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1 Some Differential Calculus

Let k be a commutative ring with 1. (However the main results require k to
be a field of characteristic 0.) Let R = k[X] be the polynomial ring in the
indeterminates X = (X1, . . . , Xn). The ring R is graded by the degree of a
polynomial:

R =
⊕
d∈N

Rd .

Let Y = (Y1, . . . , Yn) be another set of indeterminates and S = k[X,Y ] the
extended polynomial ring. It is bigraded by the degrees in X and Y :

S =
⊕
d,e∈N

Sde .

In a natural way Sd0 = Rd.
We consider the derivation

D : S −→ S, DF = Y1∂1F + · · ·+ Yn∂nF =

n∑
ν=1

Yν∂νF,

where ∂ν is the derivation by Xν . The effect of D on a monomial

(1) F = XαY β = Xα1
1 · · ·X

αn
n Y β1

1 · · ·Y
βn
n

is

DF =

n∑
ν=1

αν
Yν
Xν

F.

This expression seems to be in the quotient ring S[1/X1, . . . , 1/Xn], however
the denominators cancel out except in the term with coefficient αν = 0. The
effect of D is “replace one factor Xν by ανYν , for each ν.”
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Sometimes (for d ≥ 1) we use an explicit denomination for the restriction

Dde = D|Sde
: Sde −→ Sd−1,e+1,

in particular
Dd0 : Rd −→ Sd−1,1.

Remark We’ll occasionally encounter the simpler differential operator
R −→ R, f 7→ X1∂1f + · · · + Xn∂nf . Its effect on the homogeneous
part Rd is simply multiplication by the integer d, as is easily seen by
applying it to the monomials Xα. (See also Proposition 2.)

The group G = GLn(k) of invertible n×n-matrices acts on the variables
X and Y separately. The actions on S10 and S01 are linear and correspond
to the contragredient action of the natural action on kn. These actions of G
extend to S, resulting in a group of k-algebra automorphisms.

Proposition 1 The derivation D is G-equivariant. In other words

D(g · F ) = g ·DF

for all g ∈ G and F ∈ S.

Proof. Let the linear action of g ∈ G on the indeterminates be given be the
equations

g ·Xi =
n∑
j=1

aijXj and g · Yi =
n∑
j=1

aijYj

Since D is k-linear it suffices to prove the assertion for monomials. So let F
be given by equation (1). Then

g · F = (g ·X1)α1 · · · (g ·Xn)αn(g · Y1)β1 · · · (g · Yn)βn ,

D(g · F ) =
n∑
ν=1

Yν∂ν

(
n∏
i=1

(g ·Xi)
αi

)
n∏
s=1

(g · Ys)βs

=
n∑
ν=1

Yν

 n∑
i=1

αi(g ·Xi)
αi−1aiν

∏
t6=i

(g ·Xt)
αt

 n∏
s=1

(g · Ys)βs

=

n∏
t=1

(g ·Xt)
αt

n∏
s=1

(g · Ys)βs
[

n∑
ν=1

n∑
i=1

αiaiν
Yν

g ·Xi

]

= (g · F )

[
n∑
i=1

αi
1

g ·Xi

n∑
ν=1

aiνYν

]

= (g · F )

[
n∑
i=1

αi
g · Yi
g ·Xi

]
= g ·

(
F

n∑
i=1

αi
Yi
Xi

)
= g ·DF.
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The substitution Y 7→ X defines a G-equivariant k-algebra homomor-
phism σ : S −→ R with σ(Sde) = Rd+e. For a monomial F = XαY β ∈ Sde
(with α1 + · · ·+ αn = d, β1 + · · ·+ βn = e) we have

(σ ◦D)F =
n∑
ν=1

Xν(∂νF )(X,X) =
n∑
ν=1

ανF (X,X) = dF (X,X)

(where d denotes the integer, not a differential). Since D and σ both are
linear this equality holds for arbitrary F ∈ Sde:

Proposition 2 σ ◦D = d σ on Sde for all d, e ∈ N.

In other words the following diagram commutes:

Sde

Rd+e
-

d · 1

-D

??

