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1 Some Differential Calculus

Let k be a commutative ring with 1. (However the main results require k to
be a field of characteristic 0.) Let R = k[X] be the polynomial ring in the
indeterminates X = (Xi,...,X,). The ring R is graded by the degree of a

polynomial:
R=EPRa.
deN

Let Y = (Y1,...,Y,) be another set of indeterminates and S = k[X,Y] the
extended polynomial ring. It is bigraded by the degrees in X and Y:

S = @Sde.

d,eeN

In a natural way Sg = Ry.
We consider the derivation

n
D:S— S, DF=Yi0F+ - +Y,0,F =) Y,0,F,
v=1

where 0, is the derivation by X,. The effect of D on a monomial
(1) F =Xyl =xo...xomyfr. . yp

is
n
Y,
DF = —F.
Z Qv X,
v=1
This expression seems to be in the quotient ring S[1/X1,...,1/X,], however
the denominators cancel out except in the term with coefficient «,, = 0. The
effect of D is “replace one factor X, by «,Y,, for each v.”



Sometimes (for d > 1) we use an explicit denomination for the restriction
Dge = D|5’de: Sde — Sd—l,e+1a

in particular
Ddoi Rd — Sdfl,l-

Remark We’ll occasionally encounter the simpler differential operator
R— R, f— X101f + -+ 4+ X,,0,f. Its effect on the homogeneous
part Ry is simply multiplication by the integer d, as is easily seen by
applying it to the monomials X. (See also Proposition [2)

The group G = GL, (k) of invertible n x n-matrices acts on the variables
X and Y separately. The actions on S and Sy; are linear and correspond
to the contragredient action of the natural action on k™. These actions of G
extend to S, resulting in a group of k-algebra automorphisms.

Proposition 1 The derivation D is G-equivariant. In other words
D(g-F)=g-DF
forallge G and F € S.

Proof. Let the linear action of g € G on the indeterminates be given be the
equations

n n
g-Xi:Zainj andg-Y;:Zainj
j=1 J=1
Since D is k-linear it suffices to prove the assertion for monomials. So let F'
be given by equation . Then

g-F=(g-X1)" (g Xn)*(g- Y1) -+ (g Yn)Pr,

v=1 =1 t#1 s=1
n n n
_ Bs . v
t=1 s=1 v=1i=1
n 1 n
= (g : F) Zai X ZG/ZI/YI/
- 9O
=(g-F ai——| = FY -~ ) =g -DF
00T el (ZX)g




The substitution Y +— X defines a G-equivariant k-algebra homomor-
phism o: S — R with ¢(Sg.) = Rgse. For a monomial FF = X°Y# € S,
(with oy + -+ an, =d, B1+ -+ Bn =€) we have

(coD)F ZX (0, F)(X,X) Za,, (X,X)=dF(X,X)

v=1

(where d denotes the integer, not a differential). Since D and o both are
linear this equality holds for arbitrary F' € Sge:

Proposition 2 0o D =do on Sy for all d, e € N.

In other words the following diagram commutes:

Sde

Sd—1,e+1

g

Rire—g 7 Hate

o

Corollary 1 aoDl—( ),aonSdefor0<z<dandalle€N

Proof. The proof consists of the following commutative diagram: <

Sde L Sd—l,e—i—l - T D Sd—i,e+i
O'{ JO’ g

2 The Clebsch-Gordan Isomorphism

Assume n = 2. Thus G = GLy(k) consists of the 2 x 2-matrices whose
determinant is invertible in k. We use the distinguished polynomial

A= XY — XoY7 € 511

Lemma 1 For g € GLy(k) we have g - A = A, in other words, A is a

relative invariant of weight —1.

det g



b
d
the multiplicative group of invertible elements of k. The explicit formulas
for the action on the indeterminates are

d b

Proof. Let g = (Z ) € GLa(k) with determinant 0 = det g = ad—bc € k*,

g-X1= 5X1 - 5X2, g-Xo= —§X1 + %Xm
and analogously for Y7, Ys. Then
g-A=(g-X1)(g-Y2) — (9 X2)(g9- Y1)
= 5% [(dX1 = bXo)(—cY1 + aY2) — (—cXi + aXp)(dY1 — bY2)]
= 5—12 0X1Y1 + 0X1Ys — 0XaVh + 0XoY5]
1
=z 4.

