On Systems of Generators of Graded Algebras

Klaus Pommerening Fachbereich Physik, Mathematik, Informatik der Johannes-Gutenberg-Universität Mainz, Federal Republic of Germany

July 4, 2016

Let A be an \mathbb{N}^l -graded ring (commutative with 1),

$$A = \bigoplus_{\nu \in \mathbb{N}^l} A_{\nu},$$

and let $k = A_0$. Consider the ideal

$$\mathfrak{m} = igoplus_{
u \in \mathbb{N}^l - \{0\}} A_{
u}.$$

(If k is a field, then \mathfrak{m} is a maximal ideal, hence the notation.)

Lemma 1 Let $h \in \mathfrak{m}^2$ be homogeneous of degree $\nu \in \mathbb{N}^l$. Then h is a finite sum

$$h = \sum h' h''$$

where $h', h'' \in \mathfrak{m}$ are homogeneous of degree $< \nu$ in the natural (nonlinear) order of \mathbb{N}^l .

Proof. By definition of \mathfrak{m}^2 we may write h in the form

$$h = h_1' h_1'' + \dots + h_r' h_r''$$

with $h'_i, h''_i \in \mathfrak{m}$. Decompose all the h'_i and h''_i into their homogeneous parts—they are elements of \mathfrak{m} —and apply the distributive law. \diamond

In the following we use the natural homomorphism

$$\varphi:\mathfrak{m}\longrightarrow\mathfrak{m}/\mathfrak{m}^2$$

of A-modules.

Proposition 1 Let $\mathcal{B} \subseteq \mathfrak{m}$. Then each of the following statements implies the following one:

- (i) \mathcal{B} generates the k-algebra A, i. e. $A = k[\mathcal{B}]$.
- (ii) \mathcal{B} generates the A-module \mathfrak{m} , *i. e.* $\mathfrak{m} = A\mathcal{B}$.
- (iii) $\varphi \mathcal{B}$ generates $\mathfrak{m}/\mathfrak{m}^2$ as k-module.

If all $b \in \mathcal{B}$ are homogeneous, then these three statements are equivalent.

Proof. "(i) \implies (ii)": Consider an arbitrary $f \in \mathfrak{m}$. Then f is a polynomial in finitely many $b_1, \ldots, b_r \in \mathcal{B}$ without constant term. Hence f is a linear coombination of monomials

$$g_s = b_1^{s_1} \cdots b_r^{s_r}$$
 where $s = (s_1, \dots, s_r) > 0$ in \mathbb{N}^l

Say $s_i > 0$ in \mathbb{N} . Then $g_s \in Ab_i \subseteq A\mathcal{B}$. Hence also $f \in A\mathcal{B}$. "(ii) \Longrightarrow (iii)": Let $f \in \mathfrak{m}$, thus

$$f = \sum_{i=1}^{r} g_i b_i$$
 with $g_i \in A$ and $b_i \in \mathcal{B}$.

For all *i*, decompose $g_i = c_i + h_i$ with $c_i \in k$ and $h_i \in \mathfrak{m}$. Then

$$f = \sum_{i=1}^{r} c_i b_i + \sum_{\substack{i=1\\ \in \mathfrak{m}^2}}^{r} h_i b_i,$$
$$\varphi f = \sum_{i=1}^{r} c_i \varphi b_i.$$

"(iii) \implies (i)": Here we assume that all $b \in \mathcal{B}$ are homogeneous. We proceed by induction over the degree ν , and have to show that $A_{\nu} \subseteq k[\mathcal{B}]$. Note that this claim is trivial for $\nu = 0$ since $A_0 = k$.

Now assume that $\nu \neq 0$, and $A_{\mu} \subseteq k[\mathcal{B}]$ for all $\mu < \nu$. Take an arbitrary $f \in A_{\nu}$. In particular $f \in \mathfrak{m}$, and by (iii)

$$\varphi f = \sum_{i=1}^{r} a_i \varphi b_i \quad \text{with } a_i \in k \text{ and } b_i \in \mathcal{B}.$$

This implies

$$f = \sum_{i=1}^{r} a_i b_i + h$$
 with $h \in \mathfrak{m}^2$.

Consider a homogeneous part h_{μ} of h of degree $\mu \neq \nu$. Then $0 = \sum' a_i b_i + h_{\mu}$ where the sum is over the i with deg $b_i = \mu$. (Here we use that all b_i are homogeneous.) Hence $h_{\mu} \in k[\mathcal{B}]$. Now for the homogeneous part h_{ν} . Since $h_{\nu} \in \mathfrak{m}^2$ the lemma provides a finite sum $h_{\nu} = \sum h'_{\nu}h''_{\nu}$ with homogeneous elements $h'_{\nu}, h''_{\nu} \in \mathfrak{m}$, necessarily of degree $\langle \nu$, hence $\in k[\mathcal{B}]$ by induction. Taken together this implies $f \in k[\mathcal{B}]$.

In the most important special case k is a field and $\mathfrak{m}/\mathfrak{m}^2$ is a finitedimensional vector space over k, say of dimension n. Then the proposition says that each system \mathcal{B} of generators of the k algebra A contains at least n elements since $\varphi \mathcal{B}$ spans $\mathfrak{m}/\mathfrak{m}^2$. Now consider the set \mathcal{B}' of all the homogeneous parts of all elements of \mathcal{B} . Then also \mathcal{B}' generates the k-algebra A. Choose a subset $\mathcal{B}'' \subseteq \mathcal{B}'$ such that $\varphi \mathcal{B}''$ is a basis of $\mathfrak{m}/\mathfrak{m}^2$. Then by the proposition also \mathcal{B}'' generates the k-algebra A. This consideration proves

Corollary 1 Let k be a field and A be an \mathbb{N}^l -graded k-algebra with $A_0 = k$. Assume $\dim_k \mathfrak{m}/\mathfrak{m}^2 = n$ is finite. Then the minimal cardinality of a set of generators of A is n, and there is a set of homogeneous generators of cardinality n. Moreover each minimal set of homogeneous generators contains exactly n elements.