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Summary Each binary form F' decomposes into linear factors.
This decomposition has consequences for the stabilizer of F' in
the transformation group G Ls. For instance the stabilizer is finite
if F' has at least three essentially different linear factors.

1 Factorization of Binary Forms

Let k& be an algebraically closed field and T be an indeterminate. Every
non-constant polynomial f € k[T] decomposes into linear factors:

where the l; = a; + b;T € k[T] are polynomials of degree 1, in particular
b; € k™, and n = deg f. This decomposition is unique up to the order of the
factors and up to scalar multipliers € k*.

In other words, the polynomial ring k[T is factorial (or UFD),
the linear polynomials are its prime elements, and the non-zero
constants are its units. (By abuse of terminology we use the term
“linear” for polynomials as synonymous with “of degree 1”.)

The linear factors [; are not necessarily different. A linear factor [ | f has
multiplicity r if " | f and I"T1 ¢ f.

Now we consider binary forms over k, that is, homogeneous polynomials
F € k[X,Y] in two indeterminates X and Y. They have the form (where n
is the degree)

F=> aX""Y'=X") a, (;) = X" f(%)

v=0 v=0



where f =" a,T" € k[T] is a polynomial of degree < n. Let f =[], l; be
the decomposition into linear factors—if deg f = m < n, set 41 = -+ -
I, = 1 constant. From this we get a corresponding decomposition

- X
= i wherethe L, = X - [;(=) =a; X + b;
F=]]Li wherethe L X Ui(3) = aX +bY
=1

are homogenous of degree 1, or binary linear forms. In the case
deg f =m <n we have L1 = L, = X, hence X is a linear factor of
F of multiplicity n — m. (Here the term “linear” is used in a correct way.)

2 The Action of the Group GL,; on Binary Forms

Now we consider the group G = GLa(k) of 2 x 2-matrices with non-zero
determinant over k. The matrix

(1) g:(ZZ)eG

acts on the 2-dimensional vector space k2 by the formula

(¢ 0) ()= (E2a)

Denote the coordinate functions k> — k by X and Y, where

() )

for all x,y € k. The inverse of g is
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where 6 = det g = ad — be. Thus the induced (“contragredient”) action on
the space of linear forms spanned by the coordinate functions X and Y is
given by
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(In general a function f: k> —> k is transformed to f o g~ !.)

Let R = k[X,Y] be the polynomial ring and R,, be its homogeneous
part of degree n with dimy R, = n 4+ 1. The action of GLy extends to
automorphisms of R that preserve the degree. Thus R,, is a G Lo-invariant
subspace of R.



Some elements and subgroups of G L,

The group G Ly contains the matrices

D(s,t) = (S ?) with s, t € k%,

10 .
A(b) = (0 1) with b € k,
I = (0 é) that has I2 =1,

and the subgroups:

SLy ={g9 € GLa| detg =1},
T= {D(s, t)| s, te kx} , the canonical maximal torus of G Lo,
N =T UIT, the normalizer of T' in G L,
Z ={D(t,t)| t € k*}, the center of GLo,
Zn, ={D(t,t)| t" =1}, a finite cyclic group of order |n,
(the order equals n if and only if chark tn,)
7' =ZNSLy =75 = {{il} if chark 7 2, the center of SLo,
{1}  if chark =2,
U= {A(b) | b € k}, the canonical maximal unipotent subgroup of GLa,
B = the group of invertible upper triangular matrices,
the canonical Borel subgroup of G Lo,

B~ = the group of invertible lower triangular matrices.
Furthermore we sometimes consider the group

PGLy = GLy/Z = SLy /7.

3 Representatives of Orbits

In R;, the space of linear forms, the group G Ls has exactly two orbits, {0}
and R} = R; — {0}. In other words,

Proposition 1 GLy (even SLy) acts transitively on RY.
Proof. Let L = aX + BY be a non-zero linear form, and define g € SLy by
_ 1/ 0
1 _
T < a ﬂ) |

Then g-Y = aX + Y = L by the formula for the effect on Y. Hence L is
in the SLs-orbit of Y. <



An analogous reasoning for the action on the Cartesian product Ry x Ry
yields a weaker result:

Proposition 2 Let L1 and Ly € Ry be non-proportional. Then there is a
matriz g € GLo with g-Y = L1 and g- X = L.

