Fixed Binary Forms

Klaus Pommerening
Johannes-Gutenberg-Universität
Mainz, Germany

Last change: April 13, 2017

The space R_{d} of homogenous polynomials in two variables X and Y, or of binary forms, of degree d over an algebraically closed field k is an irreducible $S L_{2}$-module with a few exceptions in prime characteristics. Therefore the question of trivial submodules, or in other words of non-zero fixed points for $S L_{2}$, makes sense.

1 The Operation of the Group $S L_{2}$ and its Lie Algebra $\mathfrak{s l}_{2}$

Let k be an algebraically closed field. We consider the group $G=S L_{2}(k)$ of 2×2-matrices with determinant 1 over k. The matrix

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G
$$

acts on the 2-dimensional vector space k^{2} by the formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

Denote the coordinate functions $k^{2} \longrightarrow k$ by X and Y, where

$$
X\binom{x}{y}=x, \quad Y\binom{x}{y}=y
$$

for all $x, y \in k$. Since the inverse of g is

$$
g^{-1}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

the induced ("contragredient") action on the space of linear forms spanned by the coordinate functions X and Y is given by

$$
\begin{aligned}
& X \mapsto d X-b Y, \\
& Y \mapsto-c X+a Y .
\end{aligned}
$$

(In general a function $f: k^{2} \longrightarrow k$ is transformed to $f \circ g^{-1}$.) This action extends to the polynomial ring $k[X, Y]$ as group of automorphisms. In particular for the powers of the coordinate functions we get the formulas

$$
\begin{array}{r}
X^{r} \mapsto(d X-b Y)^{r} \quad=d^{r} X^{r}-r d^{r-1} b X^{r-1} Y+\cdots+(-1)^{r} b^{r} Y^{r} \\
=\sum_{\nu=0}^{r}(-1)^{\nu}\binom{r}{\nu} b^{\nu} d^{r-\nu} X^{r-\nu} Y^{\nu}, \\
Y^{s} \mapsto(-c X+a Y)^{s} \quad=(-c)^{s} X^{s}+s(-c)^{s-1} a X^{s-1} Y+\cdots+a^{s} Y^{s} \\
=\sum_{\nu=0}^{s}(-1)^{s-\nu}\binom{s}{\nu} a^{\nu} c^{s-\nu} X^{s-\nu} Y^{\nu} .
\end{array}
$$

Thus depending on the prime divisors of the binomial coefficients there are some anomalies in prime characteristics.

The Lie algebra $\mathfrak{s l}_{2}(k)$ consists of the 2×2-matrices with trace 0 ,

$$
\mathfrak{s l}_{2}(k)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \right\rvert\, a, b, c \in k\right\} .
$$

It acts on the polynomial ring $k[X, Y]$ by derivations, starting with the formulas

$$
\begin{aligned}
X & \mapsto-a X-b Y, \\
Y & \mapsto-c X+a Y,
\end{aligned} \quad \text { for } A=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \in \mathfrak{s l}_{2}(k) .
$$

(The easiest way to remember these formulas is by using dual numbers [1. Section 9.5], that is considering $S L_{2}(k[\delta])$ where $\delta^{2}=0$.) In particular

$$
\begin{aligned}
& X^{r} \mapsto r X^{r-1}(-a X-b Y), \\
& Y^{s} \mapsto s Y^{s-1}(-c X+a Y) .
\end{aligned}
$$

Let $R=k[X, Y]$ be the polynomial ring and R_{d} be its homogeneous part of degree d, an $S L_{2}$-invariant subspace of R with $\operatorname{dim}_{k} R_{d}=d+1$.

2 "Fixed Points" for the Lie Algebra

The Lie algebra $\mathfrak{s l}_{2}(k)$ is spanned (as a vector space over k) by the three matrices

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
$$

whose effects on the variables X and Y are given by the formulas

$$
\begin{gathered}
H X=-X, \quad E X=-Y, \quad F X=0 \\
H Y=Y, \quad E Y=0, \quad F Y=-X
\end{gathered}
$$

By definition an element A of the Lie algebra "stabilizes" a vector v in an $S L_{2}$-module if and only if $A v=0$, in other words, if the Lie algebra annihilates v. (Think of $A v$ as a displacement.) Fixed points of the group G are annihilated by the Lie algebra \mathfrak{g}, expressed as a formula:

$$
G_{v}=G \Longrightarrow \mathfrak{g}_{v}=\mathfrak{g}
$$

or more generally,

$$
\operatorname{Lie}\left(G_{v}\right) \subseteq \mathfrak{g}_{v}
$$

In prime characteristics the converse is not always true.
Now v is annihilated by \mathfrak{g} if and only if it is annihilated by the three matrices H, E, and F. The elements $v \in R_{d}$ have the form

$$
v=\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}
$$

The matrices H, E, and F act on R as derivations. Thus for their effects on the basis elements we have the formulas:

$$
\begin{gathered}
H X^{r}=-r X^{r}, \quad E X^{r}=-r X^{r-1} Y, \quad F X^{r}=0 \\
H Y^{s}=s Y^{s}, \quad E Y^{s}=0, \quad F Y^{s}=-s X Y^{s-1} \\
H\left(X^{r} Y^{s}\right)=(s-r) X^{r} Y^{s}, \quad E\left(X^{r} Y^{s}\right)=-r X^{r-1} Y^{s+1}, \quad F\left(X^{r} Y^{s}\right)=-s X^{r+1} Y^{s-1} .
\end{gathered}
$$

