
Recursive and Periodic
Sequences

How can we decide whether a sequence in a set is generated by a recursion
formula of any depth? This text presents some quite elementary general
results for this question and an algorithm that finds the shortest feedback
shift register that generates a given finite sequence.

1 Periods of Infinite and Finite Sequences

Infinite Sequences

Let M be a set. An infinite sequence x = (x0, x1, . . .) = (xi)i∈N ∈ MN is
called periodic if there is an index m and an integer n ≥ 1 such that

(1) xi+n = xi for all i ≥ m.

The smallest index m for which there is an n such that (1) holds is called
the preperiod of the sequence x. Denote it by µ. Then the smallest index
n such that (1) holds with m = µ is called the period ν of x.

Lemma 1 Let x ∈ MN be a periodic sequence with preperiod µ and period
ν. Let m and n ≥ 1 be indices such that (1) holds. Then m ≥ µ and ν |n.

Proof. m ≥ µ by the definition of the preperiod. Let n = pν + q with p ≥ 0
and 1 ≤ q ≤ ν. Thus

xj = xj+n = xj+pν+q = xj+q for all j ≥ m

because ν is the period and m ≥ µ. Let i ≥ µ arbitrary, k ∈ N with
i+ kν ≥ m. Then

xi = xi+kν = xi+kν+q = xi+q for all i ≥ µ.

Therefore q ≥ ν due to the minimality of ν, hence q = ν and ν |n = pν + ν.
3

1

Finite Sequences

Now let x = (x0, . . . , xr−1) ∈M r be a finite sequence of length r. It is called
periodic if there is an index m and an integer n ≥ 1, m+ n ≤ r − 1, such
that

(2) xi+n = xi for all i with m ≤ i ≤ r − 1− n.

If x is periodic, then the smallest index m for which there is an n such that
(2) holds is called the preperiod of the sequence x. Denote it by µ. The
smallest index n such that (2) holds with m = µ is called the period ν of
the sequence x.

Bear in mind that Lemma 1 has no analogue for finite sequences. Of
course, if (2) holds for a pair (m,n), then m ≥ µ by definition of µ. However
the divisibility of n by ν may break, as the following example shows:

Example

The sequence x = (0, 1, 2, 1, 1) ∈ N5 is periodic with µ = 1 and ν = 3. But
(2) also holds for m = 3 and n = 1.

2 Recursive Sequences

A (finite or infinite sequence x = (x0, x1, . . .) ∈M r (with r = 0 or r =∞1)
is called recursive if there is a map g : M −→M such that

(3) xi = g(xi−1) for all i = 1, 2, . . .

An immediate consequence of this property is:

Lemma 2 Let x = (x0, x1, . . .) ∈M r be a recursive sequence. Then:

xi = xj =⇒ xi+1 = xj+1 for all index pairs i, j with 0 ≤ i < j < r − 1.

If there is a repetition xi = xj, then the sequence is periodic. In this case
the preperiod µ is the smallest index such that the element xµ reappears
somewhere in the sequence, and µ+ ν is the index where the first repetition
occurs.

In particular the values x0, . . . , xµ+ν−1 are all distinct, and the values
x0, . . . , xµ−1 never reappear in the sequence. See Figure 1.

1We use M∞ as another notation for MN.

2

- - - - -x0 . . . xµ−1 xµ
= xµ+ν

. . . xµ+ν−1

6

︷ ︸︸ ︷Preperiod ︷ ︸︸ ︷Period

Figure 1: Period and preperiod

Proposition 1 Let M be a set and x = (xi)i∈N be an infinite sequence in
M . Then the following statements are equivalent:

(i) x is recursive.

(ii) x is periodic with preperiod µ and period ν, and the values
x0, . . . , xµ+ν−1 are all distinct, or all values xi are distinct.

(iii) xi = xj =⇒ xi+1 = xj+1 for all index pairs i, j with 0 ≤ i < j.

Proof. For “(i) =⇒ (ii)” see the preceding paragraph.
“(ii) =⇒ (iii)” is trivial if all values are distinct. If there is a period see

Figure 1.
For “(iii) =⇒ (i)” we may take the “state transition” map

g(x) =

{
xi if there is an i with x = xi−1,

any value otherwise.

This map is well-defined by (iii). The remaining values don’t matter (but
make the solution ambiguous). 3

3 Sequences of Unknown Origin

Consider the situation where we are given a finite sequence (x0, . . . , xr−1) of
length r in a setM and know it is recursive, but the map g, that generates the
sequence, is unknown. The first step is to find the preperiod and the period.
The obvious algorithm proceeds by running through the given sequence,
searching for a repetition. In addition one has to catch the case where the
end of the given sequence is reached without detecting a repetition. Sage
Example 1 implements this algorithm. Zero output values indicate that there
is no repetition—a zero value in the second component of the return value
suffices for this conclusion.

If the sequence is defined by a recursion formula, and is long enough,
then the output values (if nonzero) are the length of the preperiod and the
length of the period.

