GORDANS Finiteness Theorem (HILBERTS proof – slightly modernized)

Klaus Pommerening

April 1975

Let k be an infinite entire ring, $V = k^2$, the free k-module of rank 2, G, the group SL(V). Then G acts in a canocical way on $S^n(V^*)$, the module of binary forms of degree n, and on its affine coordinate ring $P := S(S^n(V^*)^*) = S(S^n(V))$. The ring $I := P^G$ of invariants is the classical ring of invariants of a binary form of degree n. Let

$$k_0 := \mathbb{Z}\left[\frac{1}{n!}\right] = \mathbb{Z}\left[\frac{1}{p} \mid p \le n \text{ prime.}\right]$$

Theorem 1 (GORDAN 1868) Let n! be a unit in k. Then I = I(k) is a finitely generated k-algebra, and

 $I(k) \cong I(k_0) \otimes_{k_0} k$

as a graduated k-algebra.

GORDAN's original proof [1] works for k a field of characteristic 0 and provides an explicit system of generators. Here we reproduce HILBERT's proof [2] that gives the theorem in the stated generality. The restriction that n! is a unit will be needed only in step 3, and we also have a somewhat weaker (non-explicit) version without this restriction that however uses Emmy NOETHER's general result on finite generation of invariants under finite groups and therefore is anhistoric.

Corollary 1 If k is an infinite noetherian entire ring (not necessarily n! a unit), then I is a finitely generated k-algebra.

Historical remark. Except for the main theorem on symmetric polynomials GOR-DAN's theorem is the earliest result on finite generation of invariant rings.

The proof starts with two lemmas.

 \boldsymbol{n}

Lemma 1 Let

$$\sum_{j=1}^{n} a_{ij} x_j = 0 \quad for \ j = 1, \dots m \quad with \ a_{ij} \in \mathbb{Z} \ for \ all \ i, j$$

be a system of diophantine equations. Then the semigroup of non-negative solutions (i. e. solution vectors $x = (x_1, \ldots, x_n) \in \mathbb{N}^n$) is finitely generated.

This is a corollary of DICKSON's lemma for which we have a separate note [3].

Lemma 2 Let $\sigma_1, \ldots, \sigma_N \in k[X_1, \ldots, X_N] = k[X]$ be the elementary symmetric polynomials. Then for each i the powers X_i^j , $0 \le j < N$, generate the $k[\sigma]$ -module $k[\sigma][X_i]$. More explicitly, for each natural number $p \in \mathbb{N}$ there are polynomials $g_1, \ldots, g_N \in$ $k[\sigma_1,\ldots,\sigma_N]$ such that

$$X_i^p = g_1 \cdot X_i^{N-1} + \dots + g_{N-1} \cdot X_i + g_N$$
 for all $i = 1, \dots N_i$

Proof. If $p \leq N - 1$, the assertion is obvious.

If p = N, then X_1, \ldots, X_N are zeroes of the polynomial

$$(T-X_1)\cdots(T-X_N)=T^N-\sigma_1T^{N-1}+\cdots\pm\sigma_N\in k[X][T],$$

whence $X_i^N = \sigma_1 X_i^{N-1} - \cdots \mp \sigma_N$ for $i = 1, \dots, N$. If p > N, we use induction and assume $X_i^{p-1} = g'_1(\sigma) X_i^{N-1} + \cdots + g'_N(\sigma)$ for $i = 1, \ldots, N$. Then

$$\begin{aligned} X_i^p &= g_1'(\sigma)X_i^N + \dots + g_N'(\sigma)X_i \\ &= g_1'(\sigma)\left[\sigma_1X_i^{N-1} - \dots \pm \sigma_N\right] + g_2'(\sigma)X_i^{N-1} + \dots + g_N'(\sigma)X_i \\ &= \underbrace{[g_1'(\sigma)\sigma_1 + g_2'(\sigma)]}_{=:g_1(\sigma)}X_i^{N-1} + \dots + \underbrace{[g_N'(\sigma) \mp g_1'(\sigma)\sigma_{N-1}]}_{=:g_{N-1}(\sigma)}X_i \pm \underbrace{g_1'(\sigma)\sigma_N}_{g_N(\sigma)}, \end{aligned}$$

