Linear Factors and Stabilizers of Binary Forms

Klaus Pommerening
Johannes-Gutenberg-Universität
Mainz, Germany

Last change: August 14, 2017

Abstract

Summary Each binary form F decomposes into linear factors. This decomposition has consequences for the stabilizer of F in the transformation group $G L_{2}$. For instance the stabilizer is finite if F has at least three essentially different linear factors.

1 Factorization of Binary Forms

Let k be an algebraically closed field and T be an indeterminate. Every non-constant polynomial $f \in k[T]$ decomposes into linear factors:

$$
f=\prod_{i=1}^{n} l_{i}
$$

where the $l_{i}=a_{i}+b_{i} T \in k[T]$ are polynomials of degree 1 , in particular $b_{i} \in k^{\times}$, and $n=\operatorname{deg} f$. This decomposition is unique up to the order of the factors and up to scalar multipliers $\in k^{\times}$.

In other words, the polynomial ring $k[T]$ is factorial (or UFD), the linear polynomials are its prime elements, and the non-zero constants are its units. (By abuse of terminology we use the term "linear" for polynomials as synonymous with "of degree 1".)

The linear factors l_{i} are not necessarily different. A linear factor $l \mid f$ has multiplicity r if $l^{r} \mid f$ and $l^{r+1} \nmid f$.

Now we consider binary forms over k, that is, homogeneous polynomials $F \in k[X, Y]$ in two indeterminates X and Y. They have the form (where n is the degree)

$$
F=\sum_{\nu=0}^{n} a_{\nu} X^{n-\nu} Y^{\nu}=X^{n} \cdot \sum_{\nu=0}^{n} a_{\nu}\left(\frac{Y}{X}\right)^{\nu}=X^{n} \cdot f\left(\frac{Y}{X}\right)
$$

where $f=\sum a_{\nu} T^{\nu} \in k[T]$ is a polynomial of degree $\leq n$. Let $f=\prod_{i=1}^{n} l_{i}$ be the decomposition into linear factors-if $\operatorname{deg} f=m<n$, set $l_{m+1}=\cdots=$ $l_{n}=1$ constant. From this we get a corresponding decomposition

$$
F=\prod_{i=1}^{n} L_{i} \quad \text { where the } L_{i}=X \cdot l_{i}\left(\frac{X}{Y}\right)=a_{i} X+b_{i} Y
$$

are homogenous of degree 1 , or binary linear forms. In the case $\operatorname{deg} f=m<n$ we have $L_{m+1}=L_{n}=X$, hence X is a linear factor of F of multiplicity $n-m$. (Here the term "linear" is used in a correct way.)

2 The Action of the Group $G L_{2}$ on Binary Forms

Now we consider the group $G=G L_{2}(k)$ of 2×2-matrices with non-zero determinant over k. The matrix

$$
g=\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \in G
$$

acts on the 2-dimensional vector space k^{2} by the formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

Denote the coordinate functions $k^{2} \longrightarrow k$ by X and Y, where

$$
X\binom{x}{y}=x, \quad Y\binom{x}{y}=y
$$

for all $x, y \in k$. The inverse of g is

$$
g^{-1}=\frac{1}{\delta} \cdot\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

where $\delta=\operatorname{det} g=a d-b c$. Thus the induced ("contragredient") action on the space of linear forms spanned by the coordinate functions X and Y is given by

$$
\begin{aligned}
& X \mapsto \frac{d}{\delta} X-\frac{b}{\delta} Y \\
& Y \mapsto-\frac{c}{\delta} X+\frac{a}{\delta} Y
\end{aligned}
$$

(In general a function $f: k^{2} \longrightarrow k$ is transformed to $f \circ g^{-1}$.)
Let $R=k[X, Y]$ be the polynomial ring and R_{n} be its homogeneous part of degree n with $\operatorname{dim}_{k} R_{n}=n+1$. The action of $G L_{2}$ extends to automorphisms of R that preserve the degree. Thus R_{n} is a $G L_{2}$-invariant subspace of R.