Sd−1,e+1

Rd+e

σ σ

Corollary 1 σ ◦Di = d!
(d−i)! σ on Sde for 0 ≤ i ≤ d and all e ∈ N.

Proof. The proof consists of the following commutative diagram: 3

Sde

Rd+e
-

d · 1

-D

?
σ

?

Sd−1,e+1

Rd+e

σ

-D

-
(d− 1) · 1

· · ·

· · ·

-D

-

Sd−i,e+i

(d− i+ 1) · 1 Rd+e

?
σ

2 The Clebsch-Gordan Isomorphism

Assume n = 2. Thus G = GL2(k) consists of the 2 × 2-matrices whose
determinant is invertible in k. We use the distinguished polynomial

∆ = X1Y2 −X2Y1 ∈ S11.

Lemma 1 For g ∈ GL2(k) we have g ·∆ = 1
det g ∆, in other words, ∆ is a

relative invariant of weight −1.
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Proof. Let g =

(
a b
c d

)
∈ GL2(k) with determinant δ = det g = ad−bc ∈ k×,

the multiplicative group of invertible elements of k. The explicit formulas
for the action on the indeterminates are

g ·X1 =
d

δ
X1 −

b

δ
X2, g ·X2 = − c

δ
X1 +

a

δ
X2,

and analogously for Y1, Y2. Then

g ·∆ = (g ·X1)(g · Y2)− (g ·X2)(g · Y1)

=
1

δ2
[(dX1 − bX2)(−cY1 + aY2)− (−cX1 + aX2)(dY1 − bY2)]

=
1

δ2
[0X1Y1 + δX1Y2 − δX2Y1 + 0X2Y2]

=
1

δ
∆.

3

We assume d ≥ e and 0 ≤ i ≤ e. For f ∈ Rd+e−2i we have
De−if ∈ Sd−i,e−i. Multiplying by ∆i ∈ Sii we get

∆iDe−if ∈ Sde for i = 0, . . . , e.

This defines linear maps

ϕi : Rd+e−2i −→ Sde, f 7→ ∆iDe−if.

Proposition 3 The maps ϕi are relatively G-equivariant of weight i, that
is

ϕi(g · f) = (det g)i g · ϕi(f)

for all g ∈ GL2(k) and f ∈ Rd+e−2i.

Proof. For g ∈ GL2(k) with δ = det g and f ∈ Rd+e−2i we have

g · ϕi(f) = (g ·∆i)(g ·De−if) = (
1

δi
∆i)De−i(g · f) =

1

δi
ϕi(g · f)

by Lemma 1 and Proposition 1. 3

Remark The maps ϕi seem to be artificial constructs. However they are
equivariant for SL2(k) and thus embed some (irreducible if k is a
field of characteristic 0) SL2-modules of type Rj into the SL2-module
Sde ∼= Rd ⊗Re.

4



We combine the maps ϕi and get the Clebsch-Gordan map

Φ: Rd+e ⊕Rd+e−2 ⊕ · · · ⊕Rd−e −→ Sde,

Φ(f0, . . . , fe) = ϕ0(f0) + · · ·+ ϕe(fe).

We know that Φ is linear and SL2-equivariant.

Theorem 1 (Sylvester 1878) Let k be a field of characteristic 0. Then
the Clebsch-Gordan map Φ is an SL2-equivariant isomorphism.

Proof. (Springer [4]) The dimensions are equal:

dim(Rd+e ⊕ · · · ⊕Rd−e) = (d+ e+ 1) + · · ·+ (d− e+ 1)

=

e∑
i=0

(d+ e+ 1− 2i) = (e+ 1)(d+ e+ 1)− 2

e∑
i=0

i

= (e+ 1)(d+ e+ 1)− e(e+ 1)

= (d+ 1)(e+ 1) = dimSde

It only remains to prove that Φ is injective. Let (f0, . . . , fe) ∈ ker Φ. Thus

(2) 0 =

e∑
i=0

∆iDe−ifi .

