
Transpositions

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

January16, 2000—English version July 25, 2014—last change August
25, 2014

All the cryptographic procedures that we considered up to now worked
by replacing each plaintext letter by another one, letter per letter. In this
chapter we follow a complementary approach: Don’t change the letters but
instead change their order. This approach also goes back to anitiquity.
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1 Transpositions and Their Properties

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Definition.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Definition.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Definition.html
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2 Examples

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Examples.html

Constructing a Turning Grille

Let l ∈ N be a natural number ≥ 2. Draw a 2l× 2l square and divide it into
four l × l squares.

1 . . . l . . . 1
...

...
...

...

. . . l2 l2 . . . l

l . . . l2 l2 . . .
...

...
...

...

1 . . . l . . . 1

In the first square (upper left) enumerate the positions consecutively
from 1 to l2, and transfer these numbers to the other three squares, rotating
the scheme by 90◦ to the right in each step, as shown in the table above.

A key consists of a choice of one of the four l× l squares for each of the
numbers 1, . . . , l2. Then make a hole at the corresponding position in the
corresponding square, for a total of l2 holes.

Thus the size of the keyspace is 4l
2
. For small l this amounts to:

Parameter l: 3 4 5 6

# Keys: 218 232 250 272

For l = 6 or more the keyspace is sufficiently large. However this doesn’t
make the cipher secure.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Examples.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Examples.html
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3 Cryptanalysis of a Columnar Transposition (Ex-
ample)

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/ColTrAnal.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/ColTrAnal.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/ColTrAnal.html
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4 Cryptanalytic Approaches

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Approach.html

Conditional Bigram Log-Weights

Let L be a language over the alphabet Σ = (s0, . . . , sn−1) with letter prob-
abilities pi and bigram probabilities pij for the bigrams sisj . Then the con-
ditional bigram probabilities are given by

pj|i = pij/pi for i, j = 0, . . . , n− 1.

The number pj|i is the probability that given the letter si as beginning of
a bigram (an event that occurs with probability pi) the second letter of the
bigram is sj . For convenience we set pj|i = 0 if pi = 0.

Then for a set of independent bigrams the probabilities multiply,
and it’s usual to consider the logarithms of the probabilties to get
sums instead of products. Adding a constant to the sum amounts to
multiplying the probabilities by a constant factor. With an eye to
the conditional bigram frequencies of natural languages, see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/8 Transpos/Bigrams.html, we choose a factor of 1000 and define the con-
ditional Bigram Log-Weight (cBLW) of the bigram sisj by the formula

wij =

{
10log(1000 · pj|i) if 1000 · pj|i > 1,

0 otherwise
for i, j = 0, . . . , n− 1.

Given a family B of bigrams we define its cBLW score as

S3(B) =

n−1∑
i=0

n−1∑
j=0

kij(B) · wij

where kij(B) is the number of occurrences of the bigram sisj in B.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Approach.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Approach.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
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5 Bigram Frequencies

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Bigrams.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
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6 The Values of Bigram Scores

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/cBLWsc.html

Theoretical Values for Random Bigrams

Let Σ = (s0, . . . , sn−1) be an alphabet and consider a probability distribu-
tion that assigns the probabilities pi to the letters si. Choosing two letters
independently from this distribution assigns the probability pipj to the bi-
gram sisj . Giving the bigrams whatever weights wij and scoring a set of
bigrams by summing their weights the expected value of the weight of a
bigram is

n−1∑
i=0

n−1∑
j=0

wijpipj .

Using this formula with the letter and bigram frequencies of natural lan-
guages and the corresponding conditional bigram log-weights we get the
table

English: 1.47 German: 1.54 French: 1.48

Theoretical Values for True Bigrams

For a “true” bigram we first choose the first letter si with probability pi,
then we choose the second letter sj with conditional probability pj|i. This
assigns the probability pipj|i = pij to the bigram sisj , and the expected
conditional bigram log-weight is

n−1∑
i=0

n−1∑
j=0

wijpij .

Using this formula with the letter and bigram frequencies of natural lan-
guages and the corresponding conditional bigram log-weights we get the
table

English: 1.94 German: 1.96 French: 1.99

Empirical Values for Natural Languages

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/cBLWsc.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
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7 A more systematic approach

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Analysis2.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Analysis2.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Analysis2.html
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8 The Similarity of Columnar and Block Transpo-
sitions

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Similar.html

Permutation Matrices

Let σ ∈ Sp be a permutation of the numbers 1, . . . , p.
Let R be a ring (commutative with 1). Then σ acts on Rp, the free

R-module with basis

e1 =


1
0
...
0

 , . . . , ep =


0
...
0
1

 ,

as the linear automorphism

ρ(σ) defined by ρ(σ)ei = eσi.

