A Remark on Subsemigroups (Dicksons Lemma)

Klaus Pommerening

April 1975 - english version November 2011

We consider semigroups S that are commutative and contain 0 . If $H \leq \mathbb{N}^{n}$ is a subsemigroup, then $\langle H\rangle$ denotes the subgroup of \mathbb{Z}^{n} it generates. It consists of all differences $x-y$ with $x, y \in H$. We assume \mathbb{Z}^{n} is equipped with the ordering $x \geq y \Longleftrightarrow x-y \in \mathbb{N}^{n}$.

Proposition 1 For a subsemigroup $H \leq \mathbb{N}^{n}$ the following statements are equivalent:
(i) If $x, y \in H$ with $x \geq y$, then also $x-y \in H$.
(ii) $\langle H\rangle \cap \mathbb{N}^{n}=H$.
(iii) There is a homorphism $\alpha: \mathbb{N}^{n} \longrightarrow S$ of semigroups with $H=\operatorname{ker} \alpha$.

Proof. "(i) \Longrightarrow (ii)": Take $x \in\langle H\rangle$. Then there are $y, z \in H$ such that $x=y-z$. If also $x \in \mathbb{N}^{n}$, then $y \geq z$. Therefore $x \in H$.
"(ii) \Longrightarrow (iii)": Consider the natural homomorphism $\nu: \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} /\langle H\rangle$ and restrict it to \mathbb{N}^{n}. For $x \in \mathbb{N}^{n}$ we have the equivalences $x \in \operatorname{ker} \nu \Longleftrightarrow \nu(x)=0 \Longleftrightarrow x \in$ $\langle H\rangle \cap \mathbb{N}^{n}=H$.
"(iii) \Longrightarrow (i)": Let $x, y \in H=\operatorname{ker} \alpha, x \geq y$. Then

$$
\alpha(x-y)=\alpha(x-y)+\alpha(y)=\alpha(x-y+y)=\alpha(x)=0,
$$

whence $x-y \in \operatorname{ker} \alpha=H . \diamond$

Definition (Hochster[3]) A subsemigroup $H \leq \mathbb{N}^{n}$ is called full, if it fulfills the the equivalent conditions of Proposition 1.

As a motivation for the following result note that not every subsemigroup of \mathbb{N}^{n} is finitely generated. As an example take

$$
H=\{(x, y) \mid y \geq 1\} \cup\{(0,0)\} \subseteq \mathbb{N}^{2}
$$

see Figure 1.

Figure 1: A non-full sub-semigroup

Theorem 1 Let $H \leq \mathbb{N}^{n}$ be a full subsemigroup. Then H is finitely generated.
Proof. Let $E \subseteq H$ be the set of minimal elements >0. Then

- E generates H : Otherwise take a minimal $h \in H$ such that $h \notin\langle E\rangle$. There is an $e \in E$ such that $e<h$. Then $h-e \in H$ and $h-e<h$, whence $h-e \in\langle E\rangle$ and $h \in\langle E\rangle$, contradiction.
- E is completely unordered, that means no two elements of E are comparable: This is immediate from minimality.

Now the assertion is an immediate consequence of the following lemma.

Lemma 1 (Dickson[1]) Every completely unordered subset $E \subseteq \mathbb{N}^{n}$ is finite.
Proof. Induction on n. We may assume $E \neq \emptyset$. If $n=1$, then necessarily $\# E=1$. Now let $n \geq 2$. Fix $x=\left(x_{1}, \ldots, x_{n}\right) \in E$. For $1 \leq i \leq n$ and $0 \leq j<x_{i}$ consider the sets

$$
M_{i j}:=\left\{y \in \mathbb{N}^{n} \mid y_{i}=j\right\}
$$

By omitting the fixed coordinate j each set $M_{i j} \cap E$ bijectively projects onto a completely unordered subset of \mathbb{N}^{n-1}, hence is finite by induction. Now

$$
\mathbb{N}^{n}=\left(\bigcup_{i=1}^{n} \bigcup_{j=0}^{x_{i}-1} M_{i j}\right) \cup\left(x+\mathbb{N}^{n}\right)
$$

Intersection with E and noting $\left(x+\mathbb{N}^{n}\right) \cap E=\{x\}$ gives

$$
E=\left(\bigcup_{i=1}^{n} \bigcup_{j=0}^{x_{i}-1} E \cap M_{i j}\right) \cup\{x\}
$$

a finite set.

We apply this result to two finiteness problems in elementary number theory.

Theorem 2 (Gordan[2]) Let

$$
\sum_{j=1}^{n} a_{i j} x_{j}=0 \quad \text { for } i=1, \ldots q \quad \text { with } a_{i j} \in \mathbb{Z} \text { for all } i, j
$$

be a system of linear diophantine equations. Then the semigroup of non-negative solutions (i. e. solution vectors in \mathbb{N}^{n}) is finitely generated.

Proof. The solutions are the elements of the kernel of a semigroup homorphism $\mathbb{N}^{n} \longrightarrow \mathbb{Z}^{q}$, hence form a full subsemigroup of $\mathbb{N}^{n} . \diamond$

Theorem 3 Let

$$
\sum_{j=1}^{n} a_{i j} x_{j} \equiv 0 \quad(\bmod m) \quad \text { for } i=1, \ldots q \quad \text { with } a_{i j} \in \mathbb{Z} \text { for all } i, j
$$

be a system of linear congruences modulo a natural number $m \geq 2$. Then the semigroup of non-negative solutions (i. e. solution vectors in \mathbb{N}^{n}) is finitely generated.

Proof. As before; this time we consider the semigroup homorphism $\mathbb{N}^{n} \longrightarrow(\mathbb{Z} / m \mathbb{Z})^{q}$. \diamond

References

[1] L. E. Dickson: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35 (1913), 413-422.
[2] P. Gordan: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist. J. reine angew. Math. 69 (1868), 323-354.
[3] M. Hochster: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Annals of Math. 96 (1972), 318-337.