3

Sage Example 1 Searching for the first repetition in a sequence

def repetition(inlist):

nn=len(inlist)

for j in range(1,nn):

for i in range(0,j):

if (inlist[i] == inlist[j]):

return [i,j-i] # repetition detected

return [0,0] # no repetition detected

It is convenient to have an explicit notation for this situation: Given a
finite sequence x = (x0, . . . , xr−1) ∈M r we consider the indices

• ρ = min{j | 1 ≤ j ≤ r − 1 and xi = xj for some i ≤ j − 1},

• µ = min{i | 0 ≤ i ≤ ρ− 1 and xi = xρ}.

Then setting ν = ρ−µ we call the pair (µ, ν) of integers the first repetition
of x.

If x has a repetition, then ρ = µ + ν ≤ r − 1. If x has no repetition we
set ρ = µ = ν = ∞ (corresponding to the output value pair (0, 0) in Sage
Example 1).

Remark 1 By definition the elements x0, . . . , xµ+ν−1 are pairwise different.

Remark 2 If the sequence x is periodic, then the first repetition (µ, ν)
doesn’t necessarily indicate the preperiod and period.

Example x = (0, 1, 1, 0, 1, 0, 1) is periodic with preperiod 2 and period 2,
but the first repetition is µ = 1, ν = 1, since x2 = x1. Or see the
example in Section 1.

Now suppose that the given sequence x = (x0, . . . , xr−1) is of unknown
origin: We don’t know how it is generated, and want to know whether it is
recursive and, if yes, to learn as much on the generating (“state transition”)
map g as possible.

If there is no repetition in the given sequence, then the solutions are
exactly the maps g : M −→M with

g(x) =

{
xi if there is an i with 1 ≤ i ≤ r − 1 and x = xi−1,

any value otherwise.

In this case the sequence is recursive in a trivial way. This can occur only if
#M ≥ r.

A similar trivial case is ρ = µ+ν = r−1, the case where the last element
xr−1 of the sequence is the only one that is a repetition. Then the sequence

4

is also recursive, and the map g is given by the same formula. This can occur
only if #M ≥ r − 1.

If there is a repetition in the given sequence, then the algorithm above
will find it, and provide two candidate numbers µ and ν for the preperiod
and the period. Then we have to check the consistency condition

(4) xi+ν = xi for µ ≤ i < r − ν.

We call the sequence x consistent if its first repetition (µ, ν) satisfies the
consistency condition (4).

Proposition 2 Let M be a set and x = (x0, . . . , xr−1) ∈ M r be a finite
sequence containing a repetition. The following statements are equivalent:

(i) x is recursive.

(ii) x is consistent.

(iii) xi = xj =⇒ xi+1 = xj+1 for all 0 ≤ i < j < r − 1.

If these statements hold, then the generating map g : M −→ M with
xk = g(xk−1) for all k = 1, . . . , r − 1 has the values

(5) g(x) =


xk if there is a k with 1 ≤ k ≤ r − 1

and x = xk−1,

any value otherwise,

Proof. Since x contains a repetition we have µ, ν <∞ for its first repetition
(µ, ν), and the elements x0, . . . , xµ+ν−1 are pairwise different.

“(iii) =⇒ (i)”: By (iii) and (5) the map g is well-defined and yields a
recursion formula for x.

“(i) =⇒ (ii)”: Recursive implies periodic with preperiod µ and period ν.
Thus (4) holds.

“(ii) =⇒ (iii)”: For 0 ≤ i < j < µ+ ν always xi 6= xj , so there is nothing
to prove.

Now assume j ≥ µ + ν and xi = xj . Let j − µ = qν + r be the integer
division with remainder 0 ≤ r < ν. Then k := j − qν = µ + r satisfies
µ ≤ k < µ+ ν and, by (4), xk = xj .

If i < µ, this yields xi = xk, contradicting the minimality of µ+ν. Hence
we may assume i ≥ µ. Again let i− µ = pν + s be the integer division with
remainder 0 ≤ s < ν. Then t := i− pν = µ+ s satisfies µ ≤ t < µ+ ν and

xk = xj = xi = xt.

The minimality of µ+ν forces k = t. Since k+1 = t+1 ≥ µ the consistency
condition (4) implies

xk+1 = xk+1+qν = xj+1 and xt+1 = xt+1+pν = xi+1,

5

hence xi+1 = xj+1. 3

Consistency is checked by Sage Example 2. The return value crash is
the index where the first inconsistency is found, and 0 in case of success.
If the consistency condition is violated, then the sequence is definitely not
recursive (or part of recursive sequence).

Sage Example 2 Consistency check whether a conjectured period q with
preperiod p persists for the remainder of a sequence.

def checkPeriod(inlist,p,q):

crash = 0

nn = len(inlist)

for i in range(p,nn-q):

if (inlist[i+q] != inlist[i]):

crash = i

break

return crash

4 Multistep Recursion

Now assume Σ is a set and f : Σl −→ Σ is a function. Each l-tuple of initial
values (u0, . . . , ul−1) gives rise to an infinite sequence in Σ by the recursion
formula of depth l:

(6) ui = f(ui−1, . . . , ui−l) for i = l, l + 1, . . .

