Gordans Finiteness Theorem (HILBERTs proof - slightly modernized)

Klaus Pommerening

April 1975

Let k be an infinite entire ring, $V=k^{2}$, the free k-module of rank $2, G$, the group $S L(V)$. Then G acts in a canocical way on $S^{n}\left(V^{*}\right)$, the module of binary forms of degree n, and on its affine coordinate ring $P:=S\left(S^{n}\left(V^{*}\right)^{*}\right)=S\left(S^{n}(V)\right)$. The ring $I:=P^{G}$ of invariants is the classical ring of invariants of a binary form of degree n. Let

$$
k_{0}:=\mathbb{Z}\left[\frac{1}{n!}\right]=\mathbb{Z}\left[\left.\frac{1}{p} \right\rvert\, p \leq n \text { prime. }\right]
$$

Theorem 1 (Gordan 1868) Let n ! be a unit in k. Then $I=I(k)$ is a finitely generated k-algebra, and

$$
I(k) \cong I\left(k_{0}\right) \otimes_{k_{0}} k
$$

as a graduated k-algebra.
Gordan's original proof [1] works for k a field of characteristic 0 and provides an explicit system of generators. Here we reproduce Hilbert's proof [2] that gives the theorem in the stated generality. The restriction that n ! is a unit will be needed only in step 3 , and we also have a somewhat weaker (non-explicit) version without this restriction that however uses Emmy Noether's general result on finite generation of invariants under finite groups and therefore is anhistoric.

Corollary 1 If k is an infinite noetherian entire ring (not necessarily n ! a unit), then I is a finitely generated k-algebra.

Historical remark. Except for the main theorem on symmetric polynomials GorDAN's theorem is the earliest result on finite generation of invariant rings.

The proof starts with two lemmas.
Lemma 1 Let

$$
\sum_{j=1}^{n} a_{i j} x_{j}=0 \quad \text { for } j=1, \ldots m \quad \text { with } a_{i j} \in \mathbb{Z} \text { for all } i, j
$$

be a system of diophantine equations. Then the semigroup of non-negative solutions (i. e. solution vectors $\left.x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}\right)$ is finitely generated.

This is a corollary of Dickson's lemma for which we have a separate note [3].
Lemma 2 Let $\sigma_{1}, \ldots, \sigma_{N} \in k\left[X_{1}, \ldots, X_{N}\right]=k[X]$ be the elementary symmetric polynomials. Then for each i the powers $X_{i}^{j}, 0 \leq j<N$, generate the $k[\sigma]$-module $k[\sigma]\left[X_{i}\right]$. More explicitely, for each natural number $p \in \mathbb{N}$ there are polynomials $g_{1}, \ldots, g_{N} \in$ $k\left[\sigma_{1}, \ldots, \sigma_{N}\right]$ such that

$$
X_{i}^{p}=g_{1} \cdot X_{i}^{N-1}+\cdots+g_{N-1} \cdot X_{i}+g_{N} \quad \text { for all } i=1, \ldots N .
$$

Proof. If $p \leq N-1$, the assertion is obvious.
If $p=N$, then X_{1}, \ldots, X_{N} are zeroes of the polynomial

$$
\left(T-X_{1}\right) \cdots\left(T-X_{N}\right)=T^{N}-\sigma_{1} T^{N-1}+\cdots \pm \sigma_{N} \in k[X][T],
$$

whence $X_{i}^{N}=\sigma_{1} X_{i}^{N-1}-\cdots \mp \sigma_{N}$ for $i=1, \ldots, N$.
If $p>N$, we use induction and assume $X_{i}^{p-1}=g_{1}^{\prime}(\sigma) X_{i}^{N-1}+\cdots+g_{N}^{\prime}(\sigma)$ for $i=1, \ldots, N$. Then

$$
\begin{aligned}
X_{i}^{p} & =g_{1}^{\prime}(\sigma) X_{i}^{N}+\cdots+g_{N}^{\prime}(\sigma) X_{i} \\
& =g_{1}^{\prime}(\sigma)\left[\sigma_{1} X_{i}^{N-1}-\cdots \pm \sigma_{N}\right]+g_{2}^{\prime}(\sigma) X_{i}^{N-1}+\cdots+g_{N}^{\prime}(\sigma) X_{i} \\
& =[\underbrace{g_{1}^{\prime}(\sigma) \sigma_{1}+g_{2}^{\prime}(\sigma)}_{=: g_{1}(\sigma)}] X_{i}^{N-1}+\cdots+[\underbrace{g_{N}^{\prime}(\sigma) \mp g_{1}^{\prime}(\sigma) \sigma_{N-1}}_{=: g_{N-1}(\sigma)}] X_{i} \pm \underbrace{g_{1}^{\prime}(\sigma) \sigma_{N}}_{g_{N}(\sigma)},
\end{aligned}
$$

