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Summary Each binary form F decomposes into linear factors.
This decomposition has consequences for the stabilizer of F in
the transformation groupGL2. For instance the stabilizer is finite
if F has at least three essentially different linear factors.

1 Factorization of Binary Forms

Let k be an algebraically closed field and T be an indeterminate. Every
non-constant polynomial f ∈ k[T ] decomposes into linear factors:

f =

n∏
i=1

li

where the li = ai + biT ∈ k[T ] are polynomials of degree 1, in particular
bi ∈ k×, and n = deg f . This decomposition is unique up to the order of the
factors and up to scalar multipliers ∈ k×.

In other words, the polynomial ring k[T ] is factorial (or UFD),
the linear polynomials are its prime elements, and the non-zero
constants are its units. (By abuse of terminology we use the term
“linear” for polynomials as synonymous with “of degree 1”.)

The linear factors li are not necessarily different. A linear factor l | f has
multiplicity r if lr | f and lr+1 - f .

Now we consider binary forms over k, that is, homogeneous polynomials
F ∈ k[X,Y ] in two indeterminates X and Y . They have the form (where n
is the degree)

F =

n∑
ν=0

aνX
n−νY ν = Xn ·

n∑
ν=0

aν

(
Y

X

)ν
= Xn · f(

Y

X
)
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where f =
∑
aνT

ν ∈ k[T ] is a polynomial of degree ≤ n. Let f =
∏n
i=1 li be

the decomposition into linear factors—if deg f = m < n, set lm+1 = · · · =
ln = 1 constant. From this we get a corresponding decomposition

F =

n∏
i=1

Li where the Li = X · li(
X

Y
) = aiX + biY

are homogenous of degree 1, or binary linear forms. In the case
deg f = m < n we have Lm+1 = Ln = X, hence X is a linear factor of
F of multiplicity n−m. (Here the term “linear” is used in a correct way.)

2 The Action of the Group GL2 on Binary Forms

Now we consider the group G = GL2(k) of 2 × 2-matrices with non-zero
determinant over k. The matrix

(1) g =

(
a b
c d

)
∈ G

acts on the 2-dimensional vector space k2 by the formula(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Denote the coordinate functions k2 −→ k by X and Y , where

X

(
x
y

)
= x, Y

(
x
y

)
= y

for all x, y ∈ k. The inverse of g is

g−1 =
1

δ
·
(
d −b
−c a

)
where δ = det g = ad − bc. Thus the induced (“contragredient”) action on
the space of linear forms spanned by the coordinate functions X and Y is
given by

X 7→ d

δ
X − b

δ
Y,

Y 7→ − c
δ
X +

a

δ
Y.

(In general a function f: k2 −→ k is transformed to f ◦ g−1.)
Let R = k[X,Y ] be the polynomial ring and Rn be its homogeneous

part of degree n with dimk Rn = n + 1. The action of GL2 extends to
automorphisms of R that preserve the degree. Thus Rn is a GL2-invariant
subspace of R.
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Some elements and subgroups of GL2

The group GL2 contains the matrices

D(s, t) =

(
s 0
0 t

)
with s, t ∈ k×,

A(b) =

(
1 b
0 1

)
with b ∈ k,

I =

(
0 1
1 0

)
that has I2 = 1,

and the subgroups:

SL2 = {g ∈ GL2 | det g = 1},
T =

{
D(s, t) | s, t ∈ k×

}
, the canonical maximal torus of GL2,

N = T ∪ IT, the normalizer of T in GL2,

Z =
{
D(t, t) | t ∈ k×

}
, the center of GL2,

Zn = {D(t, t) | tn = 1} , a finite cyclic group of order |n,
(the order equals n if and only if char k - n, )

Z ′ = Z ∩ SL2 = Z2 =

{
{±1} if char k 6= 2,

{1} if char k = 2,
the center of SL2,

U = {A(b) | b ∈ k}, the canonical maximal unipotent subgroup of GL2,

B = the group of invertible upper triangular matrices,

the canonical Borel subgroup of GL2,

B− = the group of invertible lower triangular matrices.

Furthermore we sometimes consider the group

PGL2 = GL2/Z ∼= SL2/Z
′.

