)E(δsYj ) =
∑
s∈Σ

psqs

again independently of the length r. Therefore we call this expectation the
cross-product sum χLM of the two message sources L,M . We have
proven:

Theorem 3 The cross-product sum of two message sources L = (Σ, p) and
M = (Σ, q) is

χLM =
∑
s∈Σ

psqs.

The Inner Coincidence Index of a Message Source

Let X = (X1, . . . , Xr) be a message from a source (Σ, p). In analogy with
Sections 10 and 14 we define the random variables

ΨX ,ΦX: Ω −→ R

by the formulas

ΨX :=
∑
s∈Σ

M2
sX , ΦX :=

r

r − 1
·Ψx −

1

r − 1
.

We try to calculate the expectation of ΨX first:

ΨX =
1

r2
·
∑
s∈Σ

(
r∑
i=1

δsXi

)2

=
1

r2
·
∑
s∈Σ

 r∑
i=1

δsXi +
r∑
i=1

∑
j 6=i

δsXiδsXj


since δ2

sXi
= δsXi . Taking the expectation value we observe that for a sensible

result we need the assumption that Xi and Xj are independent for i 6= j.

In the language of Markov chains this means that we assume
a Markov chain of order 0: The single letters of the messages
from the source are independent from each other.
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Under this assumption we get

E(ΨX) =
1

r2
·
∑
s∈Σ

 r∑
i=1

ps +

r∑
i=1

∑
j 6=i

E(δsXi)E(δsXj )



=
1

r2
·


r∑
i=1

∑
s∈Σ

ps︸ ︷︷ ︸
1

+
∑
s∈Σ

p2
s ·

r∑
i=1

∑
j 6=i

1︸ ︷︷ ︸
r·(r−1)


=

1

r
+
r − 1

r
·
∑
s∈Σ

p2
s.

For ΦX the formula becomes a bit more elegant:

E(ΦX) =
r

r − 1
·

(
r − 1

r
·
∑
s∈Σ

p2
s +

1

r

)
− 1

r − 1
=
∑
s∈Σ

p2
s.

Let us call this expectation E(ΦX) the (inner) coincidence index of the
message source (Σ, p), and let us call (by abuse of language) the message
source of order 0 if its output messages are Markov chains of order 0 only.
(Note that for a mathematically correct definition we should have included
the “transition probabilities” into our definition of message source.) Then
we have proved

Theorem 4 The coincidence index of a message source L = (Σ, p) of order
0 is

ϕL =
∑
s∈Σ

p2
s.

The assumption of order 0 is relevant for small text lengths and neglige-
able for large texts, because for “natural” languages dependencies between
letters affect small distances only. Reconsidering the tables in Section 11
we note in fact that the values for texts of lengths 100 correspond to the
theoretical values, whereas for texts of lengths 26 the values are suspiciously
smaller. An explanation could be that repeated letters, such as ee, oo, rr,
are relatively rare and contribute poorly to the number of coincidences. This
affects the power of the ϕ-test in an unfriendly way.

On the other hand considering Sinkov’s test for the period in Section 13
we note that the columns of a polyalphabetic ciphertext are decimated ex-
cerpts from natural texts where the dependencies between letters are irrel-
evant: The assumption of order 0 is justified for Sinkov’s test.
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17 Stochastic Languages

The stochastic model of language as a stationary Markov process easily led
to useful theoretic results that fit well with empirical observations. On the
other hand it is far from the computer scientific model that regards a lan-
guage as a fixed set of strings with certain properties and that is intuitively
much closer to reality. In fact the Markov model may produce every string
in Σ∗ with a non-zero probability! (We assume that each letter s ∈ Σ has a
non-zero probability—otherwise we would throw it away.) Experience tells
us that only a very small portion of all character strings represent mean-
ingful texts in any natural language. Here we consider an alternative model
that respects this facet of reality, but otherwise is somewhat cumbersome.

Recall from Chapter 1 that a language is a subset M ⊆ Σ∗.

A Computer Theoretic Model

The statistical cryptanalysis of the monoalphabetic substitution relied on
the hypothesis—supported by empirical evidence—that the average relative
frequencies of the letters s ∈ Σ in texts of sufficient length from this language
approximate typical values ps. This is even true when we consider only fixed
positions j in the texts, at least for almost all j—the first letters of texts for
example usually have different frequencies.