as was to be shown.
The proof of the theorem involves several rings. First let

$$
S:=T^{n}(S(V))=S(V) \otimes \cdots \otimes S(V)=k\left[\alpha_{1}, \beta_{1}, \ldots, \alpha_{n}, \beta_{n}\right],
$$

the polynomial ring in $2 n$ indeterminates. This k-algebra is canonically \mathbb{N}^{n}-graded where the homogeneous parts have the form

$$
S_{\underline{d}}=S^{d_{1}}(V) \otimes \cdots \otimes S^{d_{n}}(V) \quad \text { for } \underline{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}
$$

The group $G=S L(V)$ acts on S in a homogeneous way; let $R:=S^{G}$ be the algebra of invariants. It has the induced grading

$$
R=\sum_{\underline{d} \in \mathbb{N}^{n}} R_{\underline{d}} \quad \text { where } R_{\underline{d}}=S_{\underline{d}} \cap R .
$$

Examples for homogeneous invariants are

1. $p_{i j}:=\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}$ for $1 \leq i<j \leq n \in R_{\underline{d}}$ where

$$
\underline{d}=(0, \ldots, \stackrel{\stackrel{i}{\downarrow}}{1}, \ldots, \stackrel{j}{\downarrow}, \ldots, 0) .
$$

2. For an \mathbb{N}-valued symmetric matrix $M=\left(m_{i j}\right)$ with zero diagonal,

$$
X_{M}:=\prod_{i<j} p_{i j}^{m_{i j}} \in R_{\underline{d}} \quad \text { where } d_{i}=\sum_{j=1}^{n} m_{i j}
$$

Let us denote this (multi-) degree by $\underline{d}=: D(M)$.
For $d \in \mathbb{N}$ let $(d)=(d, \ldots, d) \in \mathbb{N}^{n}$, hence $S_{(d)}=S^{d}(V) \otimes \cdots \otimes S^{d}(V)$. Then

$$
\tilde{S}:=\sum_{d \in \mathbb{N}} S_{(d)}
$$

is an \mathbb{N}-graduated subalgebra of S. Also on this algebra G operates homogeneously, and the ring of invariants is

$$
\tilde{R}:=\tilde{S}^{G}=\sum_{d \in \mathbb{N}} R_{(d)}
$$

Furthermore we have the operation $\alpha_{i} \mapsto \alpha_{\pi(i)}$, $\beta_{i} \mapsto \beta_{\pi(i)}$ for $\pi \in \mathfrak{S}_{n}$, of the symmetric group \mathfrak{S}_{n} on S; it induces a homogeneous operation on \tilde{S}. The operations of \mathfrak{S}_{n} and of G commute elementwise. Therefore the direct product $\mathfrak{S}_{n} \times G$ acts on \tilde{S} homogeneously.

Lemma 3 The graduated ring $P=S\left(S^{n}(V)\right)$ is isomorphic with $\tilde{S}^{\mathfrak{G}_{n}}$.
Proof. A short consideration will motivate the proof. Let $\{x, y\}$ be a basis of the dual space V^{*}. Decompose the "general binary form of degree n ",

$$
f=\sum_{j=0}^{n} u_{j} x^{n-j} y^{j}
$$

as a product of linear factors (over a suitable ring extension $\bar{k} \supseteq k$):

$$
f=\prod_{i=1}^{n}\left(\beta_{i} x+\alpha_{i} y\right)
$$

- this corresponds to the decomposition of the polynomial $\frac{1}{x^{n}} \cdot f=\sum u_{j}\left(\frac{y}{x}\right)^{j}$ into linear factors $\left(\frac{y}{x}+\frac{\beta_{i}}{\alpha_{i}}\right)$. Then

$$
f=\prod\left(\beta_{i} x+\alpha_{i} y\right)=\beta_{1} \cdots \beta_{n} \cdot \prod\left(x+\frac{\alpha_{i}}{\beta_{i}} y\right)=\beta_{1} \cdots \beta_{n} \cdot \sum x^{n-j} \sigma_{j}\left(\frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{n}}{\beta_{n}}\right) y^{j}
$$