Note that this scenario describes a feedback shift register (FSR) of length
l over Σ, see Figure 2. Therefore we call f the feedback function of the
sequence u = (ui)i∈N.

We call a finite sequence u = (u0, u1, . . . , ur−1) ∈ Σr recursive of depth
l if l < r and u satisfies a recursion formula of type (6) for i = l, . . . , r−1. The
minimal integer l for which u is recursive of depth l is called the recursion
depth2 of u, denoted by Λ(u). If Λ(u) = 1, then u is recursive in the sense
of Section 2.

Remark 1 If the sequence has no repetition, or if its last element ur−1 is
the only one that is a repetition, then Λ(u) = 1 by the remarks in
Section 3. Also Λ(u) = 1 if u is constant, in particular if r = 1.

Remark 2 In any case Λ(u) ≤ r − 1 with a feedback function f that is
completely arbitrary except for the value f(ur−2, . . . , u0) = ur−1.

2in [3] called maximum order complexity. This notation is adequate in the case where
Σ is a finite field for then all functions are polynomials. In [1] it is called span.

6

Remark 3 Let Φ : Σ −→ Σ′ be an injective map. Then Λ(Φu) = Λ(u). In
particular in the case Σ = F2, a two-element set, the recursion depth
is unchanged if all sequence elements are flipped, that is Φ : 0↔ 1.

The task is: For a given finite sequence u = (u0, u1, . . . , ur−1) of length r
find its recursion depth Λ(u), and reconstruct the corresponding feedback
function f from u as far as possible.

ui−1 ∗ ∗ ui−l-

ui

- ui−l

�� ��f

6 6 6 6

.

- ---

Figure 2: A feedback shift register (FSR)

To apply the previous results on recursions of depth 1 we consider the state
vectors of dimension l,

(7) u(i) =

 ui
...

ui+l−1

 ∈M := Σl

(for any l ≥ 1 and, if r is finite, l ≤ r), and, if u is recursive of depth l, the
state transition map

g : M −→M,


x1
x2
...
xl

 7→


x2
...
xl

f(xl, . . . , x1)

 .

The state vectors describe the content of the FSR for the steps i = 0, 1, 2, . . .
and follow the recursion formula

u(i) =


ui
...

ui+l−2
ui+l−1

 =


ui
...

ui+l−2
f(ui+l−2, . . . , ui−1)

 = g


ui−1
ui
...

ui+l−2

 = g(u(i−1))

for i = 1, . . . , r − l (or for all i if r = ∞)—the sequence of state vectors is
recursive in the sense of Section 2.

7

5 Periods and State Vectors

A sequence doesn’t need to be recursive for the concept of state vectors to
make sense. Given any (finite or infinite) sequence u ∈ Σr and any inte-
ger l ≥ 1 (and l ≤ r if r is finite) formula (7) allows the construction of
the sequence of state vectors of dimension l. The code in Sage Example 3
implements this procedure for finite sequences.

Sage Example 3 Constructing the sequence of state vectors for depth l

def stateVectors(inlist,l):

nn = len(inlist)

outlist = []

for i in range(0,nn-l+1):

t = inlist[i:(i+l)]

outlist.append(t)

return outlist

First assume r = ∞ and assume the infinite sequence u = (u0, u1, . . .)
has the period ν after a preperiod µ. Then

(8) u(i+ν) =

 ui+ν
...

ui+ν+l−1

 =

 ui
...

ui+l−1

 = u(i) for all i ≥ µ.

Thus also the sequence of state vectors of dimension l is periodic with prepe-
riod µ and period ν. Conversely equation (8) implies the periodicity of u:

Lemma 3 Let u ∈ Σ∞ be an infinite sequence in the set Σ, let l ≥ 1 be an
integer, and let (u(i))i∈N be the sequence of state vectors of dimension l. The
following statements are equivalent:

(i) u is periodic with preperiod µ und period ν.

(ii) (u(i)) is periodic with preperiod µ und period ν.

For a finite sequence u = (u0, . . . , ur−1) ∈ Σr and 1 ≤ l ≤ r the state
vectors are u(0), . . . , u(r−l) ∈ Σl. If u is periodic with preperiod µ and period
ν, then ui+ν = ui for all i with µ ≤ i ≤ r − 1 − ν. With this restriction of
the indices equation (8) shows that u(i+ν) = u(i), where the largest occuring
index, i+ ν + l− 1, is bounded by r− 1, hence µ ≤ i ≤ r− l− ν. Therefore
this statement makes sense only if µ+ ν ≤ r − l.

Conversely assume that µ+ ν ≤ r − l and (u(i)) is periodic with prepe-
riod µ and period ν, in particular u(i+ν) = u(i) for all indices i with
µ ≤ i ≤ r − l − ν. Then obviously ui+ν = ui for all i with µ ≤ i ≤ r− 1− ν.
We have shown:

8

Proposition 3 Let u ∈ Σr be a finite sequence in the set Σ, let l ≥ 1,
l < r, be an integer, and let (u(i))0≤i≤r−l be the sequence of state vectors of
dimension l. Then the following statements are equivalent:

(i) u is periodic with preperiod µ and period ν, and µ+ ν ≤ r − l.