We assume d > e and 0 < ¢ < e. For f € Rgie_o; we have
D¢ if € Sd—i,e—i- Multiplying by A’ € S;; we get

A'DTi f e Sy fori=0,... €.
This defines linear maps
@it Raye—2i — Sae, [ A'D'f.

Proposition 3 The maps p; are relatively G-equivariant of weight i, that
18

ilg- f) = (detg)' g - wi(f)
for all g € GLo(k) and f € Rgie—9;-

Proof. For g € GLy(k) with 6 = detg and f € Rgy._2; we have

g-@ilf)=(g-A")(g-D'f) = (%Ai)DH(g - f) = %%(9 - f)

by Lemma [T and Proposition [I} <

Remark The maps ¢; seem to be artificial constructs. However they are
equivariant for SLa(k) and thus embed some (irreducible if %k is a
field of characteristic 0) SLy-modules of type R; into the SLs-module
Sie =2 Rg ® Re.



We combine the maps ¢; and get the Clebsch-Gordan map
O: Ryye ® Raye 2@+ ® Ry—e — Sge,
(fo,---, fe) = wo(fo) + -+ pe(fe)-

We know that @ is linear and S Ls-equivariant.

Theorem 1 (Sylvester 1878) Let k be a field of characteristic 0. Then
the Clebsch-Gordan map ® is an SLs-equivariant isomorphism.

Proof. (Springer [4]) The dimensions are equal:

dim(Rd+e@"'@Rd—e):(d+e+1)+"'+(d_e+1)

=i<d+e+1—2z'>=(e+1)<d+e+1)—2267
i=0 1=0

=(e+1)(d+e+1)—e(e+1)

=(d+1)(e+1) =dim Sge

It only remains to prove that ® is injective. Let (fo, ..., fe) € ker ®. Thus

e
(2) 0=> A'Df;.
i=0
The substitution homomorphism o : Y — X yields 0A? = 0 for ¢ > 1, and
we get
0=(coD%fo=c¢elafo=celfo
after applying e times Proposition [2| This implies fy = 0.
Now in Equation one factor A cancels out, leaving
€ . .
0= Z Az—l De—Zfi .
i=1
The same reasoning shows that (e — 1)! fi =0, or f; = 0.

Proceeding by induction we conclude that all f; = 0 for ¢ = 0,...,e.
Thus the kernel of ® contains 0 only. <&

The theorem describes (in characteristic 0) the decomposition of the S Lo-
module Sy, = Ry ® R, into irreducible components. In a more old-fashioned
way it may be expressed as

Corollary 2 Fach F € Sy has a unique decomposition
€ . .
F(X,Y) =) AX,Y) (D' fi)(X,Y)
i=0

with f; € Ryye—2i-



This expression involves the powers of the differential operator D. Here
is a formula for their effect on monomials:

Proposition 4 The power DI of D : S — S acts on the monomial
XTXS5Y!Y3 by the formula

I /s ! | . .
: j r! s! _ _ _
D’ (X{X;Ylt}au) — Z <V> (T — ] " V)' (S — V)'X{ J+VX§ Vylt-i-] I/Y2’u+lj'

v=0

Proof. The formula is obviously true for j = 0. Proceeding by induction we
assume that it is true for j — 1. Then

DY(X]X3Y{Yy') = D(D'~H(X]X5Y('Yy"))

-1 .