Therefore

$$
u_{0}=\beta_{1} \cdots \beta_{n}, u_{1}=\beta_{1} \cdots \beta_{n} \cdot\left(\frac{\alpha_{1}}{\beta_{1}}+\cdots+\frac{\alpha_{n}}{\beta_{n}}\right), \ldots, u_{n}=\alpha_{1} \cdots \alpha_{n}
$$

The general formula is

$$
(*) u_{j}=\sum_{M \in \mathfrak{P}_{j}(\{1, \ldots, n\})} \alpha_{M} \beta_{\bar{M}}
$$

(with suggestive notation).
Now let's prove that $\tilde{S}^{\mathfrak{S}_{n}}=P$. Let α_{i} and β_{i} be indeterminates, and u_{j} for $j=$ $1, \ldots, n$ be given by formula $(*)$. Then $k\left[u_{0}, \ldots, u_{n}\right]=S\left(S^{n}(V)\right)=P$ is the coordinate algebra of the binary forms of degree n. We have

$$
S_{(d)}=\left\{F \in k[\alpha, \beta] \mid F \text { homogeous of degree } d \text { in each pair }\left(\alpha_{i}, \beta_{i}\right)\right\}
$$

Therefore $u_{0}, \ldots, u_{n} \in S_{(1)}$, hence $P=k[u]$ is a graduated subring of \tilde{S}. Moreover all $u_{j} \in \tilde{S}^{\mathfrak{S}_{n}}$ because for $\pi \in \mathfrak{S}_{n}$ we have

$$
\pi\left(u_{j}\right)=\pi\left(\sum_{M \in \mathfrak{P}_{j}} \alpha_{M} \beta_{\bar{M}}\right)=\sum_{M \in \mathfrak{P}_{j}} \alpha_{\pi(M)} \beta_{\overline{\pi(M)}}=u_{j} .
$$

Therefore $P \subseteq \tilde{S}^{\mathfrak{G}_{n}}$ even as a graduated subring.
For the opposite inclusion let $F \in S_{(d)}$ be an \mathfrak{S}_{n}-invariant, say

$$
F=\sum_{m \in \mathbb{N}^{n}} c_{m} \alpha_{1}^{m_{1}} \beta_{1}^{d-m_{1}} \cdots \alpha_{n}^{m_{n}} \beta_{n}^{d-m_{n}}
$$

where $c_{\pi(m)}=c_{m}$ for all $\pi \in \mathfrak{S}_{n}$. This means that $F / \beta_{1}^{d} \cdots \beta_{n}^{d}$ is a symmetric polynomial in $\frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{n}}{\beta_{n}}$ of degree $\leq d$, hence a polynomial in the elementary symmetric polynomials:

$$
\frac{1}{u_{0}^{d}} \cdot F=\frac{1}{\beta_{1}^{d} \ldots \beta_{n}^{d}} \cdot F=G\left(\sigma_{1}\left(\frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{n}}{\beta_{n}}\right), \ldots, \sigma_{n}\left(\frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{n}}{\beta_{n}}\right)\right)=G\left(\frac{u_{1}}{u_{0}}, \ldots, \frac{u_{n}}{u_{0}}\right)
$$

with $\operatorname{deg}(G) \leq d$, and therefore $F \in k[u]$.
The k-algebra whose finite generation the theorem asserts is therefore

$$
I=P^{G}=\left(\tilde{S}^{\mathfrak{S}_{n}}\right)^{G}=\tilde{S}^{\mathfrak{S}_{n} \times G}=\left(\tilde{S}^{G}\right)^{\mathfrak{S}_{n}}=\tilde{R}^{\mathfrak{S}_{n}}
$$

The following diagram shows the relations of all these rings.

Now we prove in three steps that the k-algebras R, \tilde{R}, and I are finitely generated.

Step 1.

Lemma 4 For each $\underline{d} \in \mathbb{N}^{n}$ we have $R_{\underline{d}}=\left\langle X_{M} \mid D(M)=\underline{d}\right\rangle$ as a k-module, and $R_{\underline{d}}=R_{\underline{d}}(k) \cong R_{\underline{d}}(\mathbb{Z}) \otimes_{\mathbb{Z}} k$.