Some elements and subgroups of $G L_{2}$

The group $G L_{2}$ contains the matrices

$$
\begin{aligned}
D(s, t) & =\left(\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right) \quad \text { with } s, t \in k^{\times}, \\
A(b) & =\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \quad \text { with } b \in k, \\
I & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { that has } I^{2}=\mathbf{1}
\end{aligned}
$$

and the subgroups:

$$
\begin{aligned}
S L_{2} & =\left\{g \in G L_{2} \mid \operatorname{det} g=1\right\}, \\
T & =\left\{D(s, t) \mid s, t \in k^{\times}\right\}, \text {the canonical maximal torus of } G L_{2}, \\
N & =T \cup I T, \text { the normalizer of } T \text { in } G L_{2}, \\
Z & =\left\{D(t, t) \mid t \in k^{\times}\right\}, \text {the center of } G L_{2}, \\
Z_{n} & =\left\{D(t, t) \mid t^{n}=1\right\}, \text { a finite cyclic group of order } \mid n, \\
& \quad \text { (the order equals } n \text { if and only if char } k \nmid n,) \\
Z^{\prime} & =Z \cap S L_{2}=Z_{2}=\left\{\begin{array}{ll}
\{ \pm \mathbf{1}\} & \text { if char } k \neq 2, \\
\{\mathbf{1}\} & \text { if char } k=2,
\end{array} \text { the center of } S L_{2},\right. \\
U & =\{A(b) \mid b \in k\}, \text { the canonical maximal unipotent subgroup of } G L_{2}, \\
B & =\text { the group of invertible upper triangular matrices, } \\
& \text { the canonical Borel subgroup of } G L_{2}, \\
B^{-} & =\text {the group of invertible lower triangular matrices. }
\end{aligned}
$$

Furthermore we sometimes consider the group

$$
P G L_{2}=G L_{2} / Z \cong S L_{2} / Z^{\prime} .
$$

3 Representatives of Orbits

In R_{1}, the space of linear forms, the group $G L_{2}$ has exactly two orbits, $\{0\}$ and $R_{1}^{\boldsymbol{\bullet}}=R_{1}-\{0\}$. In other words,

Proposition $1 G L_{2}$ (even $S L_{2}$) acts transitively on $R_{1}^{\boldsymbol{p}}$.
Proof. Let $L=\alpha X+\beta Y$ be a non-zero linear form, and define $g \in S L_{2}$ by

$$
g^{-1}=\left(\begin{array}{cc}
1 / \beta & 0 \\
\alpha & \beta
\end{array}\right) .
$$

Then $g \cdot Y=\alpha X+\beta Y=L$ by the formula for the effect on Y. Hence L is in the $S L_{2}$-orbit of Y.

An analogous reasoning for the action on the Cartesian product $R_{1} \times R_{1}$ yields a weaker result:

Proposition 2 Let L_{1} and $L_{2} \in R_{1}$ be non-proportional. Then there is a matrix $g \in G L_{2}$ with $g \cdot Y=L_{1}$ and $g \cdot X=L_{2}$.

Proof. Let $L_{1}=\alpha_{1} X+\beta_{1} Y$ and $L_{2}=\alpha_{2} X+\beta_{2} Y$. The non-proportionality (or linear independence) is equivalent with the determinant condition $\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \neq 0$. If we define g by

$$
g^{-1}=\left(\begin{array}{cc}
\alpha_{2} & \beta_{2} \\
\alpha_{1} & \beta_{1}
\end{array}\right) \in G L_{2}
$$

the formulas for the effects on X and Y yield $g \cdot Y=L_{1}$ and $g \cdot X=L_{2} . \diamond$
Thus $R_{1} \times R_{1}$ consists of the following $G L_{2}$-orbits:

- $\{0\}$
- $R_{1}^{\boldsymbol{\bullet}} \times\{0\}$, the orbit of $(X, 0)$
- $\{0\} \times R_{1}^{\boldsymbol{\bullet}}$, the orbit of $(0, Y)$
- the (infinitely many) "diagonals" $D_{c}:=\left\{(L, c L) \mid L \in R_{1}^{\mathbf{0}}\right\}$ for arbitrary $c \in k^{\times}$, the orbits of ($Y, c Y$)
- $R_{\mathbf{1}}^{\boldsymbol{0}} \times R_{\mathbf{1}}^{\boldsymbol{0}}-\cup_{c \in k^{\times}} D_{c}$, the orbit of (X, Y)

Finally we look for triples of linear forms L_{1}, L_{2}, L_{3}, which we assume as pairwise non-proportional. Having transformed L_{1} to Y and L_{2} to X we note that only the unit matrix 1 fixes both X and Y, so each non-proportional $L \in R_{1}$ yields a different orbit, represented by (X, Y, L). However if we consider lines $k L$ through the origin $0 \in R_{1}$, or points [L] of the projective space \mathbb{P}^{1}, we see that the diagonal matrices $D(s, t)$ fix the lines $k X$ and $k Y$, i. e. the corresponding points of \mathbb{P}^{1}. Thus we have more degrees of freedom to transform the third line $k L_{3}$:

Proposition 3 Let $L_{1}, L_{2}, L_{3} \in R_{1}$ be pairwise non-proportional. Then there is a matrix $g \in G L_{2}$ with $g \cdot L_{1} \in k Y, g \cdot L_{2} \in k X, g \cdot L_{3} \in k(X+Y)$.

Proof. By Proposition 2 we may choose $h \in G L_{2}$ with $h \cdot L_{1}=Y$ and $h \cdot L_{2}=X$. Let $h \cdot L_{3}=\alpha_{3} X+\beta_{3} Y$. The diagonal matrix $D\left(\beta_{3}^{-1}, \alpha_{3}^{-1}\right)$ transforms X to $\alpha_{3} X, Y$ to $\beta_{3} Y$, and $X+Y$ to $h \cdot L_{3}$. Hence $g:=D\left(\beta_{3}, \alpha_{3}\right) h$ transforms L_{1} to $\beta_{3}^{-1} Y, L_{2}$ to $\alpha_{3}^{-1} X$, and L_{3} to $X+Y$. \diamond

The pairwise non-proportionality of linear forms means that the corresponding points of the projective space \mathbb{P}^{1} are different. Thus another way
to express Proposition 3 is that the action of $G L_{2}$ on \mathbb{P}^{1} is 3 -transitive. The subset

$$
W=\{(x, y, z) \mid x \neq y, x \neq z, y \neq z\} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

is a Zariski open dense $G L_{2}$-stable subset on which $G L_{2}$ acts transitive, and W is the orbit of $([X],[Y],[X+Y])$.

Corollary 1 Assume that $F \in R_{n}$ has a linear factor of multiplicity n. Then there is a matrix $g \in S L_{2}$ with $g \cdot F=Y^{n}$.

Proof. We have $F=c L^{n}$ with $c \in k^{\times}$and $L \in R_{1}^{\bullet}$. Since k is algebraically closed c has an n-th root which we may multiply with L and therefore assume that $F=L^{n}$. Then we choose g with $g \cdot L=Y$ by Proposition 1 , hence $g \cdot F=Y^{n}$. \diamond

Corollary 2 Assume that $F \in R_{n}$ has two non-proportional linear factors, one of multiplicity r, and another one of multiplicity $n-r$. Then there is a matrix $g \in G L_{2}$ with $g \cdot F=X^{n-r} Y^{r}$.