J— 1 r! s! r—j+14v — t+j—1—v

=D XXy Ty
[ 0< v )(r—j+1+u)!(s—u)! ! 2 2

7j—1 .
_ J—1 . r! s! r—Jj+v ys—vy lti—vy utv
= [( , >(T_‘7+1+y)(r—j+1+u)!(s—y)'Xl X5y, Y,
J

v=0
(e g
— 3 (j - 1) a ! XTIty xsmvyttiTvyuty
=\ v Jr—j+v)(s—v) ! ! ’
J j—1 rl s! —jt+v ys—vyttj—v
+ (V — 1> (r—j+uv)(s— V)!X{ S

i1\ (i1 r! S it gt
= XXy Ty
(001 Co)l ermasa ity

I /i | I A .
_ J r S r—j+v yrs—vyAtti—vy ut
_Z< >(r—j+v)!(s—y)!X1 Xy A

3 Cayley’s (2-Operator

The f; in Corollary [2] have an explicit description in terms of F' using a
suitable differential operator. The corresponding formula was already given
by Cayley [I] in 1856, and proved by Sylvester [6], see Corollary [5| below.
We continue with n = 2 (although Q makes sense for arbitrary n). We
consider the ring S = k[X,Y] = k[X1, X2,Y1,Y5] and denote the partial



derivatives with respect to X; by 0; = 0/0X; and with respect to Y; by
0; = 0/3Y;. Then we define the differential operator

N:5— S as 928152—5182.

Note that the partial derivatives commute. Obviously the operator 2 is k-
linear, and (Sge) C Sg—1,c-1. Its effect on a product yields a somewhat
obscure formula (that however in certain special situations will turn out as
useful): Let Fy, F5 € S. Then
Q(F1Fy) = 0102(F1 Fy) — 0109(F1 Fy)
= 01(0a(F1) Fa + F102(Fy)) — 01(02(F1) Fa + F102(F3))
= 8152(F1)F2 + 52(F1)81 (Fz) + 81(F1)52(F2) + F18152(F2)
— 0105(F1)Fy — 0o(F1)01(F2) — 01(F1)02(F2) — F10105(F)

Collecting similar terms we get the product rule for €, statement (i) of the
following lemma:

Lemma 2 (i) For F1,F, € S

(?IFI O Fy
O Fy O Fy

OF, O F;

Q(F1Fy) = Q(Fy) Fa + F1L Q(F) + OoF, Oy b

(ii) QA =i (i+1) AL € 8,11, in particular Q(A) =2 € Spy = k.
(iii) For F € Sy

QA'F)=i(d+e+i+1) A" F + A'Q(F)

(iv) For f € Ry ‘ 4
QA =i(d+i+1)ATLf
Proof. (i) For F; = A" we get (remember A = XY — X5Y))
O(F1) = iYo AL 91(F)) = —iXpATE
K(F)) = —iV1ATE  5h(F) =iX;A!
Hence

Q(FY) = 0102(F)) — 9102(F1) = 01 (i X A7) + 0, (1Y AT
=i AT 4 (- 1) X VAT 1 AT i (= 1) XoY AT
=2%AT (i - 1) [ X1 Y - XoVi AT =i (i + 1) AT



(iii) For F; = A’ and I, = F € Sy, we get

7 (§1F1 O Fy
Oy O9Fy

OF, OF,

< = Yo AT F + YA F
F, DoF, 1Yo b+ 1Y 1

— (X AT O F — iX1 AT O F)
= iATV X101 + Xo0s + V10) + Yads)(F)
=i(d+e)ATF

using the remark in Section [Ij Combining (i) and (ii) yields

QA F) =QAYF+ A QF) +|...|—|...|
=i(d+e+i+1) AT+ ATQ(F)

(iv) follows from (iii) setting e = 0 and using Q(f) = 0. &

We are going to prove that () is relatively equivariant for the action of

G = GLy(k). To this end we again consider an element g = <(Z Z) €eG

with determinant § = det g = ad — be. Its effect on a polynomial F' € k[X,Y]
is
(9-F)(X1,X2,Y1,Y2) = F(g- X,g-Y)

where
d b c a d b c a
(9-X,9Y)= (5X1 — 5 X2 Xt 5 X, SV - oY, o 5Y2>
This yields
- T b~ a ~
Do(g - F) = —531F+ 532F] (9-X,9-Y)
i b a
Oa(g- F) = —531F+ 532F] (9-X,9-Y)
8152(9 . F) = _*568181F+ 653281F+ 5581(92F 556282F:| (g -X,9- Y)
5182(g . F) = _ 558181F+ 56(9281F+ 558182F_ (5(58282F:| (g - X,g- Y)
[ad be be ad =
Q(g . F) = 52 8182F 528281F + 52 8261F 52 (9182F (g -X,g- Y)
Z%QF(Q'X,Q-Y)
1
=—-q- -QF.
59

This last equation may be stated as follows:



Proposition 5 The operator ) is relatively equivariant for the action of
G = GLy(k) with weight —1.

