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7 Coincidences of Two Texts

The first six sections of this chapter introduced e�cient methods for recog-
nizing plaintext in comparison with noise. These methods break down for
encrypted texts because they ignore properties that remain invariant un-
der encryption. One such invariant property—at least for monoalphabetic
substitution—is the equality of two letters, no matter what the concrete
value of these letters is.

This is the main idea that we work out in the next sections: Look for
identical letters in one or more texts, or in other words, for coincidences.

Definition

Let ⌃ be a finite alphabet. Let a = (a0, . . . , ar�1) and b = (b0, . . . , br�1) 2 ⌃r

be two texts of the same length r � 1. Then

(a, b) :=
1

r
·#{j | aj = bj} =

1

r
·
r�1X

j=0

�ajbj

is called coincidence index of a and b (where � = Kronecker symbol).
For each r 2 N1 this defines a map

 : ⌃r ⇥ ⌃r �! Q ✓ R.

The scaling factor 1
r makes results for di↵erent lengths comparable.

A Perl program is in the Web: http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/kappa.pl.

Remarks

1. Always 0  (a, b)  1.

2. (a, b) = 1 () a = b.

3. By convention (;, ;) = 1 (where ; denotes the empty string by abuse
of notation).

4. Note that up to scaling the coincidence index is a converse of the
Hamming distance that counts non-coincidences.

Example 1: Two English Texts

We compare the first four verses (text 1) of the poem “If ...” by Rudyard
Kipling and the next four verses (text 2). (The lengths di↵er, so we crop the
longer one.)
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IFYOU CANKE EPYOU RHEAD WHENA LLABO UTYOU ARELO OSING THEIR

IFYOU CANMA KEONE HEAPO FALLY OURWI NNING SANDR ISKIT ONONE

||||| ||| |

SANDB LAMIN GITON YOUIF YOUCA NTRUS TYOUR SELFW HENAL LMEND

TURNO FPITC HANDT OSSAN DLOOS EANDS TARTA GAINA TYOUR BEGIN

| |

OUBTY OUBUT MAKEA LLOWA NCEFO RTHEI RDOUB TINGT OOIFY OUCAN

NINGS ANDNE VERBR EATHE AWORD ABOUT YOURL OSSIF YOUCA NFORC

|

WAITA NDNOT BETIR EDBYW AITIN GORBE INGLI EDABO UTDON TDEAL

EYOUR HEART ANDNE RVEAN DSINE WTOSE RVEYO URTUR NLONG AFTER

| |

INLIE SORBE INGHA TEDDO NTGIV EWAYT OHATI NGAND YETDO NTLOO

THEYA REGON EANDS OHOLD ONWHE NTHER EISNO THING INYOU EXCEP

|

KTOOG OODNO RTALK TOOWI SEIFY OUCAN DREAM ANDNO TMAKE DREAM

TTHEW ILLWH ICHSA YSTOT HEMHO LDONI FYOUC ANTAL KWITH CROWD

| | || |

SYOUR MASTE RIFYO UCANT HINKA NDNOT MAKET HOUGH TSYOU RAIMI

SANDK EEPYO URVIR TUEOR WALKW ITHKI NGSNO RLOOS ETHEC OMMON

| |

FYOUC ANMEE TWITH TRIUM PHAND DISAS TERAN DTREA TTHOS ETWOI

TOUCH IFNEI THERF OESNO RLOVI NGFRI ENDSC ANHUR TYOUI FALLM

| | |

MPOST ORSAS THESA MEIFY OUCAN BEART OHEAR THETR UTHYO UVESP

ENCOU NTWOR THYOU BUTNO NETOO MUCHI FYOUC ANFIL LTHEU NFORG

|| ||

OKENT WISTE DBYKN AVEST OMAKE ATRAP FORFO OLSOR WATCH THETH

IVING MINUT EWITH SIXTY SECON DSWOR THOFD ISTAN CERUN YOURS

| | |

INGSY OUGAV EYOUR LIFEF ORBRO KENAN DSTOO PANDB UILDE MUPWI

ISTHE EARTH ANDEV ERYTH INGTH ATSIN ITAND WHICH ISMOR EYOUL

| |

THWOR NOUTT OOLS

LBEAM ANMYS ON

|

In these texts of length 562 we find 35 coincidences, the coincidence index
is 35

562 = 0.0623.
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Invariance

The coincidence index of two texts is an invariant of polyalphabetic substi-
tution (the keys being equal):

Proposition 1 (Invariance) Let f : ⌃⇤ �! ⌃⇤ be a polyalphabetic encryp-
tion function. Then

(f(a), f(b)) = (a, b)

for all a, b 2 ⌃⇤ of the same length.

Note that Proposition 1 doesn’t need any assumptions on periodicity or
on relations between the alphabets used. It only assumes that the encryption
function uses the same alphabets at the corresponding positions in the texts.