The substitution homomorphism σ : Y 7→ X yields σ∆i = 0 for i ≥ 1, and
we get

0 = (σ ◦De)f0 = e!σf0 = e! f0

after applying e times Proposition 2. This implies f0 = 0.
Now in Equation (2) one factor ∆ cancels out, leaving

0 =

e∑
i=1

∆i−1De−ifi .

The same reasoning shows that (e− 1)! f1 = 0, or f1 = 0.
Proceeding by induction we conclude that all fi = 0 for i = 0, . . . , e.

Thus the kernel of Φ contains 0 only. 3

The theorem describes (in characteristic 0) the decomposition of the SL2-
module Sde ∼= Rd⊗Re into irreducible components. In a more old-fashioned
way it may be expressed as

Corollary 2 Each F ∈ Sde has a unique decomposition

F (X,Y ) =

e∑
i=0

∆(X,Y )i(De−ifi)(X,Y )

with fi ∈ Rd+e−2i.
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This expression involves the powers of the differential operator D. Here
is a formula for their effect on monomials:

Proposition 4 The power Dj of D : S −→ S acts on the monomial
Xr

1X
s
2Y

t
1Y

u
2 by the formula

Dj(Xr
1X

s
2Y

t
1Y

u
2 ) =

j∑
ν=0

(
j

ν

)
r!

(r − j + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2 .

Proof. The formula is obviously true for j = 0. Proceeding by induction we
assume that it is true for j − 1. Then

Dj(Xr
1X

s
2Y

t
1Y

u
2 ) = D(Dj−1(Xr

1X
s
2Y

t
1Y

u
2 ))

= D

[
j−1∑
ν=0

(
j − 1

ν

)
r!

(r − j + 1 + ν)!

s!

(s− ν)!
Xr−j+1+ν

1 Xs−ν
2 Y t+j−1−ν

1 Y u+ν
2

]

=

j−1∑
ν=0

[(
j − 1

ν

)
(r − j + 1 + ν)

r!

(r − j + 1 + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2

+

(
j − 1

ν

)
(s− ν)

r!

(r − j + 1 + ν)!

s!

(s− ν)!
Xr−j+1+ν

1 Xs−ν−1
2 Y t+j−1−ν

1 Y u+ν+1
2

]
=

j−1∑
ν=0

(
j − 1

ν

)
r!

(r − j + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2

+

j∑
ν=1

(
j − 1

ν − 1

)
r!

(r − j + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2

=

j∑
ν=0

[(
j − 1

ν

)
+

(
j − 1

ν − 1

)]
r!

(r − j + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2

=

j∑
ν=0

(
j

ν

)
r!

(r − j + ν)!

s!

(s− ν)!
Xr−j+ν

1 Xs−ν
2 Y t+j−ν

1 Y u+ν
2 .

3

3 Cayley’s Ω-Operator

The fi in Corollary 2 have an explicit description in terms of F using a
suitable differential operator. The corresponding formula was already given
by Cayley [1] in 1856, and proved by Sylvester [6], see Corollary 5 below.

We continue with n = 2 (although Ω makes sense for arbitrary n). We
consider the ring S = k[X,Y ] = k[X1, X2, Y1, Y2] and denote the partial
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derivatives with respect to Xi by ∂i = ∂/∂Xi and with respect to Yi by
∂̃i = ∂/∂Yi. Then we define the differential operator

Ω: S −→ S as Ω = ∂1∂̃2 − ∂̃1∂2.

Note that the partial derivatives commute. Obviously the operator Ω is k-
linear, and Ω(Sde) ⊆ Sd−1,e−1. Its effect on a product yields a somewhat
obscure formula (that however in certain special situations will turn out as
useful): Let F1, F2 ∈ S. Then

Ω(F1F2) = ∂1∂̃2(F1F2)− ∂̃1∂2(F1F2)

= ∂1(∂̃2(F1)F2 + F1∂̃2(F2))− ∂̃1(∂2(F1)F2 + F1∂2(F2))

= ∂1∂̃2(F1)F2 + ∂̃2(F1)∂1(F2) + ∂1(F1)∂̃2(F2) + F1∂1∂̃2(F2)

