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The aim of this note is an elementary proof of the following theorem:

Theorem 1 Let D be a bounded simply connected domain in the complex plane C. Then
the following statements are equivalent:

(i) Ewvery conformal mapping of D onto the unit disk U extends to a homeomorphism
of D onto U.

(ii) The domain D is a Jordan domain.

(iii) Ewery boundary point of D is simple.

Comments

1. A Jordan domain is a domain whose boundary is the support of a closed Jordan
curve. Therefore the implication “(i) = (ii)” is an immediate consequence of the
Riemann mapping theorem that gives a conformal mapping of D onto U. Extend
it. The inverse mapping of the extension gives a homeomorphism of the unit circle
onto the boundary dD.

2. The implication “(ii) = (i)” is the classical extension theorem conjectured by
Osgood and proved by Caratheodory [1] and Osgood [6][7]. According to the Jordan
Curve Theorem a Jordan domain is automatically bounded and simply connected.
In the proof of the above theorem we make no use of the Jordan Curve Theorem.
We prove “(ii) = (i)” via the chain “(ii) = (iii) = (i)”.

3. The implication “(ili) = (i)” is the version of the extension theorem given by
Rudin [8]. A boundary point b of a domain D is simple, if every sequence in D
with limit b can be connected by a curve v: [0,1] — D such that v(1) = b and
v(t) € D for 0 <t < 1. Equivalently we have: Given ¢ > 0 and a sequence (z,,) in D
such that lim z,, = b, almost all z,, are contained in the same connected component
of U.(b) N D, where

Us(b) ={2€C||z—b| <e}.



Moreover we have a sufficient condition:

Lemma 1 A boundary point b of D is simple, if for every ¢ > 0 there is an open
neighborhood V' of b such that V is contained in Us(b) and V N D is connected.

Novinger [4] has given an elementary proof of “(iii) = (i)”. Here we give a simpler
proof. The idea is to consider the inverse conformal mapping f: U — D. So in the
proof well-definition and injectivity interchange their roles.

Step 1

Extend f to a contimuous map g: U — D. This can be done as in the proof of [8,
14.19] using the following lemma.

Lemma 2 Let (z,) and (wy) be sequences in U such that lim z, = limw, = a € 9U.
Let lim f(zn) = b1 € D and lim f(wy,) = by € D. Then by = bs.

For the proof see [8, 14.18 (b)].

Step 2

Prove that g is injective on dD. This can be done as in [8, 14.18 (a)], but in view of
step 1 we don’t need Fatou’s theorem on radial limits — the following well-known lemma
is sufficient.

Lemma 3 Let the function g: U — C be continous in U, analytic in U, and constant
on a subarc of OD. Then g is constant.

For a simple proof see [2].

The following simplification of step 2 is due to H. J. Fendrich (oral communication):
Let a and b be distinct points of dD. The points a and b define two closed subarcs A and
B of dD. Suppose g(a) = g(b) = ¢. We claim that ¢ is constant on A or on B.

Assume the contrary. Then we find z € A and y € B such that g(z) # ¢ and
g(y) # c. The image g(C) of the chord C' = [z,y] is compact, and its distance € from
the point ¢ is positive. Choose sequences (z,) — a and (wy) — b in U. The sequence
9(z1),9(w1),g9(z2), g(w2), ... has limit c. Since ¢ is a simple boundary point, ther is a
curve v, in Uz(¢) N D connecting g(z,) and g(w,) for each large m. The curve g=! oy,
connects 2y, and wy,, therefore it meets C' for large m. But the support of v,, is contained
in Ue(c) and does not meet g(C'). This contradicts the assumption.

The remainder of the proof of “(iii) == (i)” follows by an easy compactness argument
as in [8].

Finally we prove “(ii) = (iii)”. We need a topological result that appears, with an
elementary proof, in [3, Appendix to Chapter IX, (Ap. 3.2), and Exercise 2]:



Theorem 2 (JANISZEWSKI) Let A be a compact and B, a closed subset of the plane C,
a and b two distinct points of C — (AU B) such that neither A nor B separates a and b.
Let AN B be connected. Then AU B does not separate a and b.

Remark. A set A separates two points a and b, if a and b are contained in distinct
connected components of C — A.

Now assume (ii). Take a point b € 9D and an arbitrary € > 0. By the continuity
of the boundary curve, b is contained in an open subarc J of 9D N U.(b). Therefore we
have an open set V such that V' C U.(b) and J = dD N V. Since J is connected, we
may suppose V connected. Let w and z be points of V' N D. Then neither C — V nor dD
separates w and z, and 9D N (C — V) is the complementary arc of .J, hence connected.
By Janiszewski’s theorem the set (C — V') U dD does not separate w and z. So w and z
are in the same connected component of V' — dD. We conclude that V N D is connected.
The statement (iii) follows by Lemma 1.

Some applications of the extension theorem are given in [5]. Here is another applica-
tion:

Corollary 1 Fvery bounded conver domain in the plane is a Jordan domain.

Proof. A bounded convex domain is simply connected, and every boundary point is
simple. &
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