Identities for Binomial Coefficients and Pascal Tableaus

Klaus Pommerening

July 2020 - last change September 10, 2020

Figures 1 and 2 illustrate two summation formulas for binomial coefficients that will be proved and analyzed in a rather general form in the following.

Figure 1: Pascal's triangle with the relation $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\binom{5}{2}+\binom{6}{2}+\binom{7}{2}=\binom{8}{3}$

1 Pascal Tableaus

Definition Let M be a \mathbb{Z}-module (most applications use $M=\mathbb{Z}$). A Pascal tableau in M is a map

$$
T: \mathbb{N} \times \mathbb{N} \longrightarrow M
$$

with the following properties, see Figure 3:
(i) $T(m, 0) \in M$ arbitrary for all $m \in \mathbb{N}$.
(ii) $T(m, n)=0$ for all $n>m$.
(iii) $T(n, n)=T(0,0)$ for all $n \geq 1$.
(iv) For $m>n \geq 1$

$$
T(m, n)=T(m-1, n-1)+T(m-1, n) .
$$

Figure 2: Pascal's triangle with the relation $6 \cdot\binom{2}{2}+5 \cdot\binom{3}{2}+4 \cdot\binom{4}{2}+3 \cdot\binom{5}{2}+2 \cdot\binom{6}{2}+\binom{7}{2}=\binom{9}{4}$

Figure 3: A general Pascal tableau

Example $M=\mathbb{Z}, T(m, n)=\binom{m}{n}$.
In this general context the rule illustrated by Figure 1 looks as follows:
Lemma 1 Let T be a Pascal tableau in M. Then for integers $m \geq n \geq 1$:

$$
\sum_{k=n}^{m} T(k, n)=T(m+1, n+1) .
$$

Proof. Induction on $m=n, n+1, \ldots$ with fixed n. The base case $m=n$ is obvious: The lefthand side is $T(n, n)=T(0,0)$, and the righthand side, $T(n+1, n+1)=T(0,0)$.

Now let $m \geq n+1$. Then by induction

$$
\sum_{k=n}^{m} T(k, n)=T(m, n)+\underbrace{\sum_{k=n}^{m-1} T(k, n)}_{=T(m, n+1)}=T(m+1, n+1) .
$$

\diamond
This method of proof yields more, as Figure 2 suggests:
Proposition 1 Let T be a Pascal tableau in M. Then for integers $m \geq n \geq 1, r \geq 0$:

$$
\sum_{k=n}^{m}\binom{m-k+r}{r} T(k, n)=T(m+r+1, n+r+1)
$$

Proof. Double induction on r and m. For $r=0$ the assertion is proved by Lemma 1 . For $m=n$ (with arbitrary r) it is trivial: The lefthand side is $\binom{r}{r} T(n, n)=T(0,0)$, the righthand side, $T(n+r+1, n+r+1)=T(0,0)$.

For the inductive step let $m \geq n+1$ and $r \geq 1$. The sum decomposes as

$$
\sum_{k=n}^{m}\binom{m-k+r}{r} T(k, n)=\sum_{k=n}^{m}\left[\binom{m-k+r-1}{r-1}+\binom{m-k+r-1}{r}\right] T(k, n) .
$$

Separate evaluation of the two summands yields:

$$
\sum_{k=n}^{m}\binom{m-k+r-1}{r-1} T(k, n)=T(m+r, n+r)
$$

by induction on r,

$$
\begin{aligned}
\sum_{k=n}^{m}\binom{m-k+r-1}{r} T(k, n) & =\sum_{k=n}^{m-1}\binom{m-k+r-1}{r} T(k, n) \\
& =\sum_{k=n}^{q}\binom{q-k+r}{r} T(k, n)=T(q+r+1, n+r+1)
\end{aligned}
$$

by induction on m (since $q=m-1$). The complete sum is

$$
T(m+r, n+r)+T(m+r, n+r+1)=T(m+r+1, n+r+1)
$$

by the defining rule of a Pascal tableau.
The special case $r=0$ is in Lemma 1, the cases $r=1$ and $r=2$ in explicit form look like this:

Corollary 1 Let T be a Pascal tableau, and $m \geq n \geq 1$. Then:

$$
\begin{align*}
& T(m+2, n+2)=\sum_{k=n}^{m}(m-k+1) T(k, n) \tag{1}\\
& T(m+3, n+3)=\sum_{k=n}^{m} \frac{(m-k+1)(m-k+2)}{2} T(k, n) \tag{2}
\end{align*}
$$

Another interesting special case of Proposition 1 is $n=0$. Then the formula becomes

$$
\sum_{k=0}^{m}\binom{m-k+r}{r} T(k, 0)=T(m+r+1, r+1)
$$

Setting $q=m+r+1, n=r+1$ (note the changed meaning of n), hence $m=q-n$, the formula transforms to

$$
\sum_{k=0}^{q-n}\binom{q-1-k}{n-1} T(k, 0)=T(q, n)
$$

Changing the meaning of m and denoting q by m results in a formula that expresses the general term of a Pascal tableau by its first column:

Corollary 2 Let T be a Pascal tableau, and $m \geq n \geq 1$. Then

$$
T(m, n)=\sum_{k=0}^{m-n}\binom{m-1-k}{n-1} T(k, 0)
$$

Applying Proposition 1 to the binomial coefficients $T(m, n)=\binom{m}{n}$ yields the formula

$$
\sum_{k=n}^{m}\binom{m-k+r}{r}\binom{k}{n}=\binom{m+r+1}{n+r+1}
$$

Setting $N=m+1$ and $q=n+1$ yields the variant

$$
\binom{N+r}{q+r}=\sum_{k=q-1}^{N-1}\binom{N-1-k+r}{r}\binom{k}{q-1}=\sum_{i=1}^{N-q+1}\binom{i-1+r}{r}\binom{N-i}{q-1}
$$

thus, once more renaming the variables:

Corollary 3 For integers $N \geq n \geq 1, r \geq 0$:

$$
\binom{N+r}{n+r}=\sum_{i=1}^{N-n+1}\binom{i+r-1}{r}\binom{N-i}{n-1}
$$

The explicit form of the special cases $r=0,1,2$ is:
Corollary 4 For integers $N \geq n \geq 1$:

$$
\begin{align*}
\binom{N}{n} & =\sum_{i=1}^{N-n+1}\binom{N-i}{n-1} \tag{1}\\
\binom{N+1}{n+1} & =\sum_{i=1}^{N-n+1} i \cdot\binom{N-i}{n-1} \tag{2}\\
\binom{N+2}{n+2} & =\sum_{i=1}^{N-n+1} \frac{i(i+1)}{2} \cdot\binom{N-i}{n-1} \tag{3}
\end{align*}
$$

We use the relation $i(i+1)=i^{2}+i$, or $i^{2}=2 \cdot \frac{i(i+1)}{2}-i$, to slightly modify Formula (iii):

$$
\begin{aligned}
\sum_{i=1}^{N-n+1} i^{2} \cdot\binom{N-i}{n-1} & =2 \cdot\binom{N+2}{n+2}-\binom{N+1}{n+1} \\
& =2 \cdot\binom{N+1}{n+1}+2 \cdot\binom{N+1}{n+2}-\binom{N+1}{n+1} \\
& =\binom{N+2}{n+2}+\binom{N+1}{n+2}
\end{aligned}
$$

with the result:
Corollary 5 For integers $N \geq n \geq 1$:

$$
\sum_{i=1}^{N-n+1} i^{2} \cdot\binom{N-i}{n-1}=\binom{N+2}{n+2}+\binom{N+1}{n+2}
$$

In the same way Corollary 1 yields the more general result:
Corollary 6 Let T be a Pascal tableau and $m \geq n \geq 1$. Then:

$$
\begin{aligned}
\sum_{k=n}^{m}(m-k+1)^{2} T(k, n) & =2 T(m+3, n+3)-T(m+2, n+2) \\
& =T(m+3, n+3)+T(m+2, n+3)
\end{aligned}
$$

2 Sum and Difference Sequences

In this section M continues to be a \mathbb{Z}-module. We consider sequences $a=\left(a_{n}\right)_{n \in \mathbb{N}}=$ $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ in M. They form the set $M^{\mathbb{N}}$ that is itself a \mathbb{Z}-module.