In particular as a k-algebra R is generated by the $\binom{n}{2}$ elements $p_{i j}, 1 \leq i<j \leq n$, and $R=R(k) \cong R(\mathbb{Z}) \otimes_{\mathbb{Z}} k$ as a graduated k-algebra

We start the proof of Lemma 4 with the special case $n=1$:
Lemma $5 S(V)^{G}=k$.
Proof. Let $\{\alpha, \beta\}$ be a basis of V and $F=\sum_{i=0}^{r} c_{i} \alpha^{r-i} \beta^{i}$ with $r \geq 1$. If F is invariant under $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in G$, then $c_{r-i}=(-1)^{r-i} c_{i}$ for $i=1, \ldots, r$. Now let F be also invariant under $\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \in G$ for all $\lambda \in k$. Then

$$
\begin{aligned}
F & =\sum_{i=0}^{r} c_{i}(\alpha+\lambda \beta)^{r-i} \beta^{i}=\sum_{i=0}^{r} \sum_{j=0}^{r-i} c_{i} \cdot\binom{r-i}{j} \alpha^{r-i-j} \lambda^{j} \beta^{j+i} \\
& =\sum_{i=0}^{r}\left[\sum_{j=0}^{i}\binom{r-j}{r-i} c_{j} \lambda^{i-j}\right] \alpha^{r-i} \beta^{i} .
\end{aligned}
$$

This gives equations for the coefficients c_{i}, for example

$$
c_{r}=\sum_{j=0}^{r}\binom{r-j}{0} c_{j} \lambda^{r-j}=c_{0} \lambda^{r}+\cdots+c_{r}
$$

for all $\lambda \in k$. Because k is an infinite entire ring, we conclude that $c_{0}=\ldots=c_{r-1}=0$ and $c_{r}=(-1)^{r} c_{0}=0$, hence $F=0 . \diamond$

Remark. For Lemma 5 we really need the condition that k is an infinite entire ring. As an illustration we give three counterexamples for weaker conditions.

Example 1. Let k be the finite entire ring \mathbb{F}_{2}. Then $F=\alpha^{2}+\alpha \beta+\beta^{2} \in S^{2}(V)$ is invariant under $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ that together generate G.
Example 2. Or let k be \mathbb{F}_{3}. Then $F=\alpha^{6}+\alpha^{4} \beta^{2}+\alpha^{2} \beta^{6}+\beta^{6} \in S^{6}(V)$ is invariant under $\left(\begin{array}{cc}1 & \pm 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, that together generate G.
Example 3. For an example where k is infinite, but has zero-divisors, take A, an infinite \mathbb{F}_{2}-module, and $k=\mathbb{F}_{2} \times A$ with the multiplication $(m, a)(n, b)=$ $(m n, m a+n b)$. (This is the well-known "adjunction of 1 to the \mathbb{F}_{2}-Algebra A with 0-multiplication".) Then $F=\alpha^{4}+\alpha^{2} \beta^{2}+\beta^{4}$ is invariant.

We prove Lemma 4 by induction on n. For $n=1$ Lemma 5 gives $R=k$, and the assertion is trivial.

Therefore let $n>1$. We make a further induction on $w:=d_{1}+\cdots+d_{n}$. If $w=0$, we have $\underline{d}=0$ and $R_{0}=k$, and we are ready.

Now let $w>0$, that is, $\underline{d} \neq 0$. We may assume $d_{n} \neq 0$ (otherwise change enumeration). If all other $d_{i}=0$, we would have $S_{\underline{d}} \subseteq k\left[\alpha_{n}, \beta_{n}\right]$, and the case $n=1$ would apply. Therefore we may assume (without loss of generality) that $d_{n-1} \neq 0$.

The substitution homomorphism

$$
\varphi: S \longrightarrow S^{\prime}=k\left[\alpha_{1}, \beta_{1}, \ldots, \alpha_{n-1}, \beta_{n-1}\right], \quad \alpha_{n} \mapsto \alpha_{n-1}, \beta_{n} \mapsto \beta_{n-1}
$$

is G-equivariant, hence maps R onto $R^{\prime}:=\left(S^{\prime}\right)^{G}$ and $R_{\underline{d}}$ onto $R_{d^{\prime}}^{\prime}$ where $d^{\prime}=$ $\left(d_{1}, \ldots, d_{n-1}+d_{n}\right) \in \mathbb{N}^{n-1}$. By induction $R_{\underline{d}^{\prime}}^{\prime} \cong R_{\underline{d}^{\prime}}^{\prime}(\mathbb{Z}) \otimes k^{-}$is spanned by the $X_{M^{\prime}}$ with $D\left(M^{\prime}\right)=\underline{d}^{\prime}$. Each such $X_{M^{\prime}}$ has $d_{n-1}+d_{n}$ factors of type $p_{i, n-1}$; if we replace any d_{n} of these by $p_{i n}$, then we get an inverse image X_{M} of $X_{M^{\prime}}$ under φ. Therefore $\varphi: R_{\underline{d}} \longrightarrow R_{\underline{d}^{\prime}}^{\prime}$ is surjective.

