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Let k be an infinite entire ring, V = k2, the free k-module of rank 2, G, the group
SL(V). Then G acts in a canocical way on S™(V*), the module of binary forms of degree
n, and on its affine coordinate ring P := S(S™(V*)*) = S(S™(V)). The ring I := PY of
invariants is the classical ring of invariants of a binary form of degree n. Let

1 1
ko =7 [] =7 [ Ip<n prime}
n! P

Theorem 1 (GORDAN 1868) Let n! be a unit in k. Then I = I(k) is a finitely generated
k-algebra, and

I(k) = I(ko) @k, k
as a graduated k-algebra.

GORDAN’s original proof [1] works for k a field of characteristic 0 and provides an
explicit system of generators. Here we reproduce HILBERT’s proof [2] that gives the
theorem in the stated generality. The restriction that n! is a unit will be needed only in
step 3, and we also have a somewhat weaker (non-explicit) version without this restriction
that however uses Emmy NOETHER’s general result on finite generation of invariants
under finite groups and therefore is anhistoric.

Corollary 1 If k is an infinite noetherian entire ring (not necessarily n! a unit), then
I is a finitely generated k-algebra.

Historical remark. Except for the main theorem on symmetric polynomials GOR-
DAN’s theorem is the earliest result on finite generation of invariant rings.

The proof starts with two lemmas.

Lemma 1 Let
n
Zaijxj =0 forj=1,...m witha;; €Z for alli,j
j=1

be a system of diophantine equations. Then the semigroup of non-negative solutions (i. e.
solution vectors x = (x1,...,x,) € N") is finitely generated.



This is a corollary of DICKSON’s lemma for which we have a separate note [3].

Lemma 2 Let 01,...,0n € k[X1,...,XNn] = k[X] be the elementary symmetric poly-
nomials. Then for each i the powers X, 0 < j < N, generate the klo]-module k[o]|[X;].
More explicitely, for each natural number p € N there are polynomials g1,...,gn €
klo1,...,oN] such that

Xf:gl-XiN_l—i—-”—l—gN_l'Xi—i-gN forallz'zl,...N.

Proof. If p < N — 1, the assertion is obvious.
If p= N, then Xy, ..., Xy are zeroes of the polynomial

(T—X1)-(T—XN)=TN —o TV + .- £ oy € K[X][T],

WhenceXiN:mXiN_l—--~¢UN fori=1,...,N.
If p > N, we use induction and assume X' = g/(o) XN~ + ... 4 giy(0) for
i=1,...,N. Then

XP = (o)XY o+ (o)X,
= G(0) [ XN = o]+ () XD 4 g (0) X,

= [gi(0)or + gh(@)| XN+ - + [gi(0) F g1 (0)on—1)X; + g (o)on,
—_— —_—

=:91(0) =:gn-1(0) gn (o)

as was to be shown. ¢

The proof of the theorem involves several rings. First let
S:=T"(SV)=5SV)®---@S(V)=kla, B1,--.,n, Bnl,

the polynomial ring in 2n indeterminates. This k-algebra is canonically N"-graded where
the homogeneous parts have the form

Sg=S"(V)®---@8™(V) ford=(dy,...,d,) € N".

The group G = SL(V) acts on S in a homogeneous way; let R := S be the algebra of
invariants. It has the induced grading

R= > Ryq where Rg=S4NR.
deN”

Examples for homogeneous invariants are

1. pij =B —ajf for 1 <i < j <n € Rq where

i J
+ {
d=(0,...,1 1,...,0).

g ooy



2. For an N-valued symmetric matrix M = (m;;) with zero diagonal,
Xy = Hp:-?ij S Rd where d; = me
i<j j=1
Let us denote this (multi-) degree by d =: D(M).
For d € Nlet (d) = (d,...,d) € N, hence Sy = SU(V) ® - ® S4V). Then
5= Sw
deN
is an N-graduated subalgebra of S. Also on this algebra G operates homogeneously, and

the ring of invariants is
—5=Y R,

deN

Furthermore we have the operation a; — ay @, 8; = Br(;) for m € &, of the symmetric

group &,, on S; it induces a homogeneous operatlon on S. The operations of &, and of
G commute elementwise. Therefore the direct product G,, x G acts on S homogeneously.

Lemma 3 The graduated ring P = S(S™(V)) is isomorphic with S®n.