as was to be shown. \diamond

The proof of the theorem involves several rings. First let

$$S := T^n(S(V)) = S(V) \otimes \cdots \otimes S(V) = k[\alpha_1, \beta_1, \dots, \alpha_n, \beta_n],$$

the polynomial ring in 2n indeterminates. This k-algebra is canonically \mathbb{N}^n -graded where the homogeneous parts have the form

$$S_{\underline{d}} = S^{d_1}(V) \otimes \cdots \otimes S^{d_n}(V) \text{ for } \underline{d} = (d_1, \dots, d_n) \in \mathbb{N}^n.$$

The group G = SL(V) acts on S in a homogeneous way; let $R := S^G$ be the algebra of invariants. It has the induced grading

$$R = \sum_{\underline{d} \in \mathbb{N}^n} R_{\underline{d}} \quad \text{where } R_{\underline{d}} = S_{\underline{d}} \cap R.$$

Examples for homogeneous invariants are

1. $p_{ij} := \alpha_i \beta_j - \alpha_j \beta_i$ for $1 \le i < j \le n \in R_d$ where

$$\underline{d} = (0, \dots, \overset{i}{\underbrace{1}}, \dots, \overset{j}{\underbrace{1}}, \dots, 0).$$

2. For an N-valued symmetric matrix $M = (m_{ij})$ with zero diagonal,

$$X_M := \prod_{i < j} p_{ij}^{m_{ij}} \in R_{\underline{d}} \quad \text{where } d_i = \sum_{j=1}^n m_{ij}.$$

Let us denote this (multi-) degree by $\underline{d} =: D(M)$.

For $d \in \mathbb{N}$ let $(d) = (d, \ldots, d) \in \mathbb{N}^n$, hence $S_{(d)} = S^d(V) \otimes \cdots \otimes S^d(V)$. Then

$$\tilde{S} := \sum_{d \in \mathbb{N}} S_{(d)}$$

is an N-graduated subalgebra of S. Also on this algebra G operates homogeneously, and the ring of invariants is

$$\tilde{R} := \tilde{S}^G = \sum_{d \in \mathbb{N}} R_{(d)}.$$

Furthermore we have the operation $\alpha_i \mapsto \alpha_{\pi(i)}, \beta_i \mapsto \beta_{\pi(i)}$ for $\pi \in \mathfrak{S}_n$, of the symmetric group \mathfrak{S}_n on S; it induces a homogeneous operation on \tilde{S} . The operations of \mathfrak{S}_n and of G commute elementwise. Therefore the direct product $\mathfrak{S}_n \times G$ acts on \tilde{S} homogeneously.

Lemma 3 The graduated ring $P = S(S^n(V))$ is isomorphic with $\tilde{S}^{\mathfrak{S}_n}$.

Proof. A short consideration will motivate the proof. Let $\{x, y\}$ be a basis of the dual space V^* . Decompose the "general binary form of degree n",

$$f = \sum_{j=0}^{n} u_j x^{n-j} y^j$$

as a product of linear factors (over a suitable ring extension $\bar{k} \supseteq k$):

$$f = \prod_{i=1}^{n} (\beta_i x + \alpha_i y)$$

- this corresponds to the decomposition of the polynomial $\frac{1}{x^n} \cdot f = \sum u_j (\frac{y}{x})^j$ into linear factors $(\frac{y}{x} + \frac{\beta_i}{\alpha_i})$. Then

$$f = \prod(\beta_i x + \alpha_i y) = \beta_1 \cdots \beta_n \cdot \prod(x + \frac{\alpha_i}{\beta_i} y) = \beta_1 \cdots \beta_n \cdot \sum x^{n-j} \sigma_j(\frac{\alpha_1}{\beta_1}, \dots, \frac{\alpha_n}{\beta_n}) y^j.$$