Now we try to build a mathematical model of language that reflects this
behaviour. Let M ⊆ Σ∗ a language, and Mr := M ∩ Σr for r ∈ N the set of
texts of length r. The average frequency of the letter s ∈ Σ at the position
j ∈ [0 . . . r − 1] of texts in Mr is

µ
(r)
sj :=

1

#Mr
·
∑
a∈Mr

δsaj

(This sum counts the texts a ∈Mr with the letter s at position j.)

Example Let M = Σ∗ Then

µ
(r)
sj :=

1

nr
·
∑
a∈Σr

δsaj =
1

n
for all s ∈ Σ, j = 1, . . . , r − 1,

because there are exactly nr−1 possible texts with fixed aj = s.

Definition

The language M ⊆ Σ∗ is called stochastic if there is at most a finite
exceptional set J ⊆ N of positions such that

ps := lim
r→∞

µ
(r)
sj
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exists uniformly in j and is independent from j for all j ∈ N − J and all
s ∈ Σ.

The ps are called the letter frequencies of M and obviously coincide
with the limit values for the frequencies of the letters over the complete
texts.

Examples and Remarks

1. The exceptional set J for natural languages usually consists only
of the start position 0 and the end position. That is, the first and
last letters of texts may have different frequencies. For example
in English the letter “t” is the most frequent first letter instead
of “e”, followed by “a” and “o”. In German this is “d”, followed
by “w”, whereas “t” almost never occurs as first letter.

2. The language M = Σ∗ is stochastic.

3. Because always
∑

s∈Σ µ
(r)
sj = 1, also

∑
s∈Σ ps = 1.

Note that this notation is not standard in the literature.

Also note that we consider a theoretical model. For a natural language it
may not be well-defined whether a given text is meaningful or not, not even
if it is taken from a newspaper.

The Mean Coincidence Between Two Languages

Let L,M ⊆ Σ∗ two stochastic languages with letter frequencies qs and ps
for s ∈ Σ. We consider the mean value of the coincidences of texts of length
r:

κ
(r)
LM :=

1

#Lr
· 1

#Mr
·
∑
a∈Lr

∑
b∈Mr

κ(a, b)

Theorem 5 The mean coincidence of the stochastic languages L and M is
asymptotically

lim
r→∞

κ
(r)
LM =

∑
s∈Σ

psqs

The proof follows.
Interpretation: The coincidence of sufficiently long texts of the same

length is approximately

κ(a, b) ≈
∑
s∈Σ

psqs
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An Auxiliary Result

Lemma 5 Let M be a stochastic language. Then the average deviation for
all letters s ∈ Σ

1

r
·
r−1∑
j=0

(
µ

(r)
sj − ps

)
→ 0 for r →∞

Proof. Fix ε > 0, and let r large enough that

1. r ≥ 4 · #J
ε ,

2. |µ(r)
sj − ps| <

ε
2 for all j ∈ [0 . . . r]− J .

For j ∈ J we have |µ(r)
sj − ps| ≤ |µ

(r)
sj |+ |ps| ≤ 2. Therefore

1

r
·
r−1∑
j=0

|µ(r)
sj − ps| <

1

r
· 2 ·#J +

r −#J

r
· ε

2
≤ ε

2
+
ε

2
= ε.

3

Remark The mean frequency of s in texts of length r is

µ(r)
s =

1

r
·
r−1∑
j=0

µ
(r)
sj =

1

r
· 1

#Mr
·
∑
a∈Mr

δsaj

For this we get the limit

Corollary 5 limr→∞ µ
(r)
s = ps

Proof of the Theorem

κ
(r)
LM =

1

#Lr ·#Mr
·
∑
a∈Lr

∑
b∈Mr

1

r
·
r−1∑
j=0

∑
s∈Σ

δsajδsbj


=

∑
s∈Σ

1

r
·
r−1∑
j=0

[
1

#Lr

∑
a∈Lr

δsaj

]
·

 1

#Mr

∑
b∈Mr

δsbj


=

∑
s∈Σ

1

r
·
r−1∑
j=0

[qs + εsj ] · [ps + ηsj ]

=
∑
s∈Σ

psqs +
ps
r
·
r−1∑
j=0

εsj +
qs
r
·
r−1∑
j=0

ηsj +
1

r
·
r−1∑
j=0

εsjηsj


The second and third summands converge to 0 by the lemma. The fourth
converges to 0 because |εsjηsj | ≤ 1. Therefore the sum converges to∑

s∈Σ psqs. 3
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