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We consider semigroups S that are commutative and contain 0. If H < N” is a sub-
semigroup, then (H) denotes the subgroup of Z™ it generates. It consists of all differences
x—y with x,y € H. We assume Z" is equipped with the ordering x > y <= z —y € N™.

Proposition 1 For a subsemigroup H < N" the following statements are equivalent:
(i) If x,y € H with x >y, then also x —y € H.
(ii) (H)NN"=H.
(iii) There is a homorphism a: N — S of semigroups with H = ker a.

Proof. “(i) = (ii)”: Take « € (H). Then there are y, z € H such that x = y — z. If also
x € N", then y > z. Therefore x € H.

“(ii) == (iii)”: Consider the natural homomorphism v: Z" — Z" /(H) and restrict
it to N™. For x € N" we have the equivalences x € kerv <= v(z) = 0 < =z €
(HyNnN"=H.

“(iii) = (i)”: Let z,y € H = kera, > y. Then

alr—y)=alr—y)+taly) =alr—y+y) =alr) =0,

whence z —y € kera = H. &

Definition (HOCHSTER[3]) A subsemigroup H < N" is called full, if it fulfills the the
equivalent conditions of Proposition 1.

As a motivation for the following result note that not every subsemigroup of N" is
finitely generated. As an example take

H = {(z,y) |y > 1} U{(0,0)} C N,

see Figure 1.



Figure 1: A non-full sub-semigroup

Theorem 1 Let H < N" be a full subsemigroup. Then H is finitely generated.

Proof. Let E C H be the set of minimal elements > 0. Then

e F generates H: Otherwise take a minimal h € H such that h ¢ (E). There is an
e € FE such that e < h. Then h —e € H and h — e < h, whence h — e € (E) and
h € (E), contradiction.

e F is completely unordered, that means no two elements of F are comparable: This
is immediate from minimality.

Now the assertion is an immediate consequence of the following lemma. <

Lemma 1 (DI1CKSON[1]) Every completely unordered subset E C N" is finite.

Proof. Induction on n. We may assume E # (). If n = 1, then necessarily #F = 1.
Now let n > 2. Fix z = (21,...,2,) € E. For 1 <i <mn and 0 < j < x; consider the
sets

Mij :={y e N" [ y; = j}.
By omitting the fixed coordinate j each set M;;NE bijectively projects onto a completely
unordered subset of N*~! hence is finite by induction. Now

n x;—1

N* = U U Mij U (x—l—N”)

i=1 j=0
Intersection with £ and noting (z + N") N E = {x} gives

n x;—1

E = UUEﬂMij U{{lf},

i=1 j=0

a finite set. ©

We apply this result to two finiteness problems in elementary number theory.



Theorem 2 (GORDAN[2]) Let
n
Zaijxj =0 fori=1,...q with a;j € Z for all i,
j=1

be a system of linear diophantine equations. Then the semigroup of non-negative solutions
(i. e. solution vectors in N™) is finitely generated.

Proof. The solutions are the elements of the kernel of a semigroup homorphism
N — Z4, hence form a full subsemigroup of N*. &

Theorem 3 Let

n
Zaijlﬁj =0 (modm) fori=1,...q witha; €7Z for alli,j
j=1

be a system of linear congruences modulo a natural number m > 2. Then the semigroup
of non-negative solutions (i. e. solution vectors in N") is finitely generated.

Proof. As before; this time we consider the semigroup homorphism N* — (Z/mZ)?. &
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