Therefore

$$u_0 = \beta_1 \cdots \beta_n, u_1 = \beta_1 \cdots \beta_n \cdot (\frac{\alpha_1}{\beta_1} + \cdots + \frac{\alpha_n}{\beta_n}), \dots, u_n = \alpha_1 \cdots \alpha_n.$$

The general formula is

(*)
$$u_j = \sum_{M \in \mathfrak{P}_j(\{1,\dots,n\})} \alpha_M \beta_{\bar{M}}$$

(with suggestive notation).

Now let's prove that $\tilde{S}^{\mathfrak{S}_n} = P$. Let α_i and β_i be indeterminates, and u_j for j =1,..., n be given by formula (*). Then $k[u_0,...,u_n] = S(S^n(V)) = P$ is the coordinate algebra of the binary forms of degree n. We have

 $S_{(d)} = \{ F \in k[\alpha, \beta] \mid F \text{ homogeous of degree } d \text{ in each pair } (\alpha_i, \beta_i) \}.$

Therefore $u_0, \ldots, u_n \in S_{(1)}$, hence P = k[u] is a graduated subring of \tilde{S} . Moreover all $u_i \in \tilde{S}^{\mathfrak{S}_n}$ because for $\pi \in \mathfrak{S}_n$ we have

$$\pi(u_j) = \pi\left(\sum_{M \in \mathfrak{P}_j} \alpha_M \beta_{\bar{M}}\right) = \sum_{M \in \mathfrak{P}_j} \alpha_{\pi(M)} \beta_{\overline{\pi(M)}} = u_j.$$

Therefore $P \subseteq \tilde{S}^{\mathfrak{S}_n}$ even as a graduated subring.

For the opposite inclusion let $F \in S_{(d)}$ be an \mathfrak{S}_n -invariant, say

$$F = \sum_{m \in \mathbb{N}^n} c_m \alpha_1^{m_1} \beta_1^{d-m_1} \cdots \alpha_n^{m_n} \beta_n^{d-m_n},$$

where $c_{\pi(m)} = c_m$ for all $\pi \in \mathfrak{S}_n$. This means that $F/\beta_1^d \cdots \beta_n^d$ is a symmetric polynomial in $\frac{\alpha_1}{\beta_1}, \ldots, \frac{\alpha_n}{\beta_n}$ of degree $\leq d$, hence a polynomial in the elementary symmetric polynomials:

$$\frac{1}{u_0^d} \cdot F = \frac{1}{\beta_1^d \cdots \beta_n^d} \cdot F = G(\sigma_1(\frac{\alpha_1}{\beta_1}, \dots, \frac{\alpha_n}{\beta_n}), \dots, \sigma_n(\frac{\alpha_1}{\beta_1}, \dots, \frac{\alpha_n}{\beta_n})) = G(\frac{u_1}{u_0}, \dots, \frac{u_n}{u_0})$$

with $\deg(G) \leq d$, and therefore $F \in k[u]$.

The k-algebra whose finite generation the theorem asserts is therefore

$$I = P^G = (\tilde{S}^{\mathfrak{S}_n})^G = \tilde{S}^{\mathfrak{S}_n \times G} = (\tilde{S}^G)^{\mathfrak{S}_n} = \tilde{R}^{\mathfrak{S}_n}.$$

The following diagram shows the relations of all these rings.

Now we prove in three steps that the k-algebras R, \tilde{R} , and I are finitely generated.

Step 1.

Lemma 4 For each $\underline{d} \in \mathbb{N}^n$ we have $R_{\underline{d}} = \langle X_M \mid D(M) = \underline{d} \rangle$ as a k-module, and $R_{\underline{d}} = R_{\underline{d}}(k) \cong R_{\underline{d}}(\mathbb{Z}) \otimes_{\mathbb{Z}} k$.