Proof. Let L1 = a1 X + £1Y and Ly = as X + $2Y. The non-proportionality
(or linear independence) is equivalent with the determinant condition
1P — asfBy # 0. If we define g by

gl = <a2 52) € GLy

a1 B

the formulas for the effects on X and Y yield g-Y =L; and g- X = L. &

Thus R; x R; consists of the following G Lo-orbits:

e {0}
R} x {0}, the orbit of (X,0)

{0} x R}, the orbit of (0,Y)

the (infinitely many) “diagonals” D, := {(L,cL)|L € R}} for arbitrary
¢ € kX, the orbits of (Y,cY)

o R} x R} — U.cpx D, the orbit of (X,Y)

Finally we look for triples of linear forms L, Lo, L3, which we assume as
pairwise non-proportional. Having transformed L; to Y and Ls to X we note
that only the unit matrix 1 fixes both X and Y, so each non-proportional
L € R; yields a different orbit, represented by (X,Y,L). However if we
consider lines kL through the origin 0 € Ry, or points [L] of the projective
space P!, we see that the diagonal matrices D(s, t) fix the lines kX and kY,
i.e. the corresponding points of P'. Thus we have more degrees of freedom
to transform the third line kL3:

Proposition 3 Let Ly, Ly, Ly € Ry be pairwise non-proportional. Then
there is a matrix g € GLy with g- Ly € kY, g- Lo € kX, g- L3 € k(X +Y).

Proof. By Proposition 2] we may choose h € GLy with h - Ly = Y and
h-Lo = X. Let h- Ly = asX + fB3Y. The diagonal matrix D(,Bgl,ozgl)
transforms X to a3 X, Y to 3Y, and X +Y to h-Ls. Hence g := D(83,a3) h
transforms L; to Ble, Lo to ozng, and L3 to X +Y. O

The pairwise non-proportionality of linear forms means that the corre-
sponding points of the projective space P! are different. Thus another way



to express Proposition [3]is that the action of GLy on P! is 3-transitive. The
subset
W={(z,y,2) |z #y, x#2z y#z} TP xP xP!

is a Zariski open dense G Lo-stable subset on which G Ly acts transitive, and
W is the orbit of ([X],[Y],[X +Y]).

Corollary 1 Assume that F € R, has a linear factor of multiplicity n.
Then there is a matriz g € SLy with g- FF =Y™.

Proof. We have F' = ¢ L™ with ¢ € k* and L € R}. Since k is algebraically
closed ¢ has an n-th root which we may multiply with L and therefore
assume that F' = L™. Then we choose g with g - L = Y by Proposition
hence g- F=Y". &

Corollary 2 Assume that F' € R,, has two non-proportional linear factors,
one of multiplicity v, and another one of multiplicity n — r. Then there is a
matriz g € GLy with g- F = X™""Y".

Proof. We have F' = cL{Ly™" with ¢ € k* and non-proportional linear
forms Li,Ls € R;. Again we may absorb c¢ into Li, hence assume that
¢ = 1. Then by Proposition [2[ we choose g with g- L1 =Y and ¢g- Lo = X,
hence g- F=Y"X"T". O

Corollary 3 Assume that F € R, has at least three pairwise non-
proportional linear factors, say of multiplicities q, r, s, thus F = L1 LY L§ F
with F' € Ry,_q—r—s. Then there is a matriz g € GLy and a homogeneous

polynomial H € Ryy_g—p_s with g- F = X1Y" (X +Y)°H.

Proof. By Proposition 3] we may choose g with g- L1 = 1 X, g- Ly = oY,
g-L3y=c3(X+Y). Then g- F = X1Y" (X +Y)*H with H = g- F/c1cac3.
O

In the general case we rewrite the factorization of F' € R,, as
F=L%"-- Ll withly;>...>1,>0

where the L; are pairwise non-proportional linear forms, and l1+- - -+, = n.
Then the action of GLy preserves the pattern (I1,...,1).

This pattern might be interpreted as the shape of a Young di-
agram of size n. For example F = X°Y3 + 2X4Y* 4+ X3Y?% =
X3Y3(X +Y)? has the pattern (3, 3, 2), illustrated by the Young
diagram



Lh=3
lo=3
l3=2

4 Some Stabilizers in Projective 1-Space

The matrix ¢ as in transforms Y to (—cX + aY)/0. Hence it trans-
forms the line kY to itself if and only if ¢ = 0. Thus the stabilizer of the
corresponding point [Y] € P! in G = GLs is

G[y] = B.

In the same way

G[X] =B".
Or more generally:

Proposition 4 The stabilizer in GLy of a single point of P! is a Borel
subgroup, conjugated with B.

For pairs of different points we get
Gxy) =GxNGyj=BNB™ =T.
or more generally:

Proposition 5 The (pointwise) stabilizer in GLa of a pair of different
points in P! is a mazimal torus, conjugated with T .