Definition Let $a \in M^{\mathbb{N}}$ be a sequence. The sum sequence $b \in M^{\mathbb{N}}$ of a is defined by

$$
b_{n}=\sum_{i=0}^{n} a_{i} \quad \text { for all } n \in \mathbb{N}
$$

the difference sequence $d \in M^{\mathbb{N}}$ by

$$
d_{n}=a_{n}-a_{n-1} \quad \text { for all } n \geq 1, \quad \text { and } d_{0}=a_{0}
$$

Obviously the difference sequence of the sum sequence is a itself, as is the sum sequence of the difference sequence. Thus we have two operators on sequences,

$$
\sigma: M^{\mathbb{N}} \longrightarrow M^{\mathbb{N}} \quad(\text { "sum" }) \quad \text { and } \quad \delta: M^{\mathbb{N}} \longrightarrow M^{\mathbb{N}} \quad(\text { "difference" })
$$

that are inverse to each other. For $a \in M^{\mathbb{N}}$ we use the notation $a^{(k)}:=\sigma^{k}(a)$ for the k-fold sum operator.

Proposition 2 Let $a \in M^{\mathbb{N}}$ be a sequence. Then the map

$$
T: \mathbb{N} \times \mathbb{N} \longrightarrow M, \quad T(m, n):=a_{m-n}^{(n)}
$$

(and $T(m, n)=0$ for $n>m)$ is a Pascal tableau.
Proof. We have $T(n, n)=a_{0}$ for all $n \in \mathbb{N}$. And for $m>n \geq 1$

$$
\begin{aligned}
T(m-1, n-1)+T(m-1, n) & =a_{m-n}^{(n-1)}+a_{m-n-1}^{(n)} \\
& =a_{m-n}^{(n-1)}+\sum_{j=0}^{m-n-1} a_{j}^{(n-1)}=\sum_{j=0}^{m-n} a_{j}^{(n-1)} \\
& =a_{m-n}^{(n)}=T(m, n) .
\end{aligned}
$$

\diamond
On the other hand, given a Pascal tableau T, consider the sequence a defined by $a_{n}=T(n, 0)$. Then T is the Pascal tableau corresponding to a since Lemma 1 says that the sequence $T(*, n+1)$ is the sum sequence of $T(*, n)$. Thus we have a map

$$
\Lambda: M^{\mathbb{N}} \longrightarrow M^{\mathbb{N} \times \mathbb{N}}
$$

that maps the sequences bijectively to the set of Pascal tableaus.
In a more informal way we get a Pascal tableau from a sequence a by the following procedure:

- Write the sequence a as a column.
- For $k \geq 1$ construct column k from column $k-1$ as its sum sequence.
- Rotate this scheme by 45 degrees to the right to get the usual triangle shape.

For the constant sequence with value 1 the intermediate matrix is

$a^{(0)}$	$a^{(1)}$	$a^{(2)}$	$a^{(3)}$	$a^{(4)}$	$a^{(5)}$	$a^{(6)}$	$a^{(7)}$	\ldots
1	1	1	1	1	1	1	1	
1	2	3	4	5	6	7	8	
1	3	6	10	15	21	28	36	
1	4	10	20	35	56	84	120	
1	5	15	35	70	126	210	330	
1	6	21	56	126	252	462	792	
1	7	28	84	210	462	924	1716	
1	8	36	120	330	792	1716	3432	
\vdots								\ddots

We recover the original Pascal triangle.
From Propositions 1 and 2 we immediately conclude:
Corollary 1 Let $a \in M^{\mathbb{N}}$ be a sequence. Then for all integers $n, q, r \geq 0$

$$
\sum_{i=0}^{q}\binom{q+r-i}{r} a_{i}^{(n)}=a_{q}^{(n+r+1)} .
$$

And Corollary 2 of Proposition 1 yields an explicit expression of the tableau entries by the generating series and binomial coefficients:

Corollary 2 Let $a \in M^{\mathbb{N}}$ be a sequence and T be the corresponding Pascal tableau. Then for $m \geq n \geq 1$

$$
T(m, n)=\sum_{k=0}^{m-n}\binom{m-1-k}{n-1} a_{k} .
$$