The effects on the typical element v are then given by

$$
\begin{aligned}
H\left(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}\right) & =\sum_{\nu=0}^{d}(2 \nu-d) a_{\nu} X^{d-\nu} Y^{\nu} \\
E\left(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}\right) & =\sum_{\nu=0}^{d-1}(\nu-d) a_{\nu} X^{d-\nu-1} Y^{\nu+1} \\
F\left(\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}\right) & =\sum_{\nu=1}^{d}(-\nu) a_{\nu} X^{d-\nu+1} Y^{\nu-1}
\end{aligned}
$$

This yields the equivalences

$$
\begin{aligned}
& H v=0 \Longleftrightarrow(2 \nu-d) \cdot a_{\nu}=0 \quad \text { for } \nu=0, \ldots, d, \\
& E v=0 \Longleftrightarrow(\nu-d) \cdot a_{\nu}=0 \quad \text { for } \nu=0, \ldots, d-1, \\
& F v=0 \Longleftrightarrow \nu \cdot a_{\nu}=0 \quad \text { for } \nu=1, \ldots, d .
\end{aligned}
$$

Proposition 1 The binary form $\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}$ is annihilated by $\mathfrak{s l}_{2}(k)$ if and only if

$$
d a_{0}=0, \quad d a_{d}=0, \quad \nu a_{\nu}=d a_{\nu}=0 \quad \text { for } \nu=1, \ldots, d-1
$$

We denote by $V^{\mathfrak{g}}$ the subspace of points of a G-Module V annihilated by \mathfrak{g}. We have shown:

Corollary 1 If char $k \nmid d$, then $R_{d}^{\mathfrak{g}}=0$.
Corollary 2 If $p=\operatorname{char} k \mid d$, then $v \in R_{d}^{\mathfrak{g}}$ if and only if

$$
\nu a_{\nu}=0 \quad \text { for } \nu=1, \ldots, d-1 .
$$

Thus $R_{d}^{\mathfrak{g}}$ is spanned by the monomials $X^{d-\nu} Y^{\nu}$ with $p \mid \nu$. In particular $X^{d}, Y^{d} \in R_{d}^{\mathfrak{g}}$.

Examples

$d=2: R_{2}^{\mathfrak{g}}=0$ except when $p=2$. In this exceptional case $R_{2}^{\mathfrak{g}}$ is spanned by X^{2} and Y^{2}.
$d=p$ where $p=$ char k : The same consideration shows that $R_{p}^{\mathfrak{d}}$ is spanned by X^{p} and Y^{p}.
$d=4: R_{4}^{\mathfrak{g}}=0$ except when $p=2$. In this case $R_{4}^{\mathfrak{g}}$ is spanned by $X^{4}, X^{2} Y^{2}$, and Y^{4}.
$d=6: R_{6}^{\mathfrak{g}}=0$ except when $p=2$ or 3 .
For $p=2$ the space $R_{6}^{\mathfrak{g}}$ is spanned by $X^{6}, X^{4} Y^{2}, X^{2} Y^{4}$, and Y^{6}.
For $p=3$ the space $R_{6}^{\mathfrak{g}}$ is spanned by $X^{6}, X^{3} Y^{3}$, and Y^{6}.

3 Fixed Points for the Group

We denote by V^{G} the subspace of fixed points of G in a G-module V. From Corollaries 1 and 2 we immediately get:

Corollary 3 If char $k \nmid d$, then $R_{d}^{G}=0$.
Corollary 4 If $p=\operatorname{char} k \mid d$, then R_{d}^{G} is contained in the subspace $V=R_{d}^{\mathfrak{g}}$ spanned by the monomials $X^{d-\nu} Y^{\nu}$ with $p \mid \nu$. In particular $R_{d}^{G}=V^{G}$.

Now consider the action of the maximal torus $T \leq G$ consisting of the matrices

$$
\Delta(t)=\left(\begin{array}{cc}
t & 0 \\
0 & 1 / t
\end{array}\right) \quad \text { for } t \in k^{\times} .
$$

that map $X^{r} \mapsto t^{-r} X^{r}$ and $Y^{r} \mapsto t^{r} Y^{r}$. Thus applying $\Delta(t)$ to

$$
v=\sum_{\nu=0}^{d} a_{\nu} X^{d-\nu} Y^{\nu}
$$

yields the vector

$$
\sum_{\nu=0}^{d} a_{\nu} t^{2 \nu-d} X^{d-\nu} Y^{\nu}
$$

Hence v is fixed by T if and only if

$$
a_{\nu} t^{2 \nu-d}=a_{\nu} \quad \text { for all } t \in k^{\times} .
$$

Since k is assumed as algebraically closed, hence infinite, this forces $a_{\nu}=0$ except when $t^{2 \nu-d}=1$ constant, i.e. when $d=2 \nu$.

Proposition 2 The binary forms of degree d that are fixed by T form the subspace

$$
R_{d}^{T}= \begin{cases}0 & \text { if } d \text { is odd } \\ k X^{r} Y^{r} & \text { if } d=2 r \text { is even } .\end{cases}
$$

Since $R_{d}^{G} \subseteq R_{d}^{T}$ we have only to study the form $X^{r} Y^{r}$ (or its scalar multiples). We expose it to the maximal unipotent subgroup consisting of the matrices

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \quad \text { for } b \in k,
$$

getting

$$
(X-b Y)^{r} Y^{r}=\left(X^{r} \pm \cdots \pm b^{r} Y^{r}\right) Y^{r}=X^{r} Y^{r} \pm \cdots \pm b^{r} Y^{2 r} .
$$

This is $X^{r} Y^{r}$ if and only if $b=0$. Hence $X^{r} Y^{r}$ is not fixed by G.
Theorem $1 R_{d}^{G}=0$.

References

[1] J. E. Humphreys: Linear Algebraic Groups. Springer-Verlag, New York 1975.