− ∂̃1∂2(F1)F2 − ∂2(F1)∂̃1(F2)− ∂̃1(F1)∂2(F2)− F1∂̃1∂2(F2)

Collecting similar terms we get the product rule for Ω, statement (i) of the
following lemma:

Lemma 2 (i) For F1, F2 ∈ S

Ω(F1F2) = Ω(F1)F2 + F1 Ω(F2) +

∣∣∣∣∂1F1 ∂̃1F2

∂2F1 ∂̃2F2

∣∣∣∣− ∣∣∣∣∂̃1F1 ∂1F2

∂̃2F1 ∂2F2

∣∣∣∣
(ii) Ω(∆i) = i (i+ 1) ∆i−1 ∈ Si−1,i−1, in particular Ω(∆) = 2 ∈ S00 = k.

(iii) For F ∈ Sde

Ω(∆iF ) = i (d+ e+ i+ 1) ∆i−1F + ∆i Ω(F )

(iv) For f ∈ Rd
Ω(∆if) = i (d+ i+ 1) ∆i−1f

Proof. (ii) For F1 = ∆i we get (remember ∆ = X1Y2 −X2Y1)

∂1(F1) = iY2∆i−1 ∂̃1(F1) = −iX2∆i−1

∂2(F1) = −iY1∆i−1 ∂̃2(F1) = iX1∆i−1

Hence

Ω(F1) = ∂1∂̃2(F1)− ∂̃1∂2(F1) = ∂1(iX1∆i−1) + ∂̃1(iY1∆i−1)

= i∆i−1 + i (i− 1)X1Y2∆i−2 + i∆i−1 − i (i− 1)X2Y1∆i−2

= 2i∆i−1 + i (i− 1) [X1Y2 −X2Y1] ∆i−2 = i (i+ 1) ∆i−1
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(iii) For F1 = ∆i and F2 = F ∈ Sde we get∣∣∣∣∂1F1 ∂̃1F2

∂2F1 ∂̃2F2

∣∣∣∣− ∣∣∣∣∂̃1F1 ∂1F2

∂̃2F1 ∂2F2

∣∣∣∣ = iY2∆i−1∂̃2F + iY1∆i−1∂̃1F

− (−iX2∆i−1∂2F − iX1∆i−1∂1F )

= i∆i−1[X1∂1 +X2∂2 + Y1∂̃1 + Y2∂̃2](F )

= i (d+ e) ∆i−1F

using the remark in Section 1. Combining (i) and (ii) yields

Ω(∆iF ) = Ω(∆i)F + ∆i Ω(F ) + | . . . | − | . . . |
= i (d+ e+ i+ 1) ∆i−1F + ∆i Ω(F )

(iv) follows from (iii) setting e = 0 and using Ω(f) = 0. 3

We are going to prove that Ω is relatively equivariant for the action of

G = GL2(k). To this end we again consider an element g =

(
a b
c d

)
∈ G

with determinant δ = det g = ad−bc. Its effect on a polynomial F ∈ k[X,Y ]
is

(g · F )(X1, X2, Y1, Y2) = F (g ·X, g · Y )

where

(g ·X, g · Y ) = (
d

δ
X1 −

b

δ
X2,−

c

δ
X1 +

a

δ
X2,

d

δ
Y1 −

b

δ
Y2,−

c

δ
Y1 +

a

δ
Y2)

This yields

∂̃2(g · F ) =

[
− b
δ
∂̃1F +

a

δ
∂̃2F

]
(g ·X, g · Y )

∂2(g · F ) =

[
− b
δ
∂1F +

a

δ
∂2F

]
(g ·X, g · Y )

∂1∂̃2(g · F ) =

[
− b
δ

d

δ
∂1∂̃1F +

b

δ

c

δ
∂2∂̃1F +

a

δ

d

δ
∂1∂̃2F −

a

δ

c

δ
∂2∂̃2F

]
(g ·X, g · Y )

∂̃1∂2(g · F ) =

[
− b
δ

d

δ
∂̃1∂1F +

b

δ

c

δ
∂̃2∂1F +

a

δ

d

δ
∂̃1∂2F −

a

δ

c

δ
∂̃2∂2F

]
(g ·X, g · Y )

Ω(g · F ) =

[
ad

δ2
∂1∂̃2F −

bc

δ2
∂̃2∂1F +

bc

δ2
∂2∂̃1F −

ad

δ2
∂̃1∂2F

]
(g ·X, g · Y )

=
1

δ
ΩF (g ·X, g · Y )

=
1

δ
g · ΩF.