(ii) (u(i)) is periodic with preperiod µ und period ν.

Now if, while considering the sequence u ∈ Σr, we detect a first repetition
(µ, ν) in dimension l, hence u(µ+ν) = u(µ), then applying Proposition 2 and
the consistency condition (4) we can decide whether the sequence of state
vectors is generated by a recursion u(i) = g(u(i−1)) and hence the sequence u
itself is generated by a recursion formula of depth l. If so we can reconstruct
the generating map g : Σl −→ Σl for the state vectors by the (trivially
modified) Formula (5):

g(x) =


u(k) if there is a k with 1 ≤ k ≤ µ+ ν − 1

and x = u(k−1),

any value otherwise,

as well as the generating function f : Σl −→ Σ by the formula

f(x) =


uk+l−1 if there is a k with 1 ≤ k ≤ µ+ ν − 1

and (x1, . . . , xl) = (uk+l−2, . . . , uk−1),

any value otherwise,

since uk+l−1 is the l-th coordinate of u(k).
This procedure presupposes a known recursion depth l.

6 Unknown Recursion Depth

Now assume we are given a sequence u = (u0, u1, . . . , ur−1) ∈ Σr. We want
to

• find the recursion depth Λ(u)

• and construct the corresponding feedback function. (In other words:
Construct a minimal FSR over Σ that generates u.)

The previous considerations show that, after having found the recursion
depth l = Λ(u) and the corresponding period for the l-dimensional state
vectors, the construction of the feedback function f is trivial. We can’t
expect a unique solution for f , but that doesn’t matter.

Since we have no a priori clue about the recursion depth l we try
l = 1, 2, . . . , r − 1 in order until we find a consistent first repetition in the

9

state vectors of dimension l. In the worst case the algorithm terminates
with the trivial (hardly useful) solution l = r − 1, and g and f completely
arbitrary except at (u0, . . . , ur−2).

For each dimension l we build the sequence of state vectors
u(0), . . . , u(r−l). If we find a repetition in dimension l < r, then obviously
there also was a repetition in each dimension k with 1 ≤ k < l:

u(j) =

 uj
...

uj+l−1

 =

 ui
...

ui+l−1

 = u(i) =⇒

 uj
...

uj+k−1

 =

 ui
...

ui+k−1

 .

An immediate conclusion is:

Lemma 4 Let u = (u0, u1, . . . , ur−1) ∈ Σr, and consider the correspond-
ing sequence of state vectors of dimension l. Assume this sequence has no
repetition. Then Λ(u) ≤ l, and also the sequences of state vectors of larger
dimensions have no repetition.

In particular if the sequence u itself has no repeated elements we may skip
the search for any depth l ≥ 2, and output the solution Λ(u) = 1.

For each l and the corresponding sequence (u(i))0≤i≤r−l of state vectors
we define:

• (µl, νl), the first repetition (maybe µl = νl =∞), and ρl = µl + νl .

• χl = min{c ≥ µl + 1 | u(c+νl) 6= u(c)} (the first inconsistency). If
ρl =∞ (there is no repetition) or the consistency condition (4) holds
for µl ≤ i ≤ r − l − νl − 1 (νl is a period for the remainder of the se-
quence), then χl =∞.

With these notations the previous considerations yield:

Lemma 5 (i) ρl =∞ =⇒ ρk =∞ for all k ≥ l, k ≤ r.

(ii) For 1 ≤ l ≤ k we have ρl ≤ ρk.

(iii) The status vectors of dimension l have a repetition if and only if
ρl ≤ r − l. If this is the case, then 0 ≤ µl < r−l and 1 ≤ νl ≤ r−l−µl.

(iv) If the status vectors of dimension l have no repetitions (in other words
ρl =∞), then Λ(u) ≤ l.

(v) If the status vectors of dimension l have repetitions, and the first one
is consistent (in other words χl =∞), then Λ(u) ≤ l. This applies in
particular if the last vector is the first one that is a repetition (in other
words ρl = r − l).

10

(vi) If the status vectors of dimension l have any inconsistent repetition,
then Λ(u) > l.

(vii) If the status vectors of dimension l have an inconsistent first repetition
(in other words χl <∞), then µl + 1 ≤ χl ≤ r − l − νl, Λ(u) > l, and
χ1, . . . , χl−1 <∞.

(viii) If χl−1 <∞ and χl =∞, then Λ(u) = l.

(ix) If χl <∞, then Λ(u) ≥ l + χl − µl ≥ l + 1.

(x) If χl <∞ and l + χl − µl ≥ r − 1, then Λ(u) = r − 1.

Proof. (i)–(v) and (vii)–(viii) follow immediately from the definitions.
(vi) The status vectors cannot satisfy a recursion formula.
(ix) is a consequence of the following Lemma 7 (ii).
(x) follows immediately from (ix). 3

Lemma 6 Let u = (u0, u1, . . . , ur−1) ∈ Σr, and let (u(i))0≤i≤r−l be the
corresponding sequence of state vectors of dimension l where 1 ≤ l ≤ r − 1.
Let

Ml := {(i, j) | 0 ≤ i < j ≤ r − l, u(i) = u(j), ui+l 6= uj+l}.