This gives an injective group homomorphism

ρ : Sp −→ GL(Rp).

How to express ρ(σ) as a matrix? The vector

x =

x1...
xp

 = x1e1 + · · ·+ xpep

maps to

ρ(σ)x = x1eσ1 + · · ·+ xpeσp =

xσ−11
...

xσ−1p

 .

Thus the matrix Pσ corresponding to ρ(σ) is given by

Pσ

x1...
xp

 =

xσ−11
...

xσ−1p

 for all x ∈ Rp.

Therefore

Pσ = (aij)1≤i,j≤p where aij =

{
1, if i = σj,

0 otherwise.

Hence the matrix Pσ has exactly one 1 in each row and in each column, all
other entries being 0. We call Pσ the permutation matrix belonging to σ.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Similar.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Similar.html
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Matrix Description of a Block Transposition

The permutation σ defines a block transposition fσ over the alphabet Σ =
Z/nZ: For (a1, . . . , ap) ∈ Σp let

fσ(a1, . . . , ap) =

Pσ
a1...
ap



T

= (aσ−11, . . . , aσ−1p).

This moves the i-th letter ai of the block to position σi.
More generally let r = pq and a = (a1, . . . , ar) ∈ Σr. Then

c = fσ(a) = (aσ−11, . . . , aσ−1p, ap+σ−11, . . . , ap+σ−1p, . . . , a(q−1)p+σ−1p).

From this we derive the general encryption formula:

ci+(j−1)p = aσ−1i+(j−1)p for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

We may express this in matrix notation writing the plaintext as a matrix
with ai+(j−1)p in row i and column j:

A =

a1 ap+1 . . . a(q−1)p+1
...

... ai+(j−1)p
...

ap a2p . . . aqp

 ∈Mp,q(Z/nZ).

Analogously we write the ciphertext as C ∈ Mp,q(Z/nZ) where Cij =
ci+(j−1)p for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Then the encryption formula simply is the matrix product:

C = PσA

with the permutation matrix Pσ.

Matrix Description of a Columnar Transposition

The permutation σ also defines a columnar transposition gσ over the alpha-
bet Σ = Z/nZ: Writing the plaintext row by row in a q×p-matrix gives just
the transposed matrix AT (again assume r = pq):

↓ ↓
→ a1 . . . ap aσ−11 . . . aσ−1p

→ ap+1 . . . a2p 7→ ap+σ−11 . . . ap+σ−1p
... a(µ−1)p+ν

...
... a(µ−1)p+σ−1ν

...

→ a(q−1)p+1 . . . aqp a(q−1)p+σ−11 . . . a(q−1)p+σ−1p
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and the ciphertext is read off, as the little arrows suggest, column by column
in the order given by σ. Thus the encryption function is given by:

c̃ = gσ(a1, . . . ar) = (aσ−11, ap+σ−11, . . . , aσ−1p, . . . , a(q−1)p+σ−1p).

The encryption formula is:

c̃µ+(ν−1)q = a(µ−1)p+σ−1ν for 1 ≤ µ ≤ q, 1 ≤ ν ≤ p
= cν+(µ−1)p.

If we arrange c̃ column by column as a matrix

C̃ =

c̃1 c̃q+1 . . . c̃(p−1)q+1
...

... c̃µ+(ν−1)q
...

c̃q c̃2q . . . c̃pq

 ∈Mq,p(Z/nZ),

we see that
C̃T = C = PσA.

This shows:

Proposition 1 The result of the columnar transposition corresponding to
σ ∈ Sp on Σpq arises from the result of the block transposition corresponding
to σ by writing the latter ciphertext in p rows of width q and transposing the
resulting matrix. This produces the former ciphertext in q rows of width p.

In particular columnar transposition and block transposition are similar.

(The proposition describes the required bijection of Σ∗ for strings of
length pq.)

For texts of a length not a multiple of p this observation applies after
padding up to the next multiple of p. For a columnar transposition with an
uncompletely filled last row this does not apply. In spite of this we assess
columnar and block transpositions as similar, and conclude: Although a
columnar transposition permutes the text over its complete length without
period, and therefore seems to be more secure at first sight, it turns out to
be an illusory complication.
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