3 Representatives of Orbits

In R1, the space of linear forms, the group GL2 has exactly two orbits, {0}
and R•1 = R1 − {0}. In other words,

Proposition 1 GL2 (even SL2) acts transitively on R•1.

Proof. Let L = αX + βY be a non-zero linear form, and define g ∈ SL2 by

g−1 =

(
1/β 0
α β

)
.

Then g · Y = αX + βY = L by the formula for the effect on Y . Hence L is
in the SL2-orbit of Y . 3
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An analogous reasoning for the action on the Cartesian product R1×R1

yields a weaker result:

Proposition 2 Let L1 and L2 ∈ R1 be non-proportional. Then there is a
matrix g ∈ GL2 with g · Y = L1 and g ·X = L2.

Proof. Let L1 = α1X + β1Y and L2 = α2X + β2Y . The non-proportionality
(or linear independence) is equivalent with the determinant condition
α1β2 − α2β1 6= 0. If we define g by

g−1 =

(
α2 β2
α1 β1

)
∈ GL2

the formulas for the effects on X and Y yield g · Y = L1 and g ·X = L2. 3

Thus R1 ×R1 consists of the following GL2-orbits:

• {0}

• R•1 × {0}, the orbit of (X, 0)

• {0} ×R•1, the orbit of (0, Y )

• the (infinitely many) “diagonals” Dc := {(L, cL)|L ∈ R•1} for arbitrary
c ∈ k×, the orbits of (Y, cY )

• R•1 ×R•1 − ∪c∈k×Dc, the orbit of (X,Y )

Finally we look for triples of linear forms L1, L2, L3, which we assume as
pairwise non-proportional. Having transformed L1 to Y and L2 to X we note
that only the unit matrix 1 fixes both X and Y , so each non-proportional
L ∈ R1 yields a different orbit, represented by (X,Y, L). However if we
consider lines kL through the origin 0 ∈ R1, or points [L] of the projective
space P1, we see that the diagonal matrices D(s, t) fix the lines kX and kY ,
i. e. the corresponding points of P1. Thus we have more degrees of freedom
to transform the third line kL3:

Proposition 3 Let L1, L2, L3 ∈ R1 be pairwise non-proportional. Then
there is a matrix g ∈ GL2 with g ·L1 ∈ kY , g ·L2 ∈ kX, g ·L3 ∈ k(X + Y ).

Proof. By Proposition 2 we may choose h ∈ GL2 with h · L1 = Y and
h · L2 = X. Let h · L3 = α3X + β3Y . The diagonal matrix D(β−13 , α−13 )
transforms X to α3X, Y to β3Y , and X+Y to h ·L3. Hence g := D(β3, α3)h
transforms L1 to β−13 Y , L2 to α−13 X, and L3 to X + Y . 3

The pairwise non-proportionality of linear forms means that the corre-
sponding points of the projective space P1 are different. Thus another way
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to express Proposition 3 is that the action of GL2 on P1 is 3-transitive. The
subset

W = {(x, y, z) | x 6= y, x 6= z, y 6= z} ⊆ P1 × P1 × P1

is a Zariski open dense GL2-stable subset on which GL2 acts transitive, and
W is the orbit of ([X], [Y ], [X + Y ]).

Corollary 1 Assume that F ∈ Rn has a linear factor of multiplicity n.
Then there is a matrix g ∈ SL2 with g · F = Y n.

Proof. We have F = cLn with c ∈ k× and L ∈ R•1. Since k is algebraically
closed c has an n-th root which we may multiply with L and therefore
assume that F = Ln. Then we choose g with g · L = Y by Proposition 1,
hence g · F = Y n. 3

Corollary 2 Assume that F ∈ Rn has two non-proportional linear factors,
one of multiplicity r, and another one of multiplicity n− r. Then there is a
matrix g ∈ GL2 with g · F = Xn−rY r.