Proof. We have $F=c L_{1}^{r} L_{2}^{n-r}$ with $c \in k^{\times}$and non-proportional linear forms $L_{1}, L_{2} \in R_{1}$. Again we may absorb c into L_{1}, hence assume that $c=1$. Then by Proposition 2 we choose g with $g \cdot L_{1}=Y$ and $g \cdot L_{2}=X$, hence $g \cdot F=Y^{r} X^{n-r}$. \diamond

Corollary 3 Assume that $F \in R_{n}$ has at least three pairwise nonproportional linear factors, say of multiplicities q, r, s, thus $F=L_{1}^{q} L_{2}^{r} L_{3}^{s} \tilde{F}$ with $\tilde{F} \in R_{n-q-r-s}$. Then there is a matrix $g \in G L_{2}$ and a homogeneous polynomial $H \in R_{n-q-r-s}$ with $g \cdot F=X^{q} Y^{r}(X+Y)^{s} H$.

Proof. By Proposition 3 we may choose g with $g \cdot L_{1}=c_{1} X, g \cdot L_{2}=c_{2} Y$, $g \cdot L_{3}=c_{3}(X+Y)$. Then $g \cdot F=X^{q} Y^{r}(X+Y)^{s} H$ with $H=g \cdot \tilde{F} / c_{1} c_{2} c_{3}$. \diamond

In the general case we rewrite the factorization of $F \in R_{n}$ as

$$
F=L_{1}^{l_{1}} \cdots L_{r}^{l_{r}} \quad \text { with } l_{1} \geq \ldots \geq l_{r}>0
$$

where the L_{i} are pairwise non-proportional linear forms, and $l_{1}+\cdots+l_{r}=n$. Then the action of $G L_{2}$ preserves the pattern $\left(l_{1}, \ldots, l_{r}\right)$.

This pattern might be interpreted as the shape of a Young diagram of size n. For example $F=X^{5} Y^{3}+2 X^{4} Y^{4}+X^{3} Y^{5}=$ $X^{3} Y^{3}(X+Y)^{2}$ has the pattern $(3,3,2)$, illustrated by the Young diagram

4 Some Stabilizers in Projective 1-Space

The matrix g as in (1) transforms Y to $(-c X+a Y) / \delta$. Hence it transforms the line $k Y$ to itself if and only if $c=0$. Thus the stabilizer of the corresponding point $[Y] \in \mathbb{P}^{1}$ in $G=G L_{2}$ is

$$
G_{[Y]}=B .
$$

In the same way

$$
G_{[X]}=B^{-} .
$$

Or more generally:
Proposition 4 The stabilizer in $G L_{2}$ of a single point of \mathbb{P}^{1} is a Borel subgroup, conjugated with B.

For pairs of different points we get

$$
G_{([X],[Y])}=G_{[X]} \cap G_{[Y]}=B \cap B^{-}=T .
$$

or more generally:
Proposition 5 The (pointwise) stabilizer in $G L_{2}$ of a pair of different points in \mathbb{P}^{1} is a maximal torus, conjugated with T.

If we consider a set of two points the stabilizer is somewhat larger: Beside matrices that fix both points we also have to consider matrices that interchange them. Clearly the matrix I interchanges $[X]$ and $[Y]$, hence stabilizes the set $\{[X],[Y]\}$. An arbitrary matrix g that interchanges $[X]$ and [Y] transforms X to λY and Y to μX with $\lambda, \mu \in k^{\times}$. Thus

$$
\lambda Y=g \cdot X=\frac{d}{\delta} X-\frac{b}{\delta} Y \quad \text { and } \quad \mu X=g \cdot Y=-\frac{c}{\delta} X+\frac{a}{\delta} Y,
$$

enforcing $a=d=0$, hence g is in the coset $I T \subseteq G L_{2}$, hence in N.
Proposition 6 The stabilizer in $G L_{2}$ of a two-element subset $\{x, y\} \subseteq \mathbb{P}^{1}$ is conjugated with N.