Proof. A short consideration will motivate the proof. Let {z,y} be a basis of the dual
space V*. Decompose the “general binary form of degree n”,

n
f=2 uge" Iy
=0

as a product of linear factors (over a suitable ring extension k D k):

n

f =10+ aiy)

i=1
— this corresponds to the decomposition of the polynomlal 7 f =2 ui(Y ) into linear
factors (£ + ai)' Then
O\ s
f:H(le‘i‘O(ly):/BlﬁnH(x 5 - Bn- an jU] ) 5 ) I
Therefore
o oy,
U():,Bl"'ﬂn,’lll :ﬁlﬁn(il_k—{_i)a?un:alan
ﬁl /Bn

The general formula is

() wi= >, amBy
Me%j({lr":'n’})

3



(with suggestive notation).

Now let’s prove that SS» = P. Let «; and §; be indeterminates, and uj for j =
1,...,n be given by formula (x). Then k[ug,...,u,] = S(S™(V)) = P is the coordinate
algebra of the binary forms of degree n. We have

Sy = {F' € kla, B] | F homogeous of degree d in each pair (o, )}

Therefore ug, . ..,un, € S(1), hence P = klu] is a graduated subring of S. Moreover all
u; € SSn bhecause for m € G,, we have

W(Uj):ﬂ' Z aM/BM = Z Oéﬂ.(M)ﬁm:u]'.

MG‘B]‘ MEmJ‘

Therefore P C SS» even as a graduated subring.
For the opposite inclusion let F' € S4) be an &y,-invariant, say

o m1 pd—mq my Qd—m
F = E cmoq By cean By,
meN”

where ¢ = ¢, for all 7 € &,,. This means that F/B¢--- B2 is a symmetric poly-
w(m) 1 n

nomial in %, cee %—Z of degree < d, hence a polynomial in the elementary symmetric
polynomials:

1 1 (o751 (a7 (e%} (79 ul Un

— F=——— - F=G(o1(=—,...,—)y--yon(=—,...,— ) =G(—, ..., —

with deg(G) < d, and therefore F' € k[u]. &

The k-algebra whose finite generation the theorem asserts is therefore
[ = PG = (§8n)C = §&nxG — (§C\&n — R6n,

The following diagram shows the relations of all these rings.

S:ZQSQ

T

=245

T p = g%

R=8C=Y,Ra
\ -

R=5%=%,Ry,

I = P% = RSn

Now we prove in three steps that the k-algebras R, R, and I are finitely generated.



Step 1.

Lemma 4 For each d € N" we have Rqg = (X | D(M) = d) as a k-module, and
Ry = Rq(k) = Ry(Z) @z k.

n

In particular as a k-algebra R is generated by the (2) elements p;;, 1 << j <n, and
R = R(k) =2 R(Z) ®z k as a graduated k-algebra.
We start the proof of Lemma 4 with the special case n = 1:

Lemma 5 S(V)¢ = k.
Proof. Let {a, 3} be a basis of V and F = >_I_;c;a" '3 with r > 1. If F is invariant

under (_01 [1)> € G, then ¢,_; = (=1)""%¢; fori = 1,...,r. Now let F be also invariant

under (é i\> € G for all A € k. Then

r ror—i

o Zcz’(a BB = chz (7‘ - i)ar_i—j)\jgjﬂ
i=0 i=0 j=0 J
— ; ]go (i:;)cj,\ij Qi

This gives equations for the coefficients ¢;, for example

T

c, :Z (Tg‘])cj)\’"_j =cN +---+ec

Jj=0

for all A € k. Because k is an infinite entire ring, we conclude that ¢cp = ... =¢,_1 =0
and ¢, = (—1)"cop = 0, hence ' =0. &

Remark. For Lemma 5 we really need the condition that k is an infinite entire ring. As
an illustration we give three counterexamples for weaker conditions.

Example 1. Let k be the finite entire ring Fy. Then F = o2 + af + 82 € S%(V) is

invariant under <é i) and ((1) é) that together generate G.

Example 2. Or let k be F3. Then F = o + o2 + o?8% + 8% € S6(V) is invariant

1 +1 -1 0 0 1
under <0 1 >, < 0 _1), and <_1 0>, that together generate G.

Example 3. For an example where k is infinite, but has zero-divisors, take A, an
infinite Fo-module, and & = Fy x A with the multiplication (m,a)(n,b) =
(mn,ma + nb). (This is the well-known “adjunction of 1 to the Fy-Algebra A
with O-multiplication”.) Then F = a* + o?3? + 4 is invariant.



We prove Lemma 4 by induction on n. For n = 1 Lemma 5 gives R = k, and the
assertion is trivial.

Therefore let n > 1. We make a further induction on w :=d; + --- + d,. If w = 0,
we have d = 0 and Ry = k, and we are ready.

Now let w > 0, that is, d # 0. We may assume d,, # 0 (otherwise change enumera-
tion). If all other d; = 0, we would have Sy C k[oy, 8], and the case n = 1 would apply.
Therefore we may assume (without loss of generality) that d,,—1 # 0.