Proof. We have F = cLr1L
n−r
2 with c ∈ k× and non-proportional linear

forms L1, L2 ∈ R1. Again we may absorb c into L1, hence assume that
c = 1. Then by Proposition 2 we choose g with g · L1 = Y and g · L2 = X,
hence g · F = Y rXn−r. 3

Corollary 3 Assume that F ∈ Rn has at least three pairwise non-
proportional linear factors, say of multiplicities q, r, s, thus F = Lq1 L

r
2 L

s
3 F̃

with F̃ ∈ Rn−q−r−s. Then there is a matrix g ∈ GL2 and a homogeneous
polynomial H ∈ Rn−q−r−s with g · F = Xq Y r (X + Y )sH.

Proof. By Proposition 3 we may choose g with g · L1 = c1X, g · L2 = c2Y ,
g ·L3 = c3(X + Y ). Then g · F = Xq Y r (X + Y )sH with H = g · F̃ /c1c2c3.
3

In the general case we rewrite the factorization of F ∈ Rn as

F = Ll11 · · ·L
lr
r with l1 ≥ . . . ≥ lr > 0

where the Li are pairwise non-proportional linear forms, and l1+· · ·+lr = n.
Then the action of GL2 preserves the pattern (l1, . . . , lr).

This pattern might be interpreted as the shape of a Young di-
agram of size n. For example F = X5Y 3 + 2X4Y 4 + X3Y 5 =
X3Y 3(X+Y )2 has the pattern (3, 3, 2), illustrated by the Young
diagram
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l1 = 3

l2 = 3

l3 = 2

4 Some Stabilizers in Projective 1-Space

The matrix g as in (1) transforms Y to (−cX + aY )/δ. Hence it trans-
forms the line kY to itself if and only if c = 0. Thus the stabilizer of the
corresponding point [Y ] ∈ P1 in G = GL2 is

G[Y ] = B.

In the same way
G[X] = B−.

Or more generally:

Proposition 4 The stabilizer in GL2 of a single point of P1 is a Borel
subgroup, conjugated with B.

For pairs of different points we get

G([X],[Y ]) = G[X] ∩G[Y ] = B ∩B− = T.

or more generally:

Proposition 5 The (pointwise) stabilizer in GL2 of a pair of different
points in P1 is a maximal torus, conjugated with T .

If we consider a set of two points the stabilizer is somewhat larger: Be-
side matrices that fix both points we also have to consider matrices that
interchange them. Clearly the matrix I interchanges [X] and [Y ], hence sta-
bilizes the set {[X], [Y ]}. An arbitrary matrix g that interchanges [X] and
[Y ] transforms X to λY and Y to µX with λ, µ ∈ k×. Thus

λY = g ·X =
d
δ
X − b

δ
Y and µX = g · Y = −c

δ
X +

a
δ
Y,

enforcing a = d = 0, hence g is in the coset IT ⊆ GL2, hence in N .

Proposition 6 The stabilizer in GL2 of a two-element subset {x, y} ⊆ P1

is conjugated with N .

In this way we get exact sequences of group homomorphisms and commu-
tative squares (where Sr is the symmetric group on r elements {1, . . . , r}):
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- - - -

- - - -

6 6 6

? ? ?

1 G(x,y) G{x,y} S2 1

1 T N S2 1

∼= ∼= =

⊆

⊆

Next we consider triples of different points of P1. By Proposition 3 each
such triple is in the GL2-orbit of ([X], [Y ], [X + Y ]). If g ∈ GL2 fixes this
special triple pointwise, it must be in T by Proposition 5, hence of the form
D(s, t) with s, t ∈ k×. Moreover

D(s, t) · (X + Y ) =
t

st
X +

s

st
Y =

1

s
X +

1

t
Y

is a multiple of X + Y if and only if s = t. Hence the stabilizer is Z—note
that Z acts trivially on P1.

Proposition 7 The (pointwise) stabilizer in GL2 of a triple of different
points in P1 is Z, the center of GL2.

In particular this result implies that the action of PGL2 = GL2/Z on
P1 is sharply 3-transitive:

Corollary 4 If (x, y, z) ∈ W , then there is exactly one element g ∈ PGL2

such that x = g · [X], y = g · [Y ], and z = g · [X + Y ].