In particular as a k-algebra R is generated by the $\binom{n}{2}$ elements p_{ij} , $1 \le i < j \le n$, and $R = R(k) \cong R(\mathbb{Z}) \otimes_{\mathbb{Z}} k$ as a graduated k-algebra.

We start the proof of Lemma 4 with the special case n = 1:

Lemma 5 $S(V)^G = k$.

Proof. Let $\{\alpha, \beta\}$ be a basis of V and $F = \sum_{i=0}^{r} c_i \alpha^{r-i} \beta^i$ with $r \ge 1$. If F is invariant under $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in G$, then $c_{r-i} = (-1)^{r-i} c_i$ for $i = 1, \ldots, r$. Now let F be also invariant under $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \in G$ for all $\lambda \in k$. Then

$$F = \sum_{i=0}^{r} c_i (\alpha + \lambda \beta)^{r-i} \beta^i = \sum_{i=0}^{r} \sum_{j=0}^{r-i} c_i \cdot \binom{r-i}{j} \alpha^{r-i-j} \lambda^j \beta^{j+i}$$
$$= \sum_{i=0}^{r} \left[\sum_{j=0}^{i} \binom{r-j}{r-i} c_j \lambda^{i-j} \right] \alpha^{r-i} \beta^i.$$

This gives equations for the coefficients c_i , for example

$$c_r = \sum_{j=0}^r \binom{r-j}{0} c_j \lambda^{r-j} = c_0 \lambda^r + \dots + c_r$$

for all $\lambda \in k$. Because k is an infinite entire ring, we conclude that $c_0 = \ldots = c_{r-1} = 0$ and $c_r = (-1)^r c_0 = 0$, hence F = 0.

- **Remark.** For Lemma 5 we really need the condition that k is an infinite entire ring. As an illustration we give three counterexamples for weaker conditions.
- **Example 1.** Let k be the finite entire ring \mathbb{F}_2 . Then $F = \alpha^2 + \alpha\beta + \beta^2 \in S^2(V)$ is invariant under $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ that together generate G.
- **Example 2.** Or let k be \mathbb{F}_3 . Then $F = \alpha^6 + \alpha^4 \beta^2 + \alpha^2 \beta^6 + \beta^6 \in S^6(V)$ is invariant under $\begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, that together generate G.
- **Example 3.** For an example where k is infinite, but has zero-divisors, take A, an infinite \mathbb{F}_2 -module, and $k = \mathbb{F}_2 \times A$ with the multiplication (m, a)(n, b) = (mn, ma + nb). (This is the well-known "adjunction of 1 to the \mathbb{F}_2 -Algebra A with 0-multiplication".) Then $F = \alpha^4 + \alpha^2 \beta^2 + \beta^4$ is invariant.

We prove Lemma 4 by induction on n. For n = 1 Lemma 5 gives R = k, and the assertion is trivial.

Therefore let n > 1. We make a further induction on $w := d_1 + \cdots + d_n$. If w = 0, we have $\underline{d} = 0$ and $R_0 = k$, and we are ready.

Now let w > 0, that is, $\underline{d} \neq 0$. We may assume $d_n \neq 0$ (otherwise change enumeration). If all other $d_i = 0$, we would have $S_{\underline{d}} \subseteq k[\alpha_n, \beta_n]$, and the case n = 1 would apply. Therefore we may assume (without loss of generality) that $d_{n-1} \neq 0$.