This last equation may be stated as follows:
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Proposition 5 The operator Ω is relatively equivariant for the action of
G = GL2(k) with weight −1.

Corollary 3 The operator Ωi is relatively equivariant for the action of
G = GL2(k) with weight −i.

We again assume d ≥ e. Then for each i = 0, . . . , e we have a pair of
relatively G-equivariant linear maps

ϕi : Rd+e−2i −→ Sde, f 7→ ∆iDe−if

of weight i, and

Sde
Ωi

−→ Sd−i,e−i
σ−→ Rd+e−2i

of weight −i. This suggests the questions: What is

• ηi = (σ ◦ Ωi) ◦ ϕi on Rd+e−2i ?

• ψi = ϕi ◦ (σ ◦ Ωi) on Sde ?

Note that ηi and ψi are G-equivariant.

Examples Let us start with the easy cases of ηi.

1. For i = 0 we have to consider η0 = σ ◦ Ω0 ◦ ϕ0 = σ ◦ De on
Rd+e ⊆ Sd+e,0. This was calculated in Corollary 1 of Proposi-

tion 2: σ ◦De = (d+e)!
d! 1 on Sd+e,0. Hence

η0(f) =
(d+ e)!

d!
f for all f ∈ Rd+e.

2. For i = 1 we have to consider η1 = σ◦Ω◦ϕ1 onRd+e−2 ⊆ Sd+e−2,0.

Rd+e−2
ϕ1−→ Sde

Ω−→ Sd−1,e−1
σ−→ Rd+e−2

where ϕ1(f) = ∆De−1f , and De−1f ∈ Sd−1,e−1. Applying
Lemma 2 (iii) with i = 1 we get

Ω(ϕ1f) = (d+ e)De−1f + ∆ Ω(De−1f).

Using σ(∆) = 0 and the formula for σ ◦De−1 from Corollary 1 of
Proposition 2 this results in

η1(f) = σ(Ω(ϕ1f)) = (d+ e)σ(De−1f) = (d+ e)
(d+ e− 2)!

(d− 1)!
f.

In both examples ηi is the identity map up to an integer factor. This
observation generalizes to:
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Theorem 2 For all d, e, i ∈ N, 0 ≤ i ≤ e ≤ d,

ηi = γdei 1 on Rd+e−2i

where γdei ∈ Z is given by the formula

γdei =
i!

(d− i)!
(d+ e− i+ 1)!

d+ e− 2i+ 1
.

The proof follows. Note that the coefficients γdei are integers, so the result
is true over an arbitrary commutative ring k. However in this general case
many of the γdei may be 0.

In the general case ηi is the composition

Rd+e−2i
ϕi−→ Sde

Ωi

−→ Sd−i,e−i
σ−→ Rd+e−2i

f 7→ ∆iDe−if

Since De−if ∈ Sd−i,e−i the first application of Ω yields (by Lemma 2)

Ω(∆iDe−if) = i (d+ e− i+ 1) ∆i−1De−if + ∆i Ω(De−if)

Applying Ω iteratively i times, the second term on the righthand side be-
comes confusing. Fortunately with don’t need to bother with it due to the
following lemma:

Lemma 3 Let f ∈ Rd+e−2i. Then for each j = 0, . . . , i there is an
Fj ∈ Sd−i−j,e−i−j such that

Ωj(∆iDe−if) =
i!

(i− j)!
(d+ e− i+ 1)!

(d+ e− i+ 1− j)!
∆i−jDe−if + ∆i−j+1Fj .

