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The aim of this note is an elementary proof of the following theorem:

Theorem 1 Let D be a bounded simply connected domain in the complex plane C. Then
the following statements are equivalent:

(i) Every conformal mapping of D onto the unit disk U extends to a homeomorphism
of D̄ onto Ū .

(ii) The domain D is a Jordan domain.

(iii) Every boundary point of D is simple.

Comments

1. A Jordan domain is a domain whose boundary is the support of a closed Jordan
curve. Therefore the implication “(i) =⇒ (ii)” is an immediate consequence of the
Riemann mapping theorem that gives a conformal mapping of D onto U . Extend
it. The inverse mapping of the extension gives a homeomorphism of the unit circle
onto the boundary ∂D.

2. The implication “(ii) =⇒ (i)” is the classical extension theorem conjectured by
Osgood and proved by Caratheodory [1] and Osgood [6][7]. According to the Jordan
Curve Theorem a Jordan domain is automatically bounded and simply connected.
In the proof of the above theorem we make no use of the Jordan Curve Theorem.
We prove “(ii) =⇒ (i)” via the chain “(ii) =⇒ (iii) =⇒ (i)”.

3. The implication “(iii) =⇒ (i)” is the version of the extension theorem given by
Rudin [8]. A boundary point b of a domain D is simple, if every sequence in D
with limit b can be connected by a curve γ : [0, 1] −→ D̄ such that γ(1) = b and
γ(t) ∈ D for 0 ≤ t < 1. Equivalently we have: Given ε > 0 and a sequence (zn) in D
such that lim zn = b, almost all zn are contained in the same connected component
of Uε(b) ∩D, where

Uε(b) = {z ∈ C | |z − b| < ε} .
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Moreover we have a sufficient condition:

Lemma 1 A boundary point b of D is simple, if for every ε > 0 there is an open
neighborhood V of b such that V is contained in Uε(b) and V ∩D is connected.

Novinger [4] has given an elementary proof of “(iii) =⇒ (i)”. Here we give a simpler
proof. The idea is to consider the inverse conformal mapping f : U −→ D. So in the
proof well-definition and injectivity interchange their roles.

Step 1

Extend f to a contimuous map g : Ū −→ D̄. This can be done as in the proof of [8,
14.19] using the following lemma.

Lemma 2 Let (zn) and (wn) be sequences in U such that lim zn = limwn = a ∈ ∂U .
Let lim f(zn) = b1 ∈ ∂D and lim f(wn) = b2 ∈ ∂D. Then b1 = b2.

For the proof see [8, 14.18 (b)].

Step 2

Prove that g is injective on ∂D. This can be done as in [8, 14.18 (a)], but in view of
step 1 we don’t need Fatou’s theorem on radial limits – the following well-known lemma
is sufficient.

Lemma 3 Let the function g : Ū −→ C be continous in Ū , analytic in U , and constant
on a subarc of ∂D. Then g is constant.

For a simple proof see [2].
The following simplification of step 2 is due to H. J. Fendrich (oral communication):

Let a and b be distinct points of ∂D. The points a and b define two closed subarcs A and
B of ∂D. Suppose g(a) = g(b) = c. We claim that g is constant on A or on B.

Assume the contrary. Then we find x ∈ A and y ∈ B such that g(x) 6= c and
g(y) 6= c. The image g(C) of the chord C = [x, y] is compact, and its distance ε from
the point c is positive. Choose sequences (zn) → a and (wn) → b in U . The sequence
g(z1), g(w1), g(z2), g(w2), . . . has limit c. Since c is a simple boundary point, ther is a
curve γm in Uε(c)∩D connecting g(zm) and g(wm) for each large m. The curve g−1 ◦γm
connects zm and wm, therefore it meets C for large m. But the support of γm is contained
in Uε(c) and does not meet g(C). This contradicts the assumption.

The remainder of the proof of “(iii) =⇒ (i)” follows by an easy compactness argument
as in [8].

Finally we prove “(ii) =⇒ (iii)”. We need a topological result that appears, with an
elementary proof, in [3, Appendix to Chapter IX, (Ap. 3.2), and Exercise 2]:
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Theorem 2 (Janiszewski) Let A be a compact and B, a closed subset of the plane C,
a and b two distinct points of C− (A∪B) such that neither A nor B separates a and b.
Let A ∩B be connected. Then A ∪B does not separate a and b.

Remark. A set A separates two points a and b, if a and b are contained in distinct
connected components of C−A.

Now assume (ii). Take a point b ∈ ∂D and an arbitrary ε > 0. By the continuity
of the boundary curve, b is contained in an open subarc J of ∂D ∩ Uε(b). Therefore we
have an open set V such that V ⊆ Uε(b) and J = ∂D ∩ V . Since J is connected, we
may suppose V connected. Let w and z be points of V ∩D. Then neither C− V nor ∂D
separates w and z, and ∂D ∩ (C − V ) is the complementary arc of J , hence connected.
By Janiszewski’s theorem the set (C− V ) ∪ ∂D does not separate w and z. So w and z
are in the same connected component of V − ∂D. We conclude that V ∩D is connected.
The statement (iii) follows by Lemma 1.

Some applications of the extension theorem are given in [5]. Here is another applica-
tion:

Corollary 1 Every bounded convex domain in the plane is a Jordan domain.

Proof. A bounded convex domain is simply connected, and every boundary point is
simple. 3
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