Next let us determine the kernel of φ. Let $F \in R_{\underline{d}}$ with $\varphi(F)=0$. Then $\frac{1}{\beta_{1}^{d_{1} \ldots \beta_{n}^{d_{n}}}} \cdot F$ is a polynomial over $k\left[\frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{n-1}}{\beta_{n-1}}\right]$ in the indeterminate $\frac{\alpha_{n}}{\beta_{n}}$, and has $\frac{\alpha_{n-1}}{\beta_{n-1}}$ as a zero. Therefore $\left.\left(\frac{\alpha_{n}}{\beta_{n}}-\frac{\alpha_{n-1}}{\beta_{n-1}}\right) \right\rvert\, \frac{1}{\beta_{1}^{d_{1} \ldots \beta_{n}^{d_{n}}}} \cdot F$, and $p_{n-1, n} \mid F$. Thus there is an $F_{0} \in R_{\underline{d}}$ with $\tilde{d}=$ $\left(d_{1}, \ldots, d_{n-1}-1, d_{n}-1\right)$, such that $F=p_{n-1, n} F_{0}$. Therefore $\operatorname{ker} \varphi=p_{n-1, n} \cdot R_{\underline{\tilde{d}}}$ as a k-module (because R has no zero divisors). This gives the exact sequence

$$
0 \longrightarrow R_{\tilde{\underline{d}}} \longrightarrow R_{\underline{d}} \longrightarrow R_{\underline{d}^{\prime}}^{\prime} \longrightarrow 0 .
$$

By induction on w the module $R_{\underline{\tilde{d}}} \cong R_{\underline{\tilde{d}}}(\mathbb{Z}) \otimes k$ is spanned by the X_{M} with $D(M)=\underline{\tilde{d}}$. Because the sequence

$$
0 \longrightarrow R_{\tilde{d}} \longrightarrow\left\langle X_{M} \mid D(M)=\underline{d}\right\rangle \longrightarrow R_{\underline{d}^{\prime}}^{\prime} \longrightarrow 0
$$

is also exact, general nonsense (the five lemma) gives $R_{\underline{d}}=\left\langle X_{M} \mid D(M)=\underline{d}\right\rangle$. The exact sequence

$$
0 \longrightarrow R_{\underline{\underline{d}}}(\mathbb{Z}) \longrightarrow R_{\underline{d}}(\mathbb{Z}) \longrightarrow R_{\underline{d}^{\prime}}^{\prime}(\mathbb{Z}) \longrightarrow 0
$$

consists of free \mathbb{Z}-modules. The following diagram has exact rows and canonical vertical arrows. The two isomorphisms follow by induction. By the five lemma also the middle arrow is an isomorphism.

$$
\begin{array}{rllllll}
0 & \longrightarrow & R_{\underline{\tilde{d}}}(\mathbb{Z}) \otimes k \longrightarrow R_{\underline{d}}(\mathbb{Z}) \otimes k \longrightarrow R_{\underline{d}^{\prime}}(\mathbb{Z}) \otimes k \longrightarrow 0 \\
& & & & & & \\
0 & \longrightarrow & R_{\tilde{d}} & \longrightarrow & R_{\underline{d}} & \longrightarrow & R_{\underline{d}^{\prime}}
\end{array}>0
$$

Step 2.

Lemma $6 \tilde{R}$ is a finitely generated k-algebra, and $\tilde{R}=\tilde{R}(k) \cong \tilde{R}(\mathbb{Z}) \otimes_{\mathbb{Z}} k$.
Proof. The module $R_{(d)}$ is spanned by the $X(M)$ with $\sum_{j=1}^{n} m_{i j}=d$ for all $i=1, \ldots, n$. Therefore R is spanned by the X_{M} with $\sum_{j=1}^{n} m_{1 j}=\ldots=\sum_{j=1}^{n} m_{n j}$. This is a homogeneous system of diophantine equations for the $m_{i j}$. By Lemma 1 its solutions form a finitely generated subsemigroup of \mathbb{N}^{q} (where $\left.q=n(n-1) / 2\right)$. Let $\left\{M^{(1)}, \ldots, M^{(r)}\right\}$ be a system of generators. If $M=\sum_{l=1}^{r} a_{l} M^{(l)}$, then

$$
X_{M}=\prod_{i<j} p_{i j}^{m_{i j}}=\left(\prod_{i<j} p_{i j}^{m_{i j}(1)}\right)^{a_{1}} \cdots \cdots=X_{M_{1}}^{a_{1}} \cdots X_{M_{r}}^{a_{r}} .
$$

Therefore the $X_{1}:=X_{M_{1}}, \ldots, X_{r}:=X_{M_{r}}$ generate the k-algebra \tilde{R}. The isomorphism in the lemma follows because by Lemma 4 it holds on all homogeneous components.