Proof. For j = 0 the assertion holds with F0 = 0.
Now assume that j ≥ 1, and by induction that the assertion is proved

for j − 1 instead of j. That is

Ωj−1(∆iDe−if) =
i!

(i− j + 1)!

(d+ e− i+ 1)!

(d+ e− i+ 2− j)!
∆i−j+1De−if+∆i−j+2Fj−1.

Applying Ω to this equation and using (iii) of Lemma 2 we get

Ωj(∆iDe−if) =
i!

(i− j + 1)!

(d+ e− i+ 1)!

(d+ e− i+ 2− j)!
Ω(∆i−j+1De−if)

+ Ω(∆i−j+2Fj−1)

=
i!

(i− j + 1)!

(d+ e− i+ 1)!

(d+ e− i+ 2− j)!
×
[
(i− j + 1)(d− i+ e− i+ i− j + 2)∆i−jDe−if + ∆i−j+1Ω(De−if)

]
+
[
(i− j + 2)(d− i+ e− i+ i− j + 1)∆i−j+1Fj−1 + ∆i−j+2Ω(Fj−1)

]
10



The first (of four) summands yields

i!

(i− j)!
(d+ e− i+ 1)!

(d+ e− i+ 1− j)!
∆i−jDe−if.

The remaining three summands, up to integer multiples, are

∆i−j+1Ω(De−if), ∆i−j+1Fj−1, ∆i−j+1∆ Ω(Fj−1),

and
Ω(De−if), Fj−1, ∆ Ω(Fj−1)

are in Sd−i−1,e−i−1. 3

For the proof of the theorem we apply the lemma with j = i and get

Ωi(∆iDe−if) = i!
(d+ e− i+ 1)!

(d+ e− 2i+ 1)!
De−if + ∆Fi.

Using σ(∆) = 0 and Corollary 1 of Proposition 2 we finally get

ηi(f) = σ ◦ Ωi(∆iDe−if) = i!
(d+ e− i+ 1)!

(d+ e− 2i+ 1)!

(d+ e− 2i)!

(d− i)!
f + 0

=
i!

(d− i)!
(d+ e− i+ 1)!

d+ e− 2i+ 1
f,

and the proof of the theorem is complete. 3

Examples The formula in the theorem reproduces the values γde0 and γde1
from above. As another example take

γdee =
e!

(d− e)!
(d+ 1)!

d− e+ 1
=

e! (d+ 1)!

(d− e+ 1)!

We might also look at the compositions

Rd+e−2i
ϕi−→ Sde

Ωj

−→ Sd−j,e−j
σ−→ Rd+e−2j

for j 6= i. In the case j < i we use Lemma 3 (and abbreviate the integer
coefficient by c):

Ωj(ϕi(f)) = c∆i−jDe−if + ∆i−j+1Fj = ∆ (. . .)
σ7→ 0.

Furthermore since f is independent from the indeterminates Y we have

Ω(Ωi(ϕi(f))) = Ω(c′ f) = 0,

hence Ωj(ϕi(f)) = 0 for j > i. This proves:
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Corollary 4 For d, e, i ∈ N, 0 ≤ i ≤ e ≤ d, and j ∈ N, 0 ≤ j ≤ e, j 6= i,

σ ◦ Ωj ◦ ϕi = 0 on Rd+e−2i.

Now, if k is a field of characteristic 0, by Corollary 2 (or Theorem 1)
each F ∈ Sde has a unique decomposition as

F =

e∑
i=0

ϕi(fi) with fi ∈ Rd+e−2i.

Theorem 2 and Corollary 4 allow to express the fi in terms of F : For
j = 0, . . . , e we conclude that

σ ◦ Ωj(F ) =
e∑
i=0

σ ◦ Ωj ◦ ϕi(fi) = ηj(fj) = γdejfj .

Hence fj = σ ◦ Ωj(F )/γdej , if γdej ∈ k×, thus

F =
e∑
i=0

1

γdei
ϕi ◦ σ ◦ Ωi(F ).

