Fixed Binary Forms

Klaus Pommerening Johannes-Gutenberg-Universität Mainz, Germany

Last change: April 13, 2017

The space R_d of homogenous polynomials in two variables X and Y, or of binary forms, of degree d over an algebraically closed field k is an irreducible SL_2 -module with a few exceptions in prime characteristics. Therefore the question of trivial submodules, or in other words of non-zero fixed points for SL_2 , makes sense.

1 The Operation of the Group SL_2 and its Lie Algebra \mathfrak{sl}_2

Let k be an algebraically closed field. We consider the group $G = SL_2(k)$ of 2×2 -matrices with determinant 1 over k. The matrix

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$

acts on the 2-dimensional vector space k^2 by the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

Denote the coordinate functions $k^2 \longrightarrow k$ by X and Y, where

$$X\begin{pmatrix} x\\ y \end{pmatrix} = x, \quad Y\begin{pmatrix} x\\ y \end{pmatrix} = y$$

for all $x, y \in k$. Since the inverse of g is

$$g^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

the induced ("contragredient") action on the space of linear forms spanned by the coordinate functions X and Y is given by

$$\begin{aligned} X \mapsto dX - bY, \\ Y \mapsto -cX + aY. \end{aligned}$$

(In general a function $f: k^2 \longrightarrow k$ is transformed to $f \circ g^{-1}$.) This action extends to the polynomial ring k[X, Y] as group of automorphisms. In particular for the powers of the coordinate functions we get the formulas

$$\begin{aligned} X^{r} &\mapsto (dX - bY)^{r} &= d^{r}X^{r} - rd^{r-1}bX^{r-1}Y + \dots + (-1)^{r}b^{r}Y^{r} \\ &= \sum_{\nu=0}^{r} (-1)^{\nu} \binom{r}{\nu} b^{\nu}d^{r-\nu}X^{r-\nu}Y^{\nu}, \\ Y^{s} &\mapsto (-cX + aY)^{s} &= (-c)^{s}X^{s} + s(-c)^{s-1}aX^{s-1}Y + \dots + a^{s}Y^{s} \\ &= \sum_{\nu=0}^{s} (-1)^{s-\nu} \binom{s}{\nu} a^{\nu}c^{s-\nu}X^{s-\nu}Y^{\nu}. \end{aligned}$$

Thus depending on the prime divisors of the binomial coefficients there are some anomalies in prime characteristics.

The Lie algebra $\mathfrak{sl}_2(k)$ consists of the 2 × 2-matrices with trace 0,

$$\mathfrak{sl}_2(k) = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \middle| a, b, c \in k \right\}.$$

It acts on the polynomial ring k[X, Y] by derivations, starting with the formulas

$$\begin{array}{ll} X & \mapsto -aX - bY, \\ Y & \mapsto -cX + aY, \end{array} \text{ for } A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}_2(k). \end{array}$$

(The easiest way to remember these formulas is by using dual numbers [1, Section 9.5], that is considering $SL_2(k[\delta])$ where $\delta^2 = 0$.) In particular

$$X^{r} \mapsto rX^{r-1}(-aX - bY),$$

$$Y^{s} \mapsto sY^{s-1}(-cX + aY).$$

Let R = k[X, Y] be the polynomial ring and R_d be its homogeneous part of degree d, an SL_2 -invariant subspace of R with $\dim_k R_d = d + 1$.

2 "Fixed Points" for the Lie Algebra

The Lie algebra $\mathfrak{sl}_2(k)$ is spanned (as a vector space over k) by the three matrices

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

whose effects on the variables X and Y are given by the formulas

$$HX = -X, \quad EX = -Y, \quad FX = 0,$$
$$HY = Y, \quad EY = 0, \quad FY = -X.$$

By definition an element A of the Lie algebra "stabilizes" a vector v in an SL_2 -module if and only if Av = 0, in other words, if the Lie algebra annihilates v. (Think of Av as a displacement.) Fixed points of the group Gare annihilated by the Lie algebra \mathfrak{g} , expressed as a formula:

$$G_v = G \Longrightarrow \mathfrak{g}_v = \mathfrak{g},$$

or more generally,

$$\operatorname{Lie}(G_v) \subseteq \mathfrak{g}_v$$

In prime characteristics the converse is not always true.

Now v is annihilated by \mathfrak{g} if and only if it is annihilated by the three matrices H, E, and F. The elements $v \in R_d$ have the form

$$v = \sum_{\nu=0}^d a_\nu X^{d-\nu} Y^\nu.$$

The matrices H, E, and F act on R as derivations. Thus for their effects on the basis elements we have the formulas:

$$\begin{split} HX^{r} &= -rX^{r}, \quad EX^{r} = -rX^{r-1}Y, \quad FX^{r} = 0, \\ HY^{s} &= sY^{s}, \quad EY^{s} = 0, \quad FY^{s} = -sXY^{s-1}, \\ H(X^{r}Y^{s}) &= (s-r)X^{r}Y^{s}, \quad E(X^{r}Y^{s}) = -rX^{r-1}Y^{s+1}, \quad F(X^{r}Y^{s}) = -sX^{r+1}Y^{s-1} \end{split}$$