For an m-element subset M = {x1, . . . , xm} ⊆ P1 with m ≥ 3 Proposi-
tion 7 implies that the pointwise stabilizer is Z. Thus we get a sequence:

- - - -1 Z GM Sm 1
⊆ Φ

The rightmost arrow is dashed since we don’t know whether the sequence
is exact at Sm, i. e. whether Φ is surjective. We are going to prove this in
the case m = 3. In the general case we only have:

Corollary 5 Let M = {x1, . . . , xm} ⊆ P1 be an m-element subset with
m ≥ 3. Then the stabilizer of M in GL2 is an extension of order ≤ m! of
the center Z. The stabilizers of M in SL2 and in PGL2 are finite.

In the special case of a three-element subset M = {x, y, z} ⊆ P1 we get
a diagram where H is the stabilizer of the set {[X], [Y ], [X + Y ]}:

- - - -

- - - -

6 6 6

? ? ?

1 G(x,y,z) GM S3 1

1 Z H S3 1

= ∼= =

⊆ Φ

⊆ Φ′
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Since the matrix I interchanges the linear forms X and Y , it fixes X+Y .
Therefore the image of Φ′ contains the transposition (12). Now we consider
the matrix

J =

(
1 1
−1 0

)
with J2 =

(
0 1
−1 −1

)
and J3 = −1

that transforms

X 7→ −Y, Y 7→ X + Y, X + Y 7→ X,

hence permutes the set {[X], [Y ], [X + Y ]} cyclically. Thus the image of Φ′

also contains the 3-cycle (123), and therefore is the whole of S3. We have
proved:

Proposition 8 The stabilizer in GL2 of a three-element subset M =
{x, y, z} of P1 is an extension of the center Z of order 6 and maps to the
full symmetric group S3 in a natural way.

The group H (the case of M = {[X], [Y ], [X + Y ]}) is generated by the
subgroup Z together with the matrices I and J .

5 Some Stabilizers of Binary Forms

Consider a binary form F ∈ Rn, and let (l1, . . . , lr) be the pattern of its
factorization F = Ll11 · · ·Llrr into pairwise non-proportional linear froms Li
with l1 ≥ . . . ≥ lr > 0. For g ∈ GF , the stabilizer of F in the group G = GL2,
we have

F = g · F = (g · L1)
l1 · · · (g · Lr)lr

with linear factors g·Li. Since the prime decomposition is unique we conclude
that

g · Li ∈ k Lj
where j is an index with lj = li. In other words, GF permutes the linear
factors of the same multiplicity. If F has a single linear factor L of multi-
plicity l, then necessarily g · L = cL with some c ∈ k×. In the general case
we collect identical multipliers:

m1 = l1 = . . . = ls1 > m2 = ls1+1 = . . . = ls1+s2 > . . . > mt = . . . = lr > 0

with r = s1 + · · ·+ st. Then we have an induced group homomorphism

Φ : GF −→
t∏

j=1

Ssj

into a product of symmetric groups. Its kernel is

ker Φ = {g ∈ GF | g · Li ∈ k Li for all i = 1, . . . , r} = Gw ∩GF ⊆ Gw

where w ∈ (P1)r is the r-tuple ([L1], . . . , [Lr]).
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In the example F = X5Y 3 + 2X4Y 4 +X3Y 5 = X3Y 3(X + Y )2

with pattern (3, 3, 2) the stabilizer GF permutes {[L1], [L2]} and
fixes [L3]. This is illustrated by the Young diagram

X

Y

X + Y

-

-i?
l1 = 3

l2 = 3
m1 = l1 = l2 = 3

l3 = 2 m2 = l3 = 2

In the case r ≥ 3 we know from Proposition 7 that Gw = Z.

Lemma 1 Let n be the degree of the binary form F . Then Z ∩GF = Zn.

Proof. The group Gw = Z consists of the scalar matrices g = c1 with c ∈ k×.
Since g ·F = c−nF , the matrix c1 stabilizes F if and only if c is an nth root
of 1, that is g ∈ Zn. 3

Thus we have proved statement (iii) of the following theorem:

Theorem 1 Let F ∈ Rn be a binary form, and r be the number of its pair-
wise non-proportional linear factors, r′ = min{3, r}. Let H be the stabilizer
of F in GL2. Then dimH = 3− r′. More precisely:

(i) If r = 1, then H is conjugated with the group of matrices

(
a b
0 ε

)
where a ∈ k×, b ∈ k, and ε is an nth root of 1.