In this way we get exact sequences of group homomorphisms and commutative squares (where \mathcal{S}_{r} is the symmetric group on r elements $\{1, \ldots, r\}$):

Next we consider triples of different points of \mathbb{P}^{1}. By Proposition 3 each such triple is in the $G L_{2}$-orbit of $([X],[Y],[X+Y])$. If $g \in G L_{2}$ fixes this special triple pointwise, it must be in T by Proposition 5, hence of the form $D(s, t)$ with $s, t \in k^{\times}$. Moreover

$$
D(s, t) \cdot(X+Y)=\frac{t}{s t} X+\frac{s}{s t} Y=\frac{1}{s} X+\frac{1}{t} Y
$$

is a multiple of $X+Y$ if and only if $s=t$. Hence the stabilizer is Z-note that Z acts trivially on \mathbb{P}^{1}.

Proposition 7 The (pointwise) stabilizer in $G L_{2}$ of a triple of different points in \mathbb{P}^{1} is Z, the center of $G L_{2}$.

In particular this result implies that the action of $P G L_{2}=G L_{2} / Z$ on \mathbb{P}^{1} is sharply 3 -transitive:

Corollary 4 If $(x, y, z) \in W$, then there is exactly one element $g \in P G L_{2}$ such that $x=g \cdot[X], y=g \cdot[Y]$, and $z=g \cdot[X+Y]$.

For an m-element subset $M=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq \mathbb{P}^{1}$ with $m \geq 3$ Proposition 7 implies that the pointwise stabilizer is Z. Thus we get a sequence:

The rightmost arrow is dashed since we don't know whether the sequence is exact at \mathcal{S}_{m}, i. e. whether Φ is surjective. We are going to prove this in the case $m=3$. In the general case we only have:

Corollary 5 Let $M=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq \mathbb{P}^{1}$ be an m-element subset with $m \geq 3$. Then the stabilizer of M in $G L_{2}$ is an extension of order $\leq m$! of the center Z. The stabilizers of M in $S L_{2}$ and in $P G L_{2}$ are finite.

In the special case of a three-element subset $M=\{x, y, z\} \subseteq \mathbb{P}^{1}$ we get a diagram where H is the stabilizer of the set $\{[X],[Y],[X+Y]\}$:

Since the matrix I interchanges the linear forms X and Y, it fixes $X+Y$. Therefore the image of Φ^{\prime} contains the transposition (12). Now we consider the matrix

$$
J=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) \quad \text { with } \quad J^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad J^{3}=-\mathbf{1}
$$

that transforms

$$
X \mapsto-Y, \quad Y \mapsto X+Y, \quad X+Y \mapsto X
$$

hence permutes the set $\{[X],[Y],[X+Y]\}$ cyclically. Thus the image of Φ^{\prime} also contains the 3-cycle (123), and therefore is the whole of \mathcal{S}_{3}. We have proved:

Proposition 8 The stabilizer in $G L_{2}$ of a three-element subset $M=$ $\{x, y, z\}$ of \mathbb{P}^{1} is an extension of the center Z of order 6 and maps to the full symmetric group \mathcal{S}_{3} in a natural way.

The group H (the case of $M=\{[X],[Y],[X+Y]\}$) is generated by the subgroup Z together with the matrices I and J.

5 Some Stabilizers of Binary Forms

Consider a binary form $F \in R_{n}$, and let $\left(l_{1}, \ldots, l_{r}\right)$ be the pattern of its factorization $F=L_{1}^{l_{1}} \cdots L_{r}^{l_{r}}$ into pairwise non-proportional linear froms L_{i} with $l_{1} \geq \ldots \geq l_{r}>0$. For $g \in G_{F}$, the stabilizer of F in the group $G=G L_{2}$, we have

$$
F=g \cdot F=\left(g \cdot L_{1}\right)^{l_{1}} \cdots\left(g \cdot L_{r}\right)^{l_{r}}
$$

with linear factors $g \cdot L_{i}$. Since the prime decomposition is unique we conclude that

$$
g \cdot L_{i} \in k L_{j}
$$

where j is an index with $l_{j}=l_{i}$. In other words, G_{F} permutes the linear factors of the same multiplicity. If F has a single linear factor L of multiplicity l, then necessarily $g \cdot L=c L$ with some $c \in k^{\times}$. In the general case we collect identical multipliers:

$$
m_{1}=l_{1}=\ldots=l_{s_{1}}>m_{2}=l_{s_{1}+1}=\ldots=l_{s_{1}+s_{2}}>\ldots>m_{t}=\ldots=l_{r}>0
$$

with $r=s_{1}+\cdots+s_{t}$. Then we have an induced group homomorphism

$$
\Phi: G_{F} \longrightarrow \prod_{j=1}^{t} \mathcal{S}_{s_{j}}
$$

into a product of symmetric groups. Its kernel is

$$
\operatorname{ker} \Phi=\left\{g \in G_{F} \mid g \cdot L_{i} \in k L_{i} \text { for all } i=1, \ldots, r\right\}=G_{w} \cap G_{F} \subseteq G_{w}
$$

where $w \in\left(\mathbb{P}^{1}\right)^{r}$ is the r-tuple $\left(\left[L_{1}\right], \ldots,\left[L_{r}\right]\right)$.

In the example $F=X^{5} Y^{3}+2 X^{4} Y^{4}+X^{3} Y^{5}=X^{3} Y^{3}(X+Y)^{2}$ with pattern $(3,3,2)$ the stabilizer G_{F} permutes $\left\{\left[L_{1}\right],\left[L_{2}\right]\right\}$ and fixes $\left[L_{3}\right]$. This is illustrated by the Young diagram

$\bigcirc+Y$

$$
\begin{array}{ll}
l_{1}=3 \\
l_{2}=3 & m_{1}=l_{1}=l_{2}=3 \\
l_{3}=2 & m_{2}=l_{3}=2
\end{array}
$$

In the case $r \geq 3$ we know from Proposition 7 that $G_{w}=Z$.
Lemma 1 Let n be the degree of the binary form F. Then $Z \cap G_{F}=Z_{n}$.
Proof. The group $G_{w}=Z$ consists of the scalar matrices $g=c \mathbf{1}$ with $c \in k^{\times}$. Since $g \cdot F=c^{-n} F$, the matrix $c \mathbf{1}$ stabilizes F if and only if c is an $n^{\text {th }}$ root of 1 , that is $g \in Z_{n}$. \diamond

Thus we have proved statement (iii) of the following theorem:
Theorem 1 Let $F \in R_{n}$ be a binary form, and r be the number of its pairwise non-proportional linear factors, $r^{\prime}=\min \{3, r\}$. Let H be the stabilizer of F in $G L_{2}$. Then $\operatorname{dim} H=3-r^{\prime}$. More precisely:
(i) If $r=1$, then H is conjugated with the group of matrices $\left(\begin{array}{ll}a & b \\ 0 & \varepsilon\end{array}\right)$ where $a \in k^{\times}, b \in k$, and ε is an $n^{\text {th }}$ root of 1 .
(ii) If $r=2$, then H is a finite extension of a one-dimensional torus.
(iii) If $r \geq 3$, then the H is finite.

Proof. (i) By Corollary 1 in Section 3 we may assume that $F=Y^{n}$. Let $g \in H$. Then g stabilizes $[Y]$. By Proposition 4 we have $g \in B, g=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. Then

$$
g \cdot Y^{n}=\left(\frac{a}{a d}\right)^{n} Y^{n}=\frac{1}{d^{n}} Y^{n}
$$

implying that $d^{n}=1$.
(ii) By Corollary 2 in Section 3 we may assume that $F=X^{n-r} Y^{r}$ for some $r \in\{1, \ldots, n-1\}$ with $r \geq n / 2$. Let $g \in H$. Then g stabilizes the set $\{[X],[Y]\}$.