If we consider a set of two points the stabilizer is somewhat larger: Be-
side matrices that fix both points we also have to consider matrices that
interchange them. Clearly the matrix I interchanges [X] and [Y], hence sta-
bilizes the set {[X], [Y]}. An arbitrary matrix g that interchanges [X] and
[Y] transforms X to \Y and Y to puX with A\, u € k*. Thus

d b c a
AY =g- X=5X-35Y and pX=g-Y=-—35X+35Y,

enforcing a = d = 0, hence ¢ is in the coset IT C G Lo, hence in N.

Proposition 6 The stabilizer in GL2 of a two-element subset {z,y} C P!
s conjugated with N .

In this way we get exact sequences of group homomorphisms and commu-
tative squares (where S, is the symmetric group on r elements {1,...,7}):



C

1 > Glayy— Glayy - S -1
1 -7 S, N - Sy -1

Next we consider triples of different points of P'. By Proposition [3| each
such triple is in the GLg-orbit of ([X],[Y],[X + Y]). If g € GL, fixes this
special triple pointwise, it must be in T by Proposition [5], hence of the form
D(s,t) with s, t € k*. Moreover

t 1 1
D(s,t).(X+Y):§X+§Y:;X+¥Y

is a multiple of X + Y if and only if s = ¢. Hence the stabilizer is Z—mnote
that Z acts trivially on P!

Proposition 7 The (pointwise) stabilizer in GLo of a triple of different
points in P! is Z, the center of GLs.

In particular this result implies that the action of PGLy = GL2/Z on
P! is sharply 3-transitive:

Corollary 4 If (z,y,z) € W, then there is exactly one element g € PGLo
such thatx =g-[X],y=g-[Y], and z=g-[X +Y].

For an m-element subset M = {x1,...,z,,} C P! with m > 3 Proposi-
tion [7] implies that the pointwise stabilizer is Z. Thus we get a sequence:

1 —— 72 —=— Gy —2+ Sp---+ 1

The rightmost arrow is dashed since we don’t know whether the sequence
is exact at Sy, i.e. whether @ is surjective. We are going to prove this in
the case m = 3. In the general case we only have:

Corollary 5 Let M = {z1,...,xm} C P! be an m-element subset with
m > 3. Then the stabilizer of M in GLo is an extension of order < m! of
the center Z. The stabilizers of M in SLo and in PGLo are finite.

In the special case of a three-element subset M = {z,y, 2} C P! we get
a diagram where H is the stabilizer of the set {[X], [Y],[X + Y]}:

C
1 ——Gly—— Gy —2+ S ---» 1
1 —— 7 —S+eng %51



Since the matrix I interchanges the linear forms X and Y, it fixes X +Y.
Therefore the image of ® contains the transposition (12). Now we consider
the matrix

(1 1 . 9 (0 1 3
J—(_l O> with J —<_1 _1> and J° = -1

that transforms
X—-Y, Y—=X+Y X+Y+—X,

hence permutes the set {[X], [Y],[X + Y]} cyclically. Thus the image of ®’
also contains the 3-cycle (123), and therefore is the whole of S3. We have
proved:

Proposition 8 The stabilizer in GLy of a three-element subset M =
{z,y,2} of P! is an extension of the center Z of order 6 and maps to the
full symmetric group Ss in a natural way.

The group H (the case of M = {[X],[Y],[X + Y]}) is generated by the
subgroup Z together with the matrices I and J.

5 Some Stabilizers of Binary Forms

Consider a binary form F' € R, and let (I1,...,l,) be the pattern of its
factorization F' = Lll1 ---Ll[ into pairwise non-proportional linear froms L;
with [y > ... > 1. > 0. For g € G, the stabilizer of F' in the group G = G Lo,
we have

F=g-F=(g-L)"-(g-Ly)"

with linear factors g-L;. Since the prime decomposition is unique we conclude
that

g-L; €k Lj
where j is an index with I; = [;. In other words, G permutes the linear
factors of the same multiplicity. If F' has a single linear factor L of multi-
plicity [, then necessarily g - L = ¢L with some ¢ € k*. In the general case
we collect identical multipliers:

mlzllz...:l51 >m2:l51+1:...:l31+82 >...>my=...=1,>0
with r = s1 + -+ 4+ s;. Then we have an induced group homomorphism
t
D : GF — HSSJ'
j=1
into a product of symmetric groups. Its kernel is
ker®={geGplg-LickLiforalli=1,....,7} =G, NG C Gy
where w € (P1)" is the r-tuple ([L1],.. ., [L]).