(ii) If r = 2, then H is a finite extension of a one-dimensional torus.

(iii) If r ≥ 3, then the H is finite.

Proof. (i) By Corollary 1 in Section 3 we may assume that F = Y n. Let

g ∈ H. Then g stabilizes [Y ]. By Proposition 4 we have g ∈ B, g =

(
a b
0 d

)
.

Then

g · Y n =
( a
ad

)n
Y n =

1

dn
Y n,

implying that dn = 1.
(ii) By Corollary 2 in Section 3 we may assume that F = Xn−rY r for

some r ∈ {1, . . . , n− 1} with r ≥ n/2. Let g ∈ H. Then g stabilizes the set
{[X], [Y ]}.

First assume that r = n/2. Then g ∈ N by Proposition 6, g =

(
a 0
0 d

)
or g =

(
0 b
c 0

)
. In the first case δ = ad and g · F = (1/ardr)F , thus ad is
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an rth root of 1. In the second case δ = −bc and g · F = (1/brcr)F , thus bc
is an rth root of 1. In summary, g has the form

g =

(
a 0
0 η/a

)
= D(a, 1/a)D(1, η) or

(
0 b
η/b 0

)
= D(b, 1/b)D(1, η)I

where η is an rth root of 1. Thus H is an extension of order 2r′ of the one-
dimensional torus T ′ = T ∩SL2 = {D(t, 1/t)|t ∈ k×} where r′ is the number
of rth roots of 1 in k.

Now assume that r > n/2. Then g stabilizes the pair ([X], [Y ]) pointwise,

hence g ∈ T by Proposition 5, g =

(
a 0
0 d

)
and δ = ad. From g · F =

1/(an−rdr)F , we conclude that an−rdr = 1. Therefore H is the kernel of the
surjective homomorphism

ψ : T −→ k×, D(a, d) 7→ an−rdr

and, by the way, contains the image of the one-parameter subgroup

λ : k× −→ T, t 7→ D(tr, tr−n).

Hence H has dimension 1 and therefore satisfies the assertion of (ii).
(iii) See the preliminary remarks. 3

Corollary 6 Let F ∈ Rn be a binary form, and r be the number of its
pairwise non-proportional linear factors. Let H ′ be the stabilizer of F in
SL2.

(i) If r = 1, then H ′ is a finite extension of a maximal unipotent subgroup
of SL2 of order n′, the number of nth roots of 1 in k.

(ii) If r = 2 and both linear factors have multiplicity n/2, then H ′ is a
maximal torus of SL2 if r is odd and char k 6= 2, an extension of order
2 if r is even or char k = 2 (namely a Cartan subgtoup of SL2).

(iii) If r = 2 and the two linear factors have different multiplicities, then
H ′ is finite.

(iv) If r ≥ 3, then the H ′ is finite.

Proof. Since we restrict the action fromGL2 to SL2, the orbit representatives
used in the proof of Theorem 1 hold only up to scalar factors. These factors
however don’t affect the stabilizers. Thus we only have to intersect H ′ =
H ∩ SL2 (for the representatives of the GL2-orbits).
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(i) The condition g ∈ SL2 enforces a = 1/ε. Hence H consists of the
matrices (

1/ε b
0 ε

)
with b ∈ k and ε ∈ k× an nth root of unity.

(ii) In the proof of (ii) of the theorem H ′ consists of the matrices
D(a, 1/a)D(1, η) with η = 1 and D(b, 1/b)D(1, η)I with η = −1 (if n is
odd) or η = 1 (if char k = 2).

(iii) A diagonal matrix D(a, 1/a) stabilizes Xn−rY r if and only if
an−2r = 1. Therefore H ′ is finite.

(iv) immediate since even H is finite. 3

Corollary 7 If F ∈ Rn has no linear factor of multiplicity ≥ n/2, then the
stabilizer of F in GL2 is finite.

Proof. The assumption implies that F has at least three pairwise non-
proportional linear factors. 3
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