Then Λ(u) = max{l |Ml 6= ∅}.

Proof. If Ml 6= ∅, then the status vectors of dimension l have an inconsistent
repetition, hence Λ(u) > l by Lemma 5 (vi).

If Ml = ∅, then the sequence of status vectors satisfies (iii) of Proposi-
tion 1, hence is recursive. Thus Λ(u) ≤ l. 3

Lemma 7 Let u = (u0, u1, . . . , ur−1) ∈ Σr, and let (u(i))0≤i≤r−l be the
corresponding sequence of state vectors of dimension l where 1 ≤ l ≤ r − 1.
Let (ū(i))0≤i≤r−k be the sequence of state vectors of dimension k = l + 1.

(i) Assume there is a repetition u(m+n) = u(m) that violates the consis-
tency condition (4) at an index s > m, thus u(s+n) 6= u(s). Then

• either ū(m+n) 6= ū(m). This occurs if s = m+ 1.

• or ū(m+n) = ū(m), and this repetition violates the consistency
condition at index s− 1. This occurs if s ≥ m+ 2.

(ii) If µl + 2 ≤ χl <∞, then µk = µl, νk = νl, and χk = χl − 1.

11

Proof. First note that

ū(i) =

(
u(i)
ui+l

)
=

(
ui

u(i+1)

)
for i = 0, . . . , r − k.

Hence ū(i) = ū(j) if and only if u(i) = u(j) and u(i+1) = u(j+1) for
0 ≤ i ≤ j ≤ r − k.

(i) If s = m + 1 we have u(m+n+1) 6= u(m+1), hence ū(m+n) 6= ū(m). If
s ≥ m+ 2 we have

• u(m+1) = u(m+1+n), thus ū(m) = ū(m+n).

• u(s−1) = u(s−1+n), but u(s) 6= u(s+n). Hence ū(s−1) 6= ū(s−1+n).

(ii) ū(0), . . . , ū(µl+νl−1) are pairwise different. Since u(µl) = u(µl+νl) and
u(µl+1) = u(µl+νl+1) also ū(µl) = ū(µl+νl). Thus µk = µl and νk = νl. By (i)
the first inconsistency occurs at χl − 1. 3

7 Finding the Recursion Depth

Example

Before stating the general algorithm let’s go through a simple example. Let
Σ be a two-element set, say Σ = F2. For r = 10 consider the sequence
u = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1).

Trying to find a recursion of depth l = 1 we find:

• u0 = 1 = u2, hence ρ1 = 2, µ1 = 0, ν1 = 2.

• u1 = 0 = u3 and u2 = 1 = u4 (consistent).

• u3 = 0 6= u5, hence an inconsistency at χ1 = 3.

Assuming l = 2 we likewise find

u(0) =

(
1
0

)
= u(2), u(1) =

(
0
1

)
= u(3), u(2) =

(
1
0

)
6=
(

1
1

)
= u(4).

Hence ρ2 = 2, µ2 = 0, ν2 = 2, and an inconsistency at χ2 = 2, as predicted
by Lemma 7 (ii).

Trying l = 3 we find:

u(0) =

1
0
1

 = u(2), u(1) =

0
1
0

 6=
0

1
1

 = u(3),

12

resulting in ρ3 = 2, µ3 = 0, ν3 = 2, χ3 = 1 = m3 + 1. Thus we encounter the
first alternative of Lemma 7 (i) and expect a changing situation for l = 4.
And indeed:

u(0) =


1
0
1
0

 = u(5), u(1) =


0
1
0
1

 = u(6),

the consistency condition is satisfied, and we get a recursion of depth l = 4
with a preperiod µ = µ4 = 0 and a period ν = ν4 = 5.

Algorithm

Lemmas 4–7 translate to the algorithm:

1. Start with l = 1.

2. For the current value of l build the sequence of state vectors
u(0), . . . , u(n−l) of dimension l and search for its first repetition (µl, νl).

(a) If there is no repetition STOP and output (l, 0, 0).

(b) If a repetition is found check the first one, (µl, νl), for consistency.

• If it is consistent STOP and output the current values for
Λ(u) = l, preperiod µ = µl, and period ν = νl.

• Otherwise there is no recursion formula of depth l, the first
inconsistency occurs at χl ≤ r−1−νl. Increment l by χl−µl.
[Comment: For l ≤ s < l+χl we have, by Lemma 7, µs = µl
with an inconsistency at χs = χl − (s− l).]

3. If l ≥ r − 1 STOP and output (r − 1, 0, 0).

Sage Example 4 contains an implementation of this algorithm.
For the reconstruction of the feedback function f use the formula

(9) f(x) =


ui if there is an i with l ≤ i ≤ µ+ ν − 1

and x = u(i−l),

any value otherwise.