In the example F' = X°Y3 4 2X4Y* 4+ X3Y? = X3Y3(X +Y)?
with pattern (3, 3,2) the stabilizer Gr permutes {[L1], [L2]} and
fixes [L3]. This is illustrated by the Young diagram

¥ 123 m=ti=n
v Iy — 3 mip =t1 =l =

QX+Y l3:2 m2:l3:2

In the case r > 3 we know from Proposition [7] that G, = Z.
Lemma 1 Let n be the degree of the binary form F. Then Z N Gp = Z,.

Proof. The group G,, = Z consists of the scalar matrices g = ¢1 with ¢ € k*.
Since g- F = ¢ ™F, the matrix cl stabilizes F if and only if ¢ is an n*® root
of 1, that is g € Z,. &

Thus we have proved statement (iii) of the following theorem:

Theorem 1 Let F € R, be a binary form, and r be the number of its pair-
wise non-proportional linear factors, v’ = min{3,r}. Let H be the stabilizer
of F in GLy. Then dim H = 3 —r’. More precisely:

(i) If r = 1, then H is conjugated with the group of matrices <E)L z>

where a € kX, b € k, and ¢ is an n'* root of 1.
(ii) If r =2, then H is a finite extension of a one-dimensional torus.
(iii) If r > 3, then the H is finite.

Proof. (i) By Corollary 1 in Section [3| we may assume that F' = Y™. Let
g € H. Then g stabilizes [Y]. By Propositionwe have g € B, g = <a b>.

0 d
Then 4 n ]
n __ n __ n
9-¥ _<ad> TR
implying that d" = 1.
(ii) By Corollary 2 in Section |3| we may assume that F' = X"~ "Y" for
some r € {1,...,n— 1} with r > n/2. Let g € H. Then g stabilizes the set

{XT, [Y1}-

First assume that » = n/2. Then g € N by PTOPOSitiOHH. 9= <g 2)

or g = ((c) 8) In the first case 6 = ad and g - F = (1/a"d")F, thus ad is



an 7" root of 1. In the second case 6 = —bc and g - F = (1/b"¢")F, thus be

is an " root of 1. In summary, ¢ has the form
a 0 0 b
0= (5 a) = Dlatfanm o (5 1) =D0ampa

where 7 is an 7" root of 1. Thus H is an extension of order 27/ of the one-
dimensional torus 7" = TNSLy = {D(t,1/t)|t € k*} where 7’ is the number
of r*® roots of 1 in k.

Now assume that r > n/2. Then g stabilizes the pair ([X], [Y]) pointwise,
hence ¢ € T by Proposition |5, g = (g 2) and 6 = ad. From g - F =
1/(a™"d")F, we conclude that a"~"d" = 1. Therefore H is the kernel of the
surjective homomorphism

v: T — k*, D(a,d)—a""d"
and, by the way, contains the image of the one-parameter subgroup
ANk — T, tw D"t ).

Hence H has dimension 1 and therefore satisfies the assertion of (ii).
(iii) See the preliminary remarks. <

Corollary 6 Let F € R, be a binary form, and r be the number of its
pairwise non-proportional linear factors. Let H' be the stabilizer of F in

SLy.

(i) Ifr =1, then H' is a finite extension of a maximal unipotent subgroup
of SLy of order n', the number of n'* roots of 1 in k.

(ii) If r = 2 and both linear factors have multiplicity n/2, then H' is a
maximal torus of SLy if v is odd and char k # 2, an extension of order
2 if r is even or chark = 2 (namely a Cartan subgtoup of SLs).

(iii) If r = 2 and the two linear factors have different multiplicities, then
H' is finite.
(iv) If r > 3, then the H' is finite.
Proof. Since we restrict the action from G L5 to S Lo, the orbit representatives
used in the proof of Theorem [1| hold only up to scalar factors. These factors

however don’t affect the stabilizers. Thus we only have to intersect H' =
H N SLy (for the representatives of the G Ly-orbits).

10



(i) The condition g € SLy enforces a = 1/¢. Hence H consists of the
matrices

<168 g) with b € k and € € k% an n' root of unity.

(ii) In the proof of (ii) of the theorem H’ consists of the matrices
D(a,1/a)D(1,n) with n = 1 and D(b,1/b)D(1,n)I with n = —1 (if n is
odd) or n =1 (if chark = 2).

(iii) A diagonal matrix D(a,1/a) stabilizes X" "Y" if and only if
a"~2" = 1. Therefore H' is finite.

(iv) immediate since even H is finite. ¢

Corollary 7 If F € Ry, has no linear factor of multiplicity > n/2, then the
stabilizer of F' in GLg is finite.

Proof. The assumption implies that F' has at least three pairwise non-
proportional linear factors. <&
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