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We consider semigroups S that are commutative and contain 0. If H ≤ Nn is a sub-
semigroup, then 〈H〉 denotes the subgroup of Zn it generates. It consists of all differences
x−y with x, y ∈ H. We assume Zn is equipped with the ordering x ≥ y ⇐⇒ x−y ∈ Nn.

Proposition 1 For a subsemigroup H ≤ Nn the following statements are equivalent:

(i) If x, y ∈ H with x ≥ y, then also x− y ∈ H.

(ii) 〈H〉 ∩ Nn = H.

(iii) There is a homorphism α : Nn −→ S of semigroups with H = kerα.

Proof. “(i) =⇒ (ii)”: Take x ∈ 〈H〉. Then there are y, z ∈ H such that x = y − z. If also
x ∈ Nn, then y ≥ z. Therefore x ∈ H.

“(ii) =⇒ (iii)”: Consider the natural homomorphism ν : Zn −→ Zn/〈H〉 and restrict
it to Nn. For x ∈ Nn we have the equivalences x ∈ ker ν ⇐⇒ ν(x) = 0 ⇐⇒ x ∈
〈H〉 ∩ Nn = H.

“(iii) =⇒ (i)”: Let x, y ∈ H = kerα, x ≥ y. Then

α(x− y) = α(x− y) + α(y) = α(x− y + y) = α(x) = 0,

whence x− y ∈ kerα = H. 3

Definition (Hochster[3]) A subsemigroup H ≤ Nn is called full, if it fulfills the the
equivalent conditions of Proposition 1.

As a motivation for the following result note that not every subsemigroup of Nn is
finitely generated. As an example take

H = {(x, y) | y ≥ 1} ∪ {(0, 0)} ⊆ N2,

see Figure 1.
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Figure 1: A non-full sub-semigroup

Theorem 1 Let H ≤ Nn be a full subsemigroup. Then H is finitely generated.

Proof. Let E ⊆ H be the set of minimal elements > 0. Then

• E generates H: Otherwise take a minimal h ∈ H such that h 6∈ 〈E〉. There is an
e ∈ E such that e < h. Then h − e ∈ H and h − e < h, whence h − e ∈ 〈E〉 and
h ∈ 〈E〉, contradiction.

• E is completely unordered, that means no two elements of E are comparable: This
is immediate from minimality.

Now the assertion is an immediate consequence of the following lemma. 3

Lemma 1 (Dickson[1]) Every completely unordered subset E ⊆ Nn is finite.

Proof. Induction on n. We may assume E 6= ∅. If n = 1, then necessarily #E = 1.
Now let n ≥ 2. Fix x = (x1, . . . , xn) ∈ E. For 1 ≤ i ≤ n and 0 ≤ j < xi consider the

sets
Mij := {y ∈ Nn | yi = j}.

By omitting the fixed coordinate j each set Mij∩E bijectively projects onto a completely
unordered subset of Nn−1, hence is finite by induction. Now

Nn =

 n⋃
i=1

xi−1⋃
j=0

Mij

 ∪ (x+ Nn).

Intersection with E and noting (x+ Nn) ∩ E = {x} gives

E =

 n⋃
i=1

xi−1⋃
j=0

E ∩Mij

 ∪ {x},
a finite set. 3

We apply this result to two finiteness problems in elementary number theory.
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Theorem 2 (Gordan[2]) Let

n∑
j=1

aijxj = 0 for i = 1, . . . q with aij ∈ Z for all i, j

be a system of linear diophantine equations. Then the semigroup of non-negative solutions
(i. e. solution vectors in Nn) is finitely generated.

Proof. The solutions are the elements of the kernel of a semigroup homorphism
Nn −→ Zq, hence form a full subsemigroup of Nn. 3

Theorem 3 Let

n∑
j=1

aijxj ≡ 0 (mod m) for i = 1, . . . q with aij ∈ Z for all i, j

be a system of linear congruences modulo a natural number m ≥ 2. Then the semigroup
of non-negative solutions (i. e. solution vectors in Nn) is finitely generated.

Proof. As before; this time we consider the semigroup homorphism Nn −→ (Z/mZ)q. 3
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