The effects on the typical element v are then given by

$$H(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}) = \sum_{\nu=0}^{d} (2\nu - d) a_{\nu} X^{d-\nu} Y^{\nu}$$
$$E(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}) = \sum_{\nu=0}^{d-1} (\nu - d) a_{\nu} X^{d-\nu-1} Y^{\nu+1}$$
$$F(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}) = \sum_{\nu=1}^{d} (-\nu) a_{\nu} X^{d-\nu+1} Y^{\nu-1}$$

This yields the equivalences

$$Hv = 0 \iff (2\nu - d) \cdot a_{\nu} = 0 \quad \text{for } \nu = 0, \dots, d,$$

$$Ev = 0 \iff (\nu - d) \cdot a_{\nu} = 0 \quad \text{for } \nu = 0, \dots, d - 1,$$

$$Fv = 0 \iff \nu \cdot a_{\nu} = 0 \quad \text{for } \nu = 1, \dots, d.$$

Proposition 1 The binary form $\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}$ is annihilated by $\mathfrak{sl}_2(k)$ if and only if

$$da_0 = 0$$
, $da_d = 0$, $\nu a_\nu = da_\nu = 0$ for $\nu = 1, \dots, d-1$.

We denote by $V^{\mathfrak{g}}$ the subspace of points of a *G*-Module *V* annihilated by \mathfrak{g} . We have shown:

Corollary 1 If char $k \nmid d$, then $R_d^{\mathfrak{g}} = 0$.

Corollary 2 If $p = \operatorname{char} k \mid d$, then $v \in R^{\mathfrak{g}}_d$ if and only if

 $\nu a_{\nu} = 0$ for $\nu = 1, \dots, d-1$.

Thus $R_d^{\mathfrak{g}}$ is spanned by the monomials $X^{d-\nu}Y^{\nu}$ with $p \mid \nu$. In particular $X^d, Y^d \in R_d^{\mathfrak{g}}$.

Examples

- d = 2: $R_2^{\mathfrak{g}} = 0$ except when p = 2. In this exceptional case $R_2^{\mathfrak{g}}$ is spanned by X^2 and Y^2 .
- d = p where $p = \operatorname{char} k$: The same consideration shows that $R_p^{\mathfrak{g}}$ is spanned by X^p and Y^p .
- d = 4: $R_4^{\mathfrak{g}} = 0$ except when p = 2. In this case $R_4^{\mathfrak{g}}$ is spanned by X^4 , X^2Y^2 , and Y^4 .

d = 6: $R_6^{\mathfrak{g}} = 0$ except when p = 2 or 3.

For p = 2 the space $R_6^{\mathfrak{g}}$ is spanned by X^6 , X^4Y^2 , X^2Y^4 , and Y^6 . For p = 3 the space $R_6^{\mathfrak{g}}$ is spanned by X^6 , X^3Y^3 , and Y^6 .

3 Fixed Points for the Group

We denote by V^G the subspace of fixed points of G in a G-module V. From Corollaries 1 and 2 we immediately get:

Corollary 3 If char $k \nmid d$, then $R_d^G = 0$.

Corollary 4 If $p = \operatorname{char} k \mid d$, then R_d^G is contained in the subspace $V = R_d^{\mathfrak{g}}$ spanned by the monomials $X^{d-\nu}Y^{\nu}$ with $p \mid \nu$. In particular $R_d^G = V^G$.

Now consider the action of the maximal torus $T \leq G$ consisting of the matrices

$$\Delta(t) = \begin{pmatrix} t & 0\\ 0 & 1/t \end{pmatrix} \quad \text{for } t \in k^{\times}.$$

that map $X^r \mapsto t^{-r}X^r$ and $Y^r \mapsto t^rY^r$. Thus applying $\Delta(t)$ to

$$v = \sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}$$

yields the vector

$$\sum_{\nu=0}^d a_\nu t^{2\nu-d} X^{d-\nu} Y^\nu.$$

Hence v is fixed by T if and only if

$$a_{\nu}t^{2\nu-d} = a_{\nu}$$
 for all $t \in k^{\times}$.

Since k is assumed as algebraically closed, hence infinite, this forces $a_{\nu} = 0$ except when $t^{2\nu-d} = 1$ constant, i.e. when $d = 2\nu$.

Proposition 2 The binary forms of degree d that are fixed by T form the subspace

$$R_d^T = \begin{cases} 0 & \text{if } d \text{ is odd,} \\ kX^rY^r & \text{if } d = 2r \text{ is even} \end{cases}$$

Since $R_d^G \subseteq R_d^T$ we have only to study the form $X^r Y^r$ (or its scalar multiples). We expose it to the maximal unipotent subgroup consisting of the matrices

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \quad \text{for } b \in k,$$

getting

$$(X - bY)^r Y^r = (X^r \pm \dots \pm b^r Y^r) Y^r = X^r Y^r \pm \dots \pm b^r Y^{2r}.$$

This is $X^r Y^r$ if and only if b = 0. Hence $X^r Y^r$ is not fixed by G.

Theorem 1 $R_d^G = 0.$

References

 J. E. Humphreys: *Linear Algebraic Groups*. Springer-Verlag, New York 1975.