Corollary 3 The operator S is relatively equivariant for the action of
G = GLs(k) with weight —i.

We again assume d > e. Then for each i = 0,...,e we have a pair of
relatively G-equivariant linear maps

@it Riye—ni — Sge, [ A'DT'f
of weight 7, and
Qz’
Sde — Sa—ie—i — Riye-2i

of weight —i. This suggests the questions: What is

e = (000 oy on Ryye o;?

o ;= ;o (oo on Sy ?
Note that n; and v; are G-equivariant.
Examples Let us start with the easy cases of ;.

1. For i = 0 we have to consider 79 = 0 0 Q% 0 99 = o 0 D° on
Rire € Siyep- This was calculated in Corollary 1 of Proposi-

tion ooD¢ = (djl'!e)! 1 on Sgye,- Hence

(d+e)!

no(f) = d!

f forall f e Ryie.
2. Fori = 1 we have to consider 1y = 0of2op; on Rgte—2 € Sgte—2,0-

©1 Q o
Riie—2 = Sge — Sqg—1,e-1 — Rije—2

where ¢1(f) = AD*'f, and D*"'f € Sy 1.-1. Applying
Lemma 2] (iii) with i = 1 we get

Up1f) = (d+e) DI+ AQDH).

Using o(A) = 0 and the formula for o o D*~! from Corollary 1 of
Proposition [2] this results in

(d+e—2)!

-1

m(f) =o(Qe1f)) = (d+e)o(D'f) = (d +e)

In both examples n; is the identity map up to an integer factor. This
observation generalizes to:



Theorem 2 For alld,e,i € N, 0<i<e<d,
M = Vdeil on Ryie—2;

where Yge; € 7 is given by the formula

il (d+e—i+1)
d—i) d+e—2i+1"

Vdei =

The proof follows. Note that the coefficients v4; are integers, so the result
is true over an arbitrary commutative ring k. However in this general case
many of the 74.; may be 0.

In the general case 7); is the composition

Rite2i 2% Sae ELR Sd—ie—i — Rate—2i
f — AiDe—if
Since D¢ f € Sd—ic—i the first application of €2 yields (by Lemma
QA'DT f)y =i(d+e—i+1)ATID T f £ ATQ(DT f)

Applying € iteratively i times, the second term on the righthand side be-
comes confusing. Fortunately with don’t need to bother with it due to the
following lemma;:

Lemma 3 Let f € Rgie—o;. Then for each j = 0,...,i there is an
Fj € Sq_i—je—i—j such that

i! (d+e—i+1)!
(=N (d+e—i+1—j)!
Proof. For j = 0 the assertion holds with Fp = 0.

Now assume that 7 > 1, and by induction that the assertion is proved
for 7 — 1 instead of j. That is

Qj(AiDefif) — Aiijefif + Ai*jJrl‘Fj.

il (d+e—i+1)

Qj—l AiDe—i —
( /) (i—j+1) (d+e—it+2—j)

Ai_j+1De_if—|—Ai_j+2Fj,1.

Applying € to this equation and using (iii) of Lemma [2| we get

o il (d+e—it1) o
V(A D = Q(AY J+1 et
( D= are—irz_ X /)

+ Q(Ai—j-i-?Fj_l)

il (d+e—i+1)!

T li—j+D) (dte—it2—j)
x[i—j+1)(d—i+e—i+i—7+2)AIDTf+ ATITIQDT )]
+(i—j+2)(d—i+e—i+i—j+)ATTE_ + ATITQF; )]

10



The first (of four) summands yields
il (d+e—i+1)!