First assume that $r=n / 2$. Then $g \in N$ by Proposition $6, g=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ or $g=\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right)$. In the first case $\delta=a d$ and $g \cdot F=\left(1 / a^{r} d^{r}\right) F$, thus $a d$ is
an $r^{\text {th }}$ root of 1 . In the second case $\delta=-b c$ and $g \cdot F=\left(1 / b^{r} c^{r}\right) F$, thus $b c$ is an $r^{\text {th }}$ root of 1 . In summary, g has the form

$$
g=\left(\begin{array}{cc}
a & 0 \\
0 & \eta / a
\end{array}\right)=D(a, 1 / a) D(1, \eta) \quad \text { or } \quad\left(\begin{array}{cc}
0 & b \\
\eta / b & 0
\end{array}\right)=D(b, 1 / b) D(1, \eta) I
$$

where η is an $r^{\text {th }}$ root of 1 . Thus H is an extension of order $2 r^{\prime}$ of the onedimensional torus $T^{\prime}=T \cap S L_{2}=\left\{D(t, 1 / t) \mid t \in k^{\times}\right\}$where r^{\prime} is the number of $r^{\text {th }}$ roots of 1 in k.

Now assume that $r>n / 2$. Then g stabilizes the pair $([X],[Y])$ pointwise, hence $g \in T$ by Proposition $\left[5, g=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)\right.$ and $\delta=a d$. From $g \cdot F=$ $1 /\left(a^{n-r} d^{r}\right) F$, we conclude that $a^{n-r} d^{r}=1$. Therefore H is the kernel of the surjective homomorphism

$$
\psi: T \longrightarrow k^{\times}, \quad D(a, d) \mapsto a^{n-r} d^{r}
$$

and, by the way, contains the image of the one-parameter subgroup

$$
\lambda: k^{\times} \longrightarrow T, \quad t \mapsto D\left(t^{r}, t^{r-n}\right)
$$

Hence H has dimension 1 and therefore satisfies the assertion of (ii).
(iii) See the preliminary remarks.

Corollary 6 Let $F \in R_{n}$ be a binary form, and r be the number of its pairwise non-proportional linear factors. Let H^{\prime} be the stabilizer of F in $S L_{2}$.
(i) If $r=1$, then H^{\prime} is a finite extension of a maximal unipotent subgroup of $S L_{2}$ of order n^{\prime}, the number of $n^{\text {th }}$ roots of 1 in k.
(ii) If $r=2$ and both linear factors have multiplicity $n / 2$, then H^{\prime} is a maximal torus of $S L_{2}$ if r is odd and char $k \neq 2$, an extension of order 2 if r is even or char $k=2$ (namely a Cartan subgtoup of $S L_{2}$).
(iii) If $r=2$ and the two linear factors have different multiplicities, then H^{\prime} is finite.
(iv) If $r \geq 3$, then the H^{\prime} is finite.

Proof. Since we restrict the action from $G L_{2}$ to $S L_{2}$, the orbit representatives used in the proof of Theorem 1 hold only up to scalar factors. These factors however don't affect the stabilizers. Thus we only have to intersect $H^{\prime}=$ $H \cap S L_{2}$ (for the representatives of the $G L_{2}$-orbits).
(i) The condition $g \in S L_{2}$ enforces $a=1 / \varepsilon$. Hence H consists of the matrices

$$
\left(\begin{array}{cc}
1 / \varepsilon & b \\
0 & \varepsilon
\end{array}\right) \quad \text { with } b \in k \text { and } \varepsilon \in k^{\times} \text {an } n^{\text {th }} \text { root of unity. }
$$

(ii) In the proof of (ii) of the theorem H^{\prime} consists of the matrices $D(a, 1 / a) D(1, \eta)$ with $\eta=1$ and $D(b, 1 / b) D(1, \eta) I$ with $\eta=-1$ (if n is odd) or $\eta=1$ (if char $k=2$).
(iii) A diagonal matrix $D(a, 1 / a)$ stabilizes $X^{n-r} Y^{r}$ if and only if $a^{n-2 r}=1$. Therefore H^{\prime} is finite.
(iv) immediate since even H is finite.

Corollary 7 If $F \in R_{n}$ has no linear factor of multiplicity $\geq n / 2$, then the stabilizer of F in $G L_{2}$ is finite.

Proof. The assumption implies that F has at least three pairwise nonproportional linear factors. \diamond