Step 3.

We show that I is finitely generated, if $n!$ is a unit in k, and $I(k) \cong I\left(k_{0}\right) \otimes_{k_{0}} k$ as a graduated k-algebra.

Proof. Consider the linear map

$$
\mu_{d}: R_{(d)} \longrightarrow R_{(d)}, \quad \mu_{d}:=\sum_{\pi \in \mathfrak{G}_{n}} \pi
$$

Then $I_{(d)}:=I \cap R_{(d)}=\mu_{d}\left(R_{(d)}\right)$, because $n!$ is a unit in k. In I there are for example the following elements:

- (a) $\mu\left(X_{1}^{a_{1}} \cdots X_{r}^{a_{r}}\right)=\sum_{\pi \in \mathfrak{G}_{n}} \pi\left(X_{1}\right)^{a_{1}} \cdots \pi\left(X_{r}\right)^{a_{r}}$ where $a_{1}, \ldots, a_{r} \in \mathbb{N}$,
- (b) the elementary symmetric functions in the $\pi\left(X_{i}\right)$ for each $i=1, \ldots, r$,

$$
\sigma_{j}\left(\rho\left(X_{i}\right)_{\rho \in \mathfrak{S}_{n}}\right)=\sum_{A \in \mathfrak{F}_{j}\left(\mathfrak{S}_{n}\right)}\left(\prod_{\rho \in A} \rho\left(X_{i}\right)\right)
$$

for $j=1, \ldots, n$! because each $\pi \in \mathfrak{S}_{n}$ only permutes the summands.
Claim: The finite set $Z=\left\{(\mathrm{a}) \mid\right.$ all $\left.a_{i}<n!\right\} \cup\{(\mathrm{b})\}$ generates the k-algebra I.
Each element of I is a linear combination of elements of the form

$$
\begin{aligned}
F & =\sum_{\pi \in \mathfrak{S}_{n}} \pi\left(X_{1}\right)^{a_{1}} \cdots \pi\left(X_{r}\right)^{a_{r}}=\sum_{\pi \in \mathfrak{S}_{n}}\left(\sum_{j=1}^{n!-1} g_{j}^{(1)} \pi\left(X_{1}\right)^{j}\right) \cdots\left(\sum_{j=1}^{n!-1} g_{j}^{(r)} \pi\left(X_{r}\right)^{j}\right) \\
& =\sum_{j_{1}, \ldots, j_{r}=0}^{n!-1} g_{j_{1}}^{(1)} \cdots g_{j_{r}}^{(r)} \cdot\left(\sum_{\pi \in \mathfrak{G}_{n}} \pi\left(X_{1}\right)^{j_{1}} \cdots \pi\left(X_{r}\right)^{j_{r}}\right)
\end{aligned}
$$

with terms in $k[Z]$. Therefore $F \in k[Z]$ and $I=k[Z]$.
For the second statement, the isomorphism, we note that because n ! is a unit in k the $k\left[\mathfrak{S}_{n}\right]$-module $R_{(d)}$ is semisimple. Therfore the submodule $I_{(d)}$ has a direct complement $H_{(d)}$, and we have two exact direct sequences

The diagram is commutative. We already know by Lemma 4 that the middle vertical arrow is an isomorphism. Because the rows are exact direct, also the two other vertical arrows are isomorphisms. Therefore $I \cong I\left(k_{0}\right) \otimes k$ as a graduated ring.

Step 3a.

We finally show that I is finitely generated, if k is noetherian, but n ! not necessarily a unit. This simply follows because I is the ring of invariants of the finitely generated k-algebra \tilde{R} under the finite group \mathfrak{S}_{n}.

References

[1] P. Gordan: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist. J. reine angew. Math. 69 (1868), 323-354.
[2] D. Hilbert: Über die Endlichkeit des Invariantensystems für binäre Grundformen. Math. Ann. 33 (1889), 223-226.
[3] K. Pommerening: A remark on subsemigroups (Dickson's lemma). Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/Dickson.pdf