The substitution homomorphism

@: S — 8 = k[alaﬁla cee 7an71aﬁnfl]a Oy Olnflaﬁn — anla
is G-equivariant, hence maps R onto R’ := (S')¢ and R, onto R/, where d' =
(di,...,dn—1 + dp) € N""1. By induction R, = R/,(Z) @ k is spanned by the X,p

with D(M') = d’. Each such X, has d,—1 + d, factors of type pin—1; if we replace
any d, of these by p;,, then we get an inverse image X of X, under ¢. Therefore
¢: Rg — R/, is surjective.
Next let us determine the kernel of ¢. Let F' € Ry with ¢(F) = 0. Then W
1 Pn

. . Oy — . . . Ay —
is a polynomial over k {%, ey ﬁ" ﬂ in the indeterminate %—”, and has B" i as a zero.
n— n n—

Therefore (g—: - %::i) |W - F, and p,_1,|F. Thus there is an Fy € R with d=
1 Hn -

(di,...,dn—1 — 1,d, — 1), such that F' = p,,_1,Fy. Therefore kerp = p,_1, - Rj as a
k-module (because R has no zero divisors). This gives the exact sequence

0— Rj— Rg — Ry — 0.

By induction on w the module R; = R;(Z) ® k is spanned by the Xj; with D(M) = d.
Because the sequence - -

0— Ry — (Xm | D(M) =d) — Ry — 0

is also exact, general nonsense (the five lemma) gives Ry = (X | D(M) = d). The exact
sequence
0 — R;(Z) — R4(Z) — R, (Z) — 0

consists of free Z-modules. The following diagram has exact rows and canonical vertical
arrows. The two isomorphisms follow by induction. By the five lemma also the middle
arrow is an isomorphism.

0 —Rj(Z)®k — Ry(Z)®k — Ry(Z) ® k — 0

s

Rd — Rd' — 0

1

0 — R

l



Step 2.
Lemma 6 R is a finitely generated k-algebra, and R = R(k) = R(Z) ®y k.

Proof. The module R(g) is spanned by the X (M) with Z _ymyj=dforalli=1,... n.
Therefore R is spanned by the Xj; with 2371 myj=...= ZJ:1 My;. This is a homo—
geneous system of diophantine equations for the m,;. By Lemma 1 its solutions form a
finitely generated subsemigroup of N¢ (where ¢ = n(n —1)/2). Let {M® ... M)} be
a system of generators. If M =3, ayM O then

al

™M ”
Xy = Hp i pr ...... :X]C\‘/}l...X]‘T/[T_
1<j 1<j

Therefore the X := Xyy,,..., X, 1= X, generate the k-algebra R. The isomorphism
in the lemma follows because by Lemma 4 it holds on all homogeneous components. <

Step 3.

We show that [ is finitely generated, if n! is a unit in k, and I(k) = I (ko) ®p, k as a
graduated k-algebra.
Proof. Consider the linear map

pa: Ry — Ry,  pd == Z .

Then Igy := I N Ry = ud(R(d)), because n! is a unit in k. In I there are for example
the following elements:

o (a) pu(X{" - X)) = es, T(X1)® - w(X,)% where ay,...,ar €N,

r

e (b) the elementary symmetric functions in the 7(X;) for each i = 1,...,r,

oi(p(Xpes,) = >, | [ rX

A€P;(6n) \peA
for 7 =1,...,n! because each m € &,, only permutes the summands.

Claim: The finite set Z = {(a) | all a; < n!} U{(b)} generates the k-algebra I.
Each element of I is a linear combination of elements of the form

nl—1 n!—1
a ar __ 1 1 r
Fo= donlymen(X) = 30| 2 a e || 3o ey
TEG, TES, j=1 j=1
nl—1
SIS § SRR
J1seJr=0 ISR



with terms in k[Z]. Therefore F' € k[Z] and I = k[Z].

For the second statement, the isomorphism, we note that because n! is a unit in k the
k[&n]-module Ry is semisimple. Therfore the submodule /(4 has a direct complement
H4), and we have two exact direct sequences

0 — H(d) — R(d) — I(d) — 0

! [= !

The diagram is commutative. We already know by Lemma 4 that the middle vertical
arrow is an isomorphism. Because the rows are exact direct, also the two other vertical
arrows are isomorphisms. Therefore I = (ko) ® k as a graduated ring. <

Step 3a.

We finally show that [ is finitely generated, if k is noetherian, but n! not necessarily
a unit. This simply follows because I is the ring of invariants of the finitely generated
k-algebra R under the finite group &,.
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