The substitution homomorphism

$$\varphi \colon S \longrightarrow S' = k[\alpha_1, \beta_1, \dots, \alpha_{n-1}, \beta_{n-1}], \quad \alpha_n \mapsto \alpha_{n-1}, \beta_n \mapsto \beta_{n-1},$$

is G-equivariant, hence maps R onto $R' := (S')^G$ and $R_{\underline{d}}$ onto $R'_{d'}$ where $d' = (d_1, \ldots, d_{n-1} + d_n) \in \mathbb{N}^{n-1}$. By induction $R'_{\underline{d}'} \cong R'_{\underline{d}'}(\mathbb{Z}) \otimes k$ is spanned by the $X_{M'}$ with $D(M') = \underline{d}'$. Each such $X_{M'}$ has $d_{n-1} + d_n$ factors of type $p_{i,n-1}$; if we replace any d_n of these by p_{in} , then we get an inverse image X_M of $X_{M'}$ under φ . Therefore $\varphi: R_{\underline{d}} \longrightarrow R'_{d'}$ is surjective.

Next let us determine the kernel of φ . Let $F \in R_{\underline{d}}$ with $\varphi(F) = 0$. Then $\frac{1}{\beta_1^{d_1} \cdots \beta_n^{d_n}} \cdot F$ is a polynomial over $k\left[\frac{\alpha_1}{\beta_1}, \ldots, \frac{\alpha_{n-1}}{\beta_{n-1}}\right]$ in the indeterminate $\frac{\alpha_n}{\beta_n}$, and has $\frac{\alpha_{n-1}}{\beta_{n-1}}$ as a zero. Therefore $\left(\frac{\alpha_n}{\beta_n} - \frac{\alpha_{n-1}}{\beta_{n-1}}\right) |\frac{1}{\beta_1^{d_1} \cdots \beta_n^{d_n}} \cdot F$, and $p_{n-1,n}|F$. Thus there is an $F_0 \in R_{\underline{d}}$ with $\overline{d} = (d_1, \ldots, d_{n-1} - 1, d_n - 1)$, such that $F = p_{n-1,n}F_0$. Therefore ker $\varphi = p_{n-1,n} \cdot R_{\underline{d}}$ as a k-module (because R has no zero divisors). This gives the exact sequence

$$0 \longrightarrow R_{\underline{\tilde{d}}} \longrightarrow R_{\underline{d}} \longrightarrow R'_{\underline{d}'} \longrightarrow 0$$

By induction on w the module $R_{\underline{\tilde{d}}} \cong R_{\underline{\tilde{d}}}(\mathbb{Z}) \otimes k$ is spanned by the X_M with $D(M) = \underline{\tilde{d}}$. Because the sequence

$$0 \longrightarrow R_{\underline{\tilde{d}}} \longrightarrow \langle X_M \mid D(M) = \underline{d} \rangle \longrightarrow R'_{\underline{d}'} \longrightarrow 0$$

is also exact, general nonsense (the five lemma) gives $R_{\underline{d}} = \langle X_M | D(M) = \underline{d} \rangle$. The exact sequence

$$0 \longrightarrow R_{\underline{\tilde{d}}}(\mathbb{Z}) \longrightarrow R_{\underline{d}}(\mathbb{Z}) \longrightarrow R'_{\underline{d}'}(\mathbb{Z}) \longrightarrow 0$$

consists of free \mathbb{Z} -modules. The following diagram has exact rows and canonical vertical arrows. The two isomorphisms follow by induction. By the five lemma also the middle arrow is an isomorphism.

Step 2.

Lemma 6 \tilde{R} is a finitely generated k-algebra, and $\tilde{R} = \tilde{R}(k) \cong \tilde{R}(\mathbb{Z}) \otimes_{\mathbb{Z}} k$.

Proof. The module $R_{(d)}$ is spanned by the X(M) with $\sum_{j=1}^{n} m_{ij} = d$ for all $i = 1, \ldots, n$. Therefore R is spanned by the X_M with $\sum_{j=1}^{n} m_{1j} = \ldots = \sum_{j=1}^{n} m_{nj}$. This is a homogeneous system of diophantine equations for the m_{ij} . By Lemma 1 its solutions form a finitely generated subsemigroup of \mathbb{N}^q (where q = n(n-1)/2). Let $\{M^{(1)}, \ldots, M^{(r)}\}$ be a system of generators. If $M = \sum_{l=1}^{r} a_l M^{(l)}$, then

$$X_M = \prod_{i < j} p_{ij}^{m_{ij}} = \left(\prod_{i < j} p_{ij}^{m_{ij(1)}}\right)^{a_1} \dots = X_{M_1}^{a_1} \dots X_{M_r}^{a_r}.$$

Therefore the $X_1 := X_{M_1}, \ldots, X_r := X_{M_r}$ generate the k-algebra \tilde{R} . The isomorphism in the lemma follows because by Lemma 4 it holds on all homogeneous components. \diamond

Step 3.