G—j) (dte—i+t1—j)

ATIpeTiy,
The remaining three summands, up to integer multiples, are
Ai—j—l—lQ(De—if), Ai_j—HFj,l, Ai—j—i—lA Q(-ijl)a

and A
QD) Fio, AQ(Fj-1)

are in Sd*ifl,efifL &

For the proof of the theorem we apply the lemma with j = ¢ and get

(d+e—i+1)!

i DE—T £ — )
VADT) = =)

D¢ f + AF;.

Using 0(A) = 0 and Corollary 1 of Proposition [2| we finally get

(d+e—i+1)! (d+e—29)!
(d+e—-2i+1)!  (d—1i)
i (d+e—i+1)!

T (d—i) dfe—2i+1 /

ni(f) = 0 0o QA D f) = 4! f+0

and the proof of the theorem is complete. <&

Examples The formula in the theorem reproduces the values v4.0 and ~yge1
from above. As another example take

el d+D) el(d+ 1)
Tdee = G eNd—e+1 (d—e+ 1)

We might also look at the compositions

@i QI o
Rite—2i — Sqge — Sd—je—j — Riye—2;

for j # 4. In the case j < i we use Lemma |3| (and abbreviate the integer
coefficient by ¢):

Y (pi(f))=cA"™IDf + AT = A1) S 0.
Furthermore since f is independent from the indeterminates Y we have
QL (pil£) = Q¢ f) =0,
hence 7 (¢;(f)) = 0 for j > 4. This proves:

11



Corollary 4 Ford,e,i e N,0<i<e<d,andjeN,0<j<e, j#i,
coop;=0 on Riye_o;.

Now, if k is a field of characteristic 0, by Corollary [2| (or Theorem
each F' € Sy, has a unique decomposition as

F =3 ¢i(fi) with fi € Rave-ni.
1=0

Theorem [2] and Corollary [4] allow to express the f; in terms of F: For
7 =0,...,e we conclude that

e

ooV (F) =Y oo opi(fi) =ni(f;) = Vaej I
=0

Hence fj =00 Qj(F)/'ydej, if v4ej € k™, thus

e
1 .
F:E p; 000 Q(F).
Z»:O’Ydez’ ’ ( )

We have proved

Corollary 5 (Cayley-Sylvester) Let k be a field of characteristic 0. Then
each F' € Sy, decomposes as

F=Y —w(F)

i=0 Ydei
where 1;(F) = A" D*(0 0 U (F)) € ¢i(Rare—2:)-

Examples Let us look at the decomposition of Corollary [5] for some simple
special cases.

e For I’ € S11 we have the coefficients 119 = 2 and 111 = 2, hence
F = S 00(F) + 3 a(F)

e For I’ € So1 we have the coefficients 2190 = 3 and 211 = 3, hence
F = 2 do(F) + 5 1 (F).

e For F' € S5 we have the coefficients 209 = 12, 991 = 8, and
Y222 = 12, hence

1 1 1
F:ﬁi/}o(F)‘Fgwl(F)‘Fﬁ%(F)-

e For F' € S35 we have the coefficients 359 = 20, 321 = 15, and
Y320 = 24, hence

1 1 1
F:?O¢O(F)+B¢1(F)+ﬂw2(lr)'

12



4 Transvection

We consider the map

fit R x Re — Sae, il f,h) = f(X)h(Y) = fh.
(That is, we multiply f ‘with h after replacing the indeterminates X7, Xo
by Y1,Ys in h, yielding h = h(Y').) In characteristic 0 and for 1 < e < d
Corollary [5] gives a unique decomposition of this product as

e

ﬂ(fa h) = Z L - Wi oTi(f? h) with Ti(f? h’) =00 QZ Oﬂ(f? h) € Rd+€*2i'

i—0 dei

This definition of the 7; also makes sense for d < e and in any characteristic:
Definition For all d,e > 0 the map
7yt Ra X Re — Rage—2i,  7i(f,h) =0 0Q o i(f,h)
is called the i*" transvection, its images i*" transvectants.

If 2i > d + e, then 7; = 0. The following commutative diagram illustrates
the definition of the maps 7;:

Rd X Re
i
Sde Sd—i,e—z' Rd+e—2i

Qi

Clearly the maps 7; are bilinear and relatively G-equivariant of weight —i
because i is bilinear and equivariant, €2° is linear and relatively equivariant
of weight —¢, and o is linear and equivariant.