We have proved

Corollary 5 (Cayley-Sylvester) Let k be a field of characteristic 0. Then
each F ∈ Sde decomposes as

F =
e∑
i=0

1

γdei
ψi(F )

where ψi(F ) = ∆iDe−i(σ ◦ Ωi(F )) ∈ ϕi(Rd+e−2i).

Examples Let us look at the decomposition of Corollary 5 for some simple
special cases.

• For F ∈ S11 we have the coefficients γ110 = 2 and γ111 = 2, hence

F =
1

2
ψ0(F ) +

1

2
ψ1(F ).

• For F ∈ S21 we have the coefficients γ210 = 3 and γ211 = 3, hence

F =
1

3
ψ0(F ) +

1

3
ψ1(F ).

• For F ∈ S22 we have the coefficients γ220 = 12, γ221 = 8, and
γ222 = 12, hence

F =
1

12
ψ0(F ) +

1

8
ψ1(F ) +

1

12
ψ2(F ).

• For F ∈ S32 we have the coefficients γ320 = 20, γ321 = 15, and
γ322 = 24, hence

F =
1

20
ψ0(F ) +

1

15
ψ1(F ) +

1

24
ψ2(F ).

12



4 Transvection

We consider the map

µ̃ : Rd ×Re −→ Sde, µ̃(f, h) = f(X)h(Y ) = fh̃.

(That is, we multiply f with h after replacing the indeterminates X1, X2

by Y1, Y2 in h, yielding h̃ = h(Y ).) In characteristic 0 and for 1 ≤ e ≤ d
Corollary 5 gives a unique decomposition of this product as

µ̃(f, h) =

e∑
i=0

1

γdei
ϕi ◦ τi(f, h) with τi(f, h) = σ ◦ Ωi ◦ µ̃(f, h) ∈ Rd+e−2i.

This definition of the τi also makes sense for d < e and in any characteristic:

Definition For all d, e ≥ 0 the map

τi : Rd ×Re −→ Rd+e−2i, τi(f, h) = σ ◦ Ωi ◦ µ̃(f, h)

is called the ith transvection, its images ith transvectants.

If 2i > d + e, then τi = 0. The following commutative diagram illustrates
the definition of the maps τi:

µ̃

Rd ×Re

?

Sde Sd−i,e−i-
Ωi Rd+e−2i

PPPPPPPPPPq

τi

-
σ

Clearly the maps τi are bilinear and relatively G-equivariant of weight −i
because µ̃ is bilinear and equivariant, Ωi is linear and relatively equivariant
of weight −i, and σ is linear and equivariant.

The most elementary special case is

τ0(f, h) = σ ◦ µ̃(f, h) = σ(fh̃) = fh ∈ Rd+e

so the 0th transvectant of two binary forms is simply their product. For i = 1
we use Lemma 2 and get

Ω(fh̃) = ∂1f ∂̃2h̃− ∂2f ∂̃1h̃ =

∣∣∣∣∂1f ∂̃1h̃

∂2f ∂̃2h̃

∣∣∣∣ ,
τ1(f, h) = σ(Ω(fh̃)) = ∂1f ∂2h− ∂2f ∂1h =

∣∣∣∣∂1f ∂1h
∂2f ∂2h

∣∣∣∣ ∈ Rd+e−2.

For the 2nd transvectant we compute

Ω2(fh̃) = Ω(∂1f ∂̃2h̃)− Ω(∂2f ∂̃1h̃)

= ∂2
1f ∂̃2

2
h̃− ∂2∂1f ∂̃1∂̃2h̃− ∂1∂2f ∂̃2∂̃1h̃+ ∂2

2f ∂̃1
2
h̃,

τ2(f, h) = ∂2
1f ∂

2
2h− 2 ∂1∂2f ∂1∂2h+ ∂2

2f ∂
2
1h ∈ Rd+e−4.
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Proposition 6 The 0th, 1st, and 2nd transvectants of two binary forms
f ∈ Rd and g ∈ Re are

(i) τ0(f, h) = fh ∈ Rd+e,

(ii) τ1(f, h) = ∂1f ∂2h−∂2f ∂1h ∈ Rd+e−2, the Jacobian of the pair (f, h),

(iii) τ2(f, h) = ∂2
1f ∂

2
2h− 2 ∂1∂2f ∂1∂2h+ ∂2

2f ∂
2
1h ∈ Rd+e−4.