Mean Values

For a fixed a 2 ⌃r we determine the mean value of (a, b) taken over all
b 2 ⌃r:

1

nr
·
X

b2⌃r

(a, b) =
1

nr
·
X

b2⌃r

2

41
r
·
r�1X

j=0

�ajbj

3

5

=
1

rnr
·
r�1X

j=0

"
X

b2⌃r

�ajbj

#

| {z }
nr�1

=
1

rnr
· r · nr�1 =

1

n
,

because, if bj = aj is fixed, there remain nr�1 possible values for b.
In an analogous way we determine the mean value of (a, f�(b) for fixed

a, b 2 ⌃r over all permutations � 2 S(⌃):

1

n!
·
X

�2S(⌃)

(a, f�(b)) =
1

n!
· 1
r

X

�2S(⌃)

#{j | �bj = aj}

=
1

rn!
·#{(j,�) | �bj = aj}

=
1

rn!
·
r�1X

j=0

#{� | �bj = aj}

=
1

rn!
· r · (n� 1)! =

1

n
,

because exactly (n� 1)! permutations map aj to bj .
Note that this conclusion also works for a = b.
This derivation shows:
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Proposition 2 (i) The mean value of (a, b) over all texts b 2 ⌃⇤ of equal
length is 1

n for all a 2 ⌃⇤.
(ii) The mean value of (a, b) over all a, b 2 ⌃r is 1

n for all r 2 N1.
(iii) The mean value of (a, f�(b)) over all monoalphabetic substitutions

with � 2 S(⌃) is 1
n for each pair a, b 2 ⌃⇤ of texts of equal length.

(iv) The mean value of (f�(a), f⌧ (b)) over all pairs of monoalphabetic
substitutions, with �, ⌧ 2 S(⌃), is 1

n for each pair a, b 2 ⌃⇤ of texts of equal
length.

Interpretation

• For a given text a and a “random” text b of the same length (a, b) ⇡
1
n .

• For “random” texts a and b of the same length (a, b) ⇡ 1
n .

• For given texts a and b of the same length and a “random” monoal-
phabetic substitution f� we have (a, f�(b)) ⇡ 1

n . This remark justifies
treating a nontrivially monoalphabetically encrypted text as random
with respect to  and plaintexts.

• For given texts a and b of the same length and two “random” monoal-
phabetic substitutions f�, f⌧ we have (f�(a), f⌧ (b)) ⇡ 1

n .

• The same holds for “random” polyalphabetic substitutions because
counting the coincidences is additive with respect to arbitrary decom-
positions of texts.

Values that significantly di↵er from these mean values are suspicious for
the cryptanalyst, they could have a non-random cause. For more precise
statements we should assess the variances (or standard deviations) or, more
generally, the distribution of -values in certain “populations” of texts.

Variance

First fix a 2 ⌃r and vary b over all of ⌃r. Using the mean value 1
n we

calculate the variance:

V⌃r(, a) =
1

nr
·
X

b2⌃r

(a, b)2 � 1

n2

=
1

nr
·
X

b2⌃r

2

41
r
·
r�1X

j=0

�ajbj

3

5
2

� 1

n2

Evaluating the square of the sum in brackets we get the quadratic terms

r�1X

j=0

�2ajbj =
r�1X

j=0

�ajbj = r · (a, b) because �ajbj = 0 or 1
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X

b2⌃r

r�1X

j=0

�2ajbj = r ·
X

b2⌃r

(a, b) = r · nr · 1
n
= r · nr�1

and the mixed terms

2 ·
r�1X

j=0

r�1X

k=j+1

�ajbj�akbk where �ajbj�akbk =

(
1 if aj = bj and ak = bk

0 else

If we fix two letters bj and bk, we are left with nr�2 di↵erent b’s that give
the value 1. The total sum over the mixed terms evaluates as

X

b2⌃r

0

@2 ·
r�1X

j=0

r�1X

k=j+1

�ajbj�akbk

1

A = 2 ·
r�1X

j=0

r�1X

k=j+1

X

b2⌃r

�ajbj�akbk

| {z }
nr�2

Substituting our intermediary results we get

V⌃r(, a) =
1

nrr2
�
r · nr�1 + r · (r � 1) · nr�2

�
� 1

n2

=
1

rn
+

r � 1

rn2
� 1

n2
=

1

rn
� 1

rn2
=

1

r

✓
1

n
� 1

n2

◆

Next we let a and b vary and calculate the variance of :

V⌃r() =
1

n2r

X

a,b2⌃r

(a, b)2 � 1

n2

=
1

nr

X

a2⌃r

 
1

nr

X

b2⌃r

(a, b)2
!

| {z }
1
r

⇣
1
n� 1

n2

⌘
+ 1

n2

� 1

n2

=
1

r

✓
1

n
� 1

n2

◆
+

1

n2
� 1

n2
=

1

r

✓
1

n
� 1

n2

◆

We have shown:

Proposition 3 (i) The mean value of (a, b) over all texts b of equal length
r 2 N1 is 1

n with variance 1
r

�
1
n � 1

n2

�
for all a 2 ⌃r.

(ii) The mean value of (a, b) over all a, b 2 ⌃r is 1
n with variance

1
r

�
1
n � 1

n2

�
for all r 2 N1.

For the 26 letter alphabet A. . . Z we have the mean value 1
26 ⇡ 0.0385,

independently from the text length r. The variance is ⇡ 0.03370
r , the standard

deviation ⇡ 0.19231p
r

. From this we get the second row of Table 20.

For statistical tests (one-sided in this case) we would like to know the 95%
quantiles. If we take the values for a normal distribution as approximations,
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Table 20: Standard deviations and 95% quantiles of  for random text pairs
of length r

r 10 40 100 400 1000 10000
Std dev 0.0608 0.0304 0.0192 0.0096 0.0061 0.0019

95% quantile 0.1385 0.0885 0.0700 0.0543 0.0485 0.0416

that is “mean value + 1.645 times standard deviation”, we get the values in
the third row of Table 20. These raw estimates show that the -statistic in
this form is weak in distinguishing “meaningful” texts from random texts,
even for text lengths of 100 letters, and strong only for texts of several
thousand letters.

Distinguishing meaningful plaintext from random noise is evidently not
the main application of the -statistic. The next section will show the true
relevancy of the coincidence index.