We show that I is finitely generated, if n! is a unit in k, and $I(k) \cong I(k_0) \otimes_{k_0} k$ as a graduated k-algebra.

Proof. Consider the linear map

$$\mu_d \colon R_{(d)} \longrightarrow R_{(d)}, \quad \mu_d := \sum_{\pi \in \mathfrak{S}_n} \pi.$$

Then $I_{(d)} := I \cap R_{(d)} = \mu_d(R_{(d)})$, because n! is a unit in k. In I there are for example the following elements:

- (a) $\mu(X_1^{a_1}\cdots X_r^{a_r}) = \sum_{\pi\in\mathfrak{S}_n} \pi(X_1)^{a_1}\cdots \pi(X_r)^{a_r}$ where $a_1,\ldots,a_r\in\mathbb{N},$
- (b) the elementary symmetric functions in the $\pi(X_i)$ for each $i = 1, \ldots, r$,

$$\sigma_j(\rho(X_i)_{\rho\in\mathfrak{S}_n}) = \sum_{A\in\mathfrak{P}_j(\mathfrak{S}_n)} \left(\prod_{\rho\in A} \rho(X_i)\right)$$

for j = 1, ..., n! because each $\pi \in \mathfrak{S}_n$ only permutes the summands.

Claim: The finite set $Z = \{(a) \mid all \ a_i < n!\} \cup \{(b)\}$ generates the k-algebra I. Each element of I is a linear combination of elements of the form

$$F = \sum_{\pi \in \mathfrak{S}_n} \pi(X_1)^{a_1} \cdots \pi(X_r)^{a_r} = \sum_{\pi \in \mathfrak{S}_n} \left(\sum_{j=1}^{n!-1} g_j^{(1)} \pi(X_1)^j \right) \cdots \left(\sum_{j=1}^{n!-1} g_j^{(r)} \pi(X_r)^j \right)$$
$$= \sum_{j_1, \dots, j_r=0}^{n!-1} g_{j_1}^{(1)} \cdots g_{j_r}^{(r)} \cdot \left(\sum_{\pi \in \mathfrak{S}_n} \pi(X_1)^{j_1} \cdots \pi(X_r)^{j_r} \right)$$

with terms in k[Z]. Therefore $F \in k[Z]$ and I = k[Z].

For the second statement, the isomorphism, we note that because n! is a unit in k the $k[\mathfrak{S}_n]$ -module $R_{(d)}$ is semisimple. Therfore the submodule $I_{(d)}$ has a direct complement $H_{(d)}$, and we have two exact direct sequences

The diagram is commutative. We already know by Lemma 4 that the middle vertical arrow is an isomorphism. Because the rows are exact direct, also the two other vertical arrows are isomorphisms. Therefore $I \cong I(k_0) \otimes k$ as a graduated ring. \diamond

Step 3a.

We finally show that I is finitely generated, if k is noetherian, but n! not necessarily a unit. This simply follows because I is the ring of invariants of the finitely generated k-algebra \tilde{R} under the finite group \mathfrak{S}_n .

References

- P. Gordan: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist. J. reine angew. Math. 69 (1868), 323–354.
- [2] D. Hilbert: Über die Endlichkeit des Invariantensystems f
 ür bin
 äre Grundformen. Math. Ann. 33 (1889), 223–226.
- [3] K. Pommerening: A remark on subsemigroups (Dickson's lemma). Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/Dickson.pdf