13

Sage Example 4 Find the shortest FSR that generates a given sequence.

def getFSR(seq):

nn=len(seq)

l = 1

while l < nn-1:

vList=stateVectors(seq,l)

pp=repetition(vList)

mu=pp[0] # supposed preperiod

nu=pp[1] # supposed period

if nu == 0: # no repetition found

return [l,0,0]

else:

cr=checkPeriod(vList,mu,nu) # consistent with remainder

of sequence?

if cr == 0: # consistent ==> recursion found

result = [l,mu,nu]

return result

else: # cr > mu

l += cr - mu # inconsistent ==> increment l

return [nn-1,0,0]

The loop for the current value l of the dimension (or tentative recursion
depth) has three possible outcomes:

1. There is no repetition in the state vectors. Then the algorithm termi-
nates with output (l, 0, 0).

2. The first repetition (µl, νl) in the sequence of state vectors is consistent.
Then the algorithm terminates with output (l, µl, νl).

3. The first repetition is inconsistent. Then the algorithm continues with
an incremented value of l.

Proposition 4 Let u = (u0, u1, . . . , ur−1) ∈ Σr be a sequence of length
r ≥ 3. Then Λ(u) = r − 1 if and only if u0 = . . . = ur−2 6= ur−1.

Proof. If u0 = . . . = ur−2 6= ur−1, then ρ1 = 1, µ1 = 0, ν1 = 1, χ1 = r − 2,
and χ1 − µ1 = r − 2. Hence Λ(u) ≥ 1 + r − 2 = r − 1, hence Λ(u) = r − 1.

Conversely assume that Λ(u) = r − 1. Then for each l < r − 1 the
algorithm has outcome number 3: The state vectors of dimension l have an
inconsistent first repetition. In particular for l = r − 2 the r − l = 3 state

14

vectors are:

u(0) =

 u0
...

ur−3

 , u(1) =

 u1
...

ur−2

 , u(2) =

 u2
...

ur−1

 .

The only possibility for an inconsistent repetition is u(0) = u(1) 6= u(2).
Hence u0 = . . . = ur−2 6= ur−1. 3

For r = 2 we get Λ(u) = 1 no matter which u = (u0, u1) ∈ Σ2 we take.
(And for r = 1 the algorithm outputs (0, 0, 0), answering a question that
nobody would ask.)

Remark

For an application in cryptanalysis one would like to continue the given
sequence u ∈ Σr beyond its end, or in other words to predict further elements
of the sequence. If the algorithm outputs (l, µ, ν) with nonzero ν, then it
suggests a continuation based upon the detected periodicity. This may or
may not lead to a success, but at least it provides a clue.

The situation is by far worse if the algorithm outputs the trivial result
(l, 0, 0). Then the shortest FSR that generates the given input sequence has
a feedback function f that is completely arbitrary beyond the end of u, see
Formula (9) with µ+ ν replaced by r. In particular the algorithm provides
absolutely no clue for predicting further elements of the sequence.

8 Examples

1. r = 4, u = 0110 (where the string represents a sequence)

• For l = 1 we have ρ1 = 2, µ1 = 1, ν1 = 1, u1 = u2 6= u3, thus χ1 = 2.
Hence we increment l by χ1 − µ1 = 1.

• For l = 2 the state vectors(
0
1

)
,

(
1
1

)
,

(
1
0

)
have no repetition, hence the algorithm stops with output (2, 0, 0).

2. r = 6, u = 001010

• For l = 1 we have ρ1 = 1, µ1 = 0, ν1 = 1, u0 = u1 6= u2, χ1 = 1. Hence
we increment l by χ1 − µ1 = 1.

15

• For l = 2 the state vectors(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
have ρ2 = 3, µ2 = 1, ν2 = 2. Since u(2) = u(4) this repetition is
consistent, and the algorithm stops with output (2, 1, 2).

3. r = 7, u = 0110110

• For l = 1 we have ρ1 = 2, µ1 = 0, ν1 = 1, u1 = u2 6= u3, χ1 = 2. Hence
we increment l by χ1 − µ1 = 1.

• For l = 2 the state vectors(
0
1

)
,

(
1
1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)(
1
0

)
have ρ2 = 3, µ2 = 0, ν2 = 3. Since u(1) = u(4) and u(2) = u(5) this
repetition is consistent, and the algorithm stops with output (2, 0, 3).

9 The distribution of the recursion depth

In this section we focus on binary sequences, that is we consider the two-
element alphabet Σ = {0, 1}, abbreviated by F2, the field of two elements—
however this algebraic structure is not relevant for the moment.

Sage Example 5 generates the list of the recursion depths of all binary
sequences of a given length (together with the corresponding period data).
It uses the conversion of an integer to the list of bits of its binary represen-
tation, see Sage Example 6 (that is taken from the module Bitblock.sage

of the cryptology script). Sage Example 7 shows an exemplary application
for length 6. The result:

0 | [0, 0, 0, 0, 0, 0] | [1, 0, 1]

1 | [0, 0, 0, 0, 0, 1] | [5, 0, 0]

2 | [0, 0, 0, 0, 1, 0] | [4, 0, 0]

3 | [0, 0, 0, 0, 1, 1] | [4, 0, 0]

4 | [0, 0, 0, 1, 0, 0] | [3, 0, 0]

5 | [0, 0, 0, 1, 0, 1] | [3, 0, 0]