The most elementary special case is

To(fah):Joﬂ(fah):U(fﬁ):fhERdJre

so the 0" transvectant of two binary forms is simply their product. For i = 1
we use Lemma [2] and get

W) = 0uf oo — ouf i — |01 Oih
Q(fh) = 01f Ooh — Do f O1h = Oof Gy’
71(f,h) = o(QUfh)) = 01 f Oeh — Dof O1h = g;; g;z € Riye—2.

For the 2" transvectant we compute
Q2(fh) = Q81 f Doh) — Q(Dof D1D)
= 02f Oy h — Do01f B1Osh — D1Dof DOk + O2f Oy B,
mo(f,h) = 02 f 05h — 2010of D102h + 05 f Oih € Ryye—4.

13



Proposition 6 The 0%, 1%, and 2" transvectants of two binary forms
f€Rgand g € R, are

(1) 7o(f,h) = fh € Rare,
(ii) 71(f,h) = O1f Ooh— Oaf O1h € Ryyc—2, the Jacobian of the pair (f,h),
(iii) 72(f,h) = 02 f O3h — 20102f D1O2h + 03 f O?h € Ryre_4.

Corollary 6 The 0™, 1%, and 2™ transvectants of a binary form f € Ry
with itself are

(i) 7o(f, f) = f* € Raa,
(i) 71(f, f) =0 € Rag—2,
(iii) 7o(f, f) = 2[0?f 03 f — (0102f)?] € Rag_4 (twice the Hessian,).
Examples For f = aOX%+a1X1X2+a2X22, h = b0X12+b1X1X2+b2X22 € Ry
we get

e 0(f,h) = aobon—&—(aobl —i—albo)XfXg—l—(a0b2+a1b1+a2b0)X12X22
+(arby + azby) X1X5 + a2be X3 € Ry,

e T(f,h) =
(2((10X1)+ a1X2)(b1 X1 + 262 X5) — (a1 X1 + 2a2X2) (200 X1 + b1 X3)
= 2 (aphy — a1bo) X? + 4 (apbz — azbg) X1 X2 + 2 (a1by — agh) X2
€ Ro,

o 7o(f, h) =4(agbs + azbg) — 2a1by € Ry = k,

o 7o(f,f) =8apaz —2ai € Ry = k.

To explore the symmetry properties of the transvections 7; we con-
sider the involution ¢ : X; <— Y; of the k-algebra S = Ek[X,Y], that is
e(F(X,Y)) =F(Y,X).

Lemma 4 For € we have
(i) Qioe= (1) eoQ.
(ii) The restriction of o oe to the subalgebra R = k[X] is the identity map.
(ili) coe=0co0co0 on S.

Proof. (i) It suffices to prove the assertion for i = 1. For this we consider the
monomial F' = Xf‘lXQa?YlBlYQBZ. Then

F& aibo X x5y Y - Bras X X5y g
Sy an BV e X x el g ap vyt x Pt x e
F & Yy X Xy
'2} ,31(12Y1a1Y2a2_1X161_1X22 . 52a1}/1a1—1y2042X151X2,32—1'

14



Hence Qoe = —co (.

(ii) For f € R we conclude o(e(f)) =o(f(Y)) = f(X) = f.

(iii) Since o and € are k-algebra homomorphisms it suffices to prove the
assertion for the generators X; and Y;.

For X; we have o(X;) = X;, and by (ii) both sides evaluate to Xj.

For Y; we have o(Y;) = X;, thus again both sides of the equation evaluate
to Xl &

Proposition 7 For f € Ry, h € Re,
7i(h, ) = (=1)" 7(f, h).
Proof. Using Lemma [ we get
Ti(h, f) =0 o V(hf) =0 Q oe(fh) = (=1) g oe o Q(fh)
= (=1)'coeoooQi(fh) = (=1 o oe(r(f, h))
= (=1)"(ni(f,h))

since 7;(f,h) € R. ¢
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