Corollary 6 The 0th, 1st, and 2nd transvectants of a binary form f ∈ Rd
with itself are

(i) τ0(f, f) = f2 ∈ R2d,

(ii) τ1(f, f) = 0 ∈ R2d−2,

(iii) τ2(f, f) = 2 [∂2
1f ∂

2
2f − (∂1∂2f)2] ∈ R2d−4 (twice the Hessian).

Examples For f = a0X
2
1 +a1X1X2+a2X

2
2 , h = b0X

2
1 +b1X1X2+b2X

2
2 ∈ R2

we get

• τ0(f, h) = a0b0X
4
1 +(a0b1+a1b0)X3

1X2+(a0b2+a1b1+a2b0)X2
1X

2
2

+(a1b2 + a2b1)X1X
3
2 + a2b2X

4
2 ∈ R4,

• τ1(f, h) =
(2a0X1 + a1X2)(b1X1 + 2b2X2)− (a1X1 + 2a2X2)(2b0X1 + b1X2)
= 2 (a0b1 − a1b0)X2

1 + 4 (a0b2 − a2b0)X1X2 + 2 (a1b2 − a2b1)X2
2

∈ R2,

• τ2(f, h) = 4 (a0b2 + a2b0)− 2 a1b1 ∈ R0 = k,

• τ2(f, f) = 8 a0a2 − 2 a2
1 ∈ R0 = k.

To explore the symmetry properties of the transvections τi we con-
sider the involution ε : Xi ←→ Yi of the k-algebra S = k[X,Y ], that is
ε(F (X,Y )) = F (Y,X).

Lemma 4 For ε we have

(i) Ωi ◦ ε = (−1)i ε ◦ Ωi.

(ii) The restriction of σ ◦ε to the subalgebra R = k[X] is the identity map.

(iii) σ ◦ ε = σ ◦ ε ◦ σ on S.

Proof. (i) It suffices to prove the assertion for i = 1. For this we consider the

monomial F = Xα1
1 Xα2

2 Y β1
1 Y β2

2 . Then

F
Ω7→ α1β2X

α1−1
1 Xα2

2 Y β1
1 Y β2−1

2 − β1α2X
α1
1 Xα2−1

2 Y β1−1
1 Y β2

2
ε7→ α1β2Y

α1−1
1 Y α2

2 Xβ1
1 Xβ2−1

2 − β1α2Y
α1

1 Y α2−1
2 Xβ1−1

1 Xβ2
2 ,

F
ε7→ Y α1

1 Y α2
2 Xβ1

1 Xβ2
2

Ω7→ β1α2Y
α1

1 Y α2−1
2 Xβ1−1

1 Xβ2
2 − β2α1Y

α1−1
1 Y α2

2 Xβ1
1 Xβ2−1

2 .
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Hence Ω ◦ ε = −ε ◦ Ω.
(ii) For f ∈ R we conclude σ(ε(f)) = σ(f(Y )) = f(X) = f .
(iii) Since σ and ε are k-algebra homomorphisms it suffices to prove the

assertion for the generators Xi and Yi.
For Xi we have σ(Xi) = Xi, and by (ii) both sides evaluate to Xi.
For Yi we have σ(Yi) = Xi, thus again both sides of the equation evaluate

to Xi. 3

Proposition 7 For f ∈ Rd, h ∈ Re,

τi(h, f) = (−1)i τi(f, h).

Proof. Using Lemma 4 we get

τi(h, f) = σ ◦ Ωi(hf̃) = σ ◦ Ωi ◦ ε(fh̃) = (−1)i σ ◦ ε ◦ Ωi(fh̃)

= (−1)i σ ◦ ε ◦ σ ◦ Ωi(fh̃) = (−1)i σ ◦ ε(τi(f, h))

= (−1)i (τi(f, h))

since τi(f, h) ∈ R. 3
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