6 | [0, 0, 0, 1, 1, 0] | [3, 0, 0]

7 | [0, 0, 0, 1, 1, 1] | [3, 0, 0]

8 | [0, 0, 1, 0, 0, 0] | [3, 0, 0]

9 | [0, 0, 1, 0, 0, 1] | [2, 0, 3]

10 | [0, 0, 1, 0, 1, 0] | [2, 1, 2]

11 | [0, 0, 1, 0, 1, 1] | [3, 0, 0]

12 | [0, 0, 1, 1, 0, 0] | [2, 0, 4]

16

13 | [0, 0, 1, 1, 0, 1] | [2, 1, 3]

14 | [0, 0, 1, 1, 1, 0] | [3, 0, 0]

15 | [0, 0, 1, 1, 1, 1] | [2, 2, 1]

16 | [0, 1, 0, 0, 0, 0] | [2, 2, 1]

17 | [0, 1, 0, 0, 0, 1] | [3, 0, 0]

18 | [0, 1, 0, 0, 1, 0] | [2, 0, 3]

19 | [0, 1, 0, 0, 1, 1] | [3, 0, 0]

20 | [0, 1, 0, 1, 0, 0] | [4, 0, 0]

21 | [0, 1, 0, 1, 0, 1] | [1, 0, 2]

22 | [0, 1, 0, 1, 1, 0] | [3, 0, 0]

23 | [0, 1, 0, 1, 1, 1] | [3, 0, 0]

24 | [0, 1, 1, 0, 0, 0] | [2, 3, 1]

25 | [0, 1, 1, 0, 0, 1] | [2, 0, 4]

26 | [0, 1, 1, 0, 1, 0] | [3, 0, 0]

27 | [0, 1, 1, 0, 1, 1] | [2, 0, 3]

28 | [0, 1, 1, 1, 0, 0] | [3, 0, 0]

29 | [0, 1, 1, 1, 0, 1] | [3, 0, 0]

30 | [0, 1, 1, 1, 1, 0] | [4, 0, 0]

31 | [0, 1, 1, 1, 1, 1] | [1, 1, 1]

32 | [1, 0, 0, 0, 0, 0] | [1, 1, 1]

33 | [1, 0, 0, 0, 0, 1] | [4, 0, 0]

34 | [1, 0, 0, 0, 1, 0] | [3, 0, 0]

35 | [1, 0, 0, 0, 1, 1] | [3, 0, 0]

36 | [1, 0, 0, 1, 0, 0] | [2, 0, 3]

37 | [1, 0, 0, 1, 0, 1] | [3, 0, 0]

38 | [1, 0, 0, 1, 1, 0] | [2, 0, 4]

39 | [1, 0, 0, 1, 1, 1] | [2, 3, 1]

40 | [1, 0, 1, 0, 0, 0] | [3, 0, 0]

41 | [1, 0, 1, 0, 0, 1] | [3, 0, 0]

42 | [1, 0, 1, 0, 1, 0] | [1, 0, 2]

43 | [1, 0, 1, 0, 1, 1] | [4, 0, 0]

44 | [1, 0, 1, 1, 0, 0] | [3, 0, 0]

45 | [1, 0, 1, 1, 0, 1] | [2, 0, 3]

46 | [1, 0, 1, 1, 1, 0] | [3, 0, 0]

47 | [1, 0, 1, 1, 1, 1] | [2, 2, 1]

48 | [1, 1, 0, 0, 0, 0] | [2, 2, 1]

49 | [1, 1, 0, 0, 0, 1] | [3, 0, 0]

50 | [1, 1, 0, 0, 1, 0] | [2, 1, 3]

51 | [1, 1, 0, 0, 1, 1] | [2, 0, 4]

52 | [1, 1, 0, 1, 0, 0] | [3, 0, 0]

53 | [1, 1, 0, 1, 0, 1] | [2, 1, 2]

54 | [1, 1, 0, 1, 1, 0] | [2, 0, 3]

55 | [1, 1, 0, 1, 1, 1] | [3, 0, 0]

56 | [1, 1, 1, 0, 0, 0] | [3, 0, 0]

17

57 | [1, 1, 1, 0, 0, 1] | [3, 0, 0]

58 | [1, 1, 1, 0, 1, 0] | [3, 0, 0]

59 | [1, 1, 1, 0, 1, 1] | [3, 0, 0]

60 | [1, 1, 1, 1, 0, 0] | [4, 0, 0]

61 | [1, 1, 1, 1, 0, 1] | [4, 0, 0]

62 | [1, 1, 1, 1, 1, 0] | [5, 0, 0]

63 | [1, 1, 1, 1, 1, 1] | [1, 0, 1]

Sage Example 5 List the recursion depths of all binary sequences of a
given length.

def NLdistr(rr):

Llist = []

for t in range(2^rr):

bb = int2bbl(t,rr)

ll = getFSR(bb)

Llist.append(ll)

return Llist

Sage Example 6 Convert an integer to a bitblock of length dim via its
base-2 representation.

def int2bbl(number,dim):

n = number # catch input

b = [] # initialize output

for i in range(0,dim):

bit = n % 2 # next base-2 bit

b = [bit] + b # prepend

n = (n - bit)//2

return b

Sage Example 7 List the recursion depths of all binary sequences of length
6.

sage: r = 6

sage: results = NLdistr(r)

sage: for i in range(2^r):

print(i, "| ", int2bbl(i,r), "| ", results[i])

To get an overview over the distribution of recursion depths we use Sage
Example 8. The sage command sage: distr = NLctr(r); distr (still for

18

r = 6) yields the list [0, 6, 20, 28, 8, 2]. For a somewhat more illus-
trative example we take r = 20 and show the result as a histogram, see
Figure 3.

Sage Example 8 Distribution of the recursion depths of all binary se-
quences of a given length

def NLctr(rr):

ctrlist = [0]*rr

for t in range(2^rr):

bb = int2bbl(t,rr)

ll = getFSR(bb)[0]

ctrlist[ll] += 1

return ctrlist

Figure 3: Distribution of recursion depths of binary sequences of length 20

10 To Do

Several questions seem worth of further investigation:

1. Explore the impact of the size #Σ of the “alphabet” Σ on the distri-
bution of the recursion depth.

• For example a sequence u ∈ Σr must contain a repetition if
r < #Σ.

19

2. Table 1 contains the results of NLctr for binary sequences of lengths
r with 3 ≤ r ≤ 20. Explore the regularities of this scheme.

• Denote the number of sequences of length r with recursion depth
l by A(r, l). Then A(16, 8) = A(17, 9) = A(18, 10) = . . . = 4562.
Why?

3. The paper [3] indicates a proof that the mean value of Λ(u) over u ∈ Σr

is 2 · logs(r) where s = #Σ. Flesh out this proof.

4. For u ∈ Σr let the “recursive profile” be the sequence (Λ(u(t)))1≤t≤r
where u(t) is the partial sequence (u0, . . . , ut−1). Explore the recursive
profile.

• In particular study the transition t → t + 1. Compare also the
considerations in [3] and the Berlekamp-Massey algorithm for
the linearity profile.

5. For binary sequences compare the recursion depth with the linear com-
plexity3, and the recursive profile with the linearity profile.

6. Study the complexity of the algorithm in Section 7. Compare it with
the algorithm given in [3].

7. For a binary sequence u ∈ Fr2 of recursion depth l the feedback function
f is uniquely determined on the subset {u(0), . . . , u(µl+νl−1)} ⊆ Fl2,
and completely arbitrary on the complementary subset of 2l − µl − νl
elements of Fr2. Which options are left for optimizing f with respect to
diverse quantities such as the algebraic degree, or other nonlinearity
measures?

8. Compare the recursion depth as a measure of the complexity of a
sequence with the linear complexity and the Turing complexity.

3the analogous notion using linear feedback shift registers only, see the cryptology
lecture notes

20

Table 1: Distribution of the recursion depth for lengths up to 20

[0,6, 2]

[0,6, 8, 2]

[0,6,16, 8, 2]

[0,6,20, 28, 8, 2]

[0,6,20, 64, 28, 8, 2]

[0,6,20,106, 86, 28, 8, 2]

[0,6,20,154, 208, 86, 28, 8, 2]

[0,6,20,194, 430, 250, 86, 28, 8, 2]

[0,6,20,210, 808, 630, 250, 86, 28, 8, 2]

[0,6,20,210,1366, 1440, 680, 250, 86, 28, 8, 2]

[0,6,20,210,2084, 3114, 1704, 680, 250, 86, 28, 8, 2]

[0,6,20,210,2938, 6344, 4020, 1792, 680, 250, 86, 28, 8, 2]

[0,6,20,210,3858, 12206, 9162, 4460, 1792, 680, 250, 86, 28, 8, 2]

[0,6,20,210,4814, 22152, 20242, 10684, 4562, 1792, 680, 250, 86, 28, 8, 2]

[0,6,20,210,5774, 38298, 43262, 24890, 11204, 4562, 1792, 680, 250, 86, 28, 8, 2]

[0,6,20,210,6686, 63524, 89570, 56660, 26716,11344, 4562, 1792, 680, 250, 86, 28, 8, 2]

[0,6,20,210,7390,101714,179978,126316, 62438,27464,11344, 4562,1792, 680,250, 86,28, 8,2]

[0,6,20,210,7646,157816,352060,275938,143442,65072,27614,11344,4562,1792,680,250,86,28,8,2]

21

Bibliography

[1] Agnes Hui Chan, Richard A. Games. On the quadratic spans of peri-
odic sequences. Crypto ’89, 82–89.

[2] Solomon W. Golomb. Shift Register Sequences. Revised Edition:
Aegean Park Press, Laguna Hills 1982.

[3] Cees J. A. Jansen, Dick E. Boekee. The shortest feedback shift register
that can generate a given sequence. Crypto ’89, 90–99.

22

	Periods of Infinite and Finite Sequences
	Recursive Sequences
	Sequences of Unknown Origin
	Multistep Recursion
	Periods and State Vectors
	Unknown Recursion Depth
	Finding the Recursion Depth
	Examples
	The distribution of the recursion depth
	To Do

