On Systems of Generators of Graded Algebras

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik
der Johannes-Gutenberg-Universität
Mainz, Federal Republic of Germany

July 4, 2016

Let A be an \mathbb{N}^{l}-graded ring (commutative with 1),

$$
A=\bigoplus_{\nu \in \mathbb{N}^{l}} A_{\nu}
$$

and let $k=A_{0}$. Consider the ideal

$$
\mathfrak{m}=\bigoplus_{\nu \in \mathbb{N}^{l}-\{0\}} A_{\nu}
$$

(If k is a field, then \mathfrak{m} is a maximal ideal, hence the notation.)
Lemma 1 Let $h \in \mathfrak{m}^{2}$ be homogeneous of degree $\nu \in \mathbb{N}^{l}$. Then h is a finite sum

$$
h=\sum h^{\prime} h^{\prime \prime}
$$

where $h^{\prime}, h^{\prime \prime} \in \mathfrak{m}$ are homogeneous of degree $<\nu$ in the natural (nonlinear) order of \mathbb{N}^{l}.

Proof. By definition of \mathfrak{m}^{2} we may write h in the form

$$
h=h_{1}^{\prime} h_{1}^{\prime \prime}+\cdots+h_{r}^{\prime} h_{r}^{\prime \prime}
$$

with $h_{i}^{\prime}, h_{i}^{\prime \prime} \in \mathfrak{m}$. Decompose all the h_{i}^{\prime} and $h_{i}^{\prime \prime}$ into their homogeneous partsthey are elements of \mathfrak{m}-and apply the distributive law. \diamond

In the following we use the natural homomorphism

$$
\varphi: \mathfrak{m} \longrightarrow \mathfrak{m} / \mathfrak{m}^{2}
$$

of A-modules.

Proposition 1 Let $\mathcal{B} \subseteq \mathfrak{m}$. Then each of the following statements implies the following one:
(i) \mathcal{B} generates the k-algebra A, i.e. $A=k[\mathcal{B}]$.
(ii) \mathcal{B} generates the A-module \mathfrak{m}, i.e. $\mathfrak{m}=A \mathcal{B}$.
(iii) $\varphi \mathcal{B}$ generates $\mathfrak{m} / \mathfrak{m}^{2}$ as k-module.

If all $b \in \mathcal{B}$ are homogeneous, then these three statements are equivalent.
Proof. "(i) \Longrightarrow (ii)": Consider an arbitrary $f \in \mathfrak{m}$. Then f is a polynomial in finitely many $b_{1}, \ldots, b_{r} \in \mathcal{B}$ without constant term. Hence f is a linear coombination of monomials

$$
g_{s}=b_{1}^{s_{1}} \cdots b_{r}^{s_{r}} \quad \text { where } s=\left(s_{1}, \ldots, s_{r}\right)>0 \text { in } \mathbb{N}^{l} .
$$

Say $s_{i}>0$ in \mathbb{N}. Then $g_{s} \in A b_{i} \subseteq A \mathcal{B}$. Hence also $f \in A \mathcal{B}$.
"(ii) \Longrightarrow (iii)": Let $f \in \mathfrak{m}$, thus

$$
f=\sum_{i=1}^{r} g_{i} b_{i} \quad \text { with } g_{i} \in A \text { and } b_{i} \in \mathcal{B} .
$$

For all i, decompose $g_{i}=c_{i}+h_{i}$ with $c_{i} \in k$ and $h_{i} \in \mathfrak{m}$. Then

$$
\begin{gathered}
f=\sum_{i=1}^{r} c_{i} b_{i}+\underbrace{\sum_{i=1}^{r} h_{i} b_{i}}_{\in \mathfrak{m}^{2}}, \\
\varphi f=\sum_{i=1}^{r} c_{i} \varphi b_{i} .
\end{gathered}
$$

"(iii) \Longrightarrow (i)": Here we assume that all $b \in \mathcal{B}$ are homogeneous. We proceed by induction over the degree ν, and have to show that $A_{\nu} \subseteq k[\mathcal{B}]$. Note that this claim is trivial for $\nu=0$ since $A_{0}=k$.

Now assume that $\nu \neq 0$, and $A_{\mu} \subseteq k[\mathcal{B}]$ for all $\mu<\nu$. Take an arbitrary $f \in A_{\nu}$. In particular $f \in \mathfrak{m}$, and by (iii)

$$
\varphi f=\sum_{i=1}^{r} a_{i} \varphi b_{i} \quad \text { with } a_{i} \in k \text { and } b_{i} \in \mathcal{B} .
$$

This implies

$$
f=\sum_{i=1}^{r} a_{i} b_{i}+h \quad \text { with } h \in \mathfrak{m}^{2} .
$$

Consider a homogeneous part h_{μ} of h of degree $\mu \neq \nu$. Then $0=\sum^{\prime} a_{i} b_{i}+h_{\mu}$ where the sum is over the i with $\operatorname{deg} b_{i}=\mu$. (Here we use that all b_{i} are homogeneous.) Hence $h_{\mu} \in k[\mathcal{B}]$.

Now for the homogeneous part h_{ν}. Since $h_{\nu} \in \mathfrak{m}^{2}$ the lemma provides a finite sum $h_{\nu}=\sum h_{\nu}^{\prime} h_{\nu}^{\prime \prime}$ with homogeneous elements $h_{\nu}^{\prime}, h_{\nu}^{\prime \prime} \in \mathfrak{m}$, necessarily of degree $<\nu$, hence $\in k[\mathcal{B}]$ by induction. Taken together this implies $f \in k[\mathcal{B}]$.

In the most important special case k is a field and $\mathfrak{m} / \mathfrak{m}^{2}$ is a finitedimensional vector space over k, say of dimension n. Then the proposition says that each system \mathcal{B} of generators of the k algebra A contains at least n elements since $\varphi \mathcal{B}$ spans $\mathfrak{m} / \mathfrak{m}^{2}$. Now consider the set \mathcal{B}^{\prime} of all the homogeneous parts of all elements of \mathcal{B}. Then also \mathcal{B}^{\prime} generates the k-algebra A. Choose a subset $\mathcal{B}^{\prime \prime} \subseteq \mathcal{B}^{\prime}$ such that $\varphi \mathcal{B}^{\prime \prime}$ is a basis of $\mathfrak{m} / \mathfrak{m}^{2}$. Then by the proposition also $\mathcal{B}^{\prime \prime}$ generates the k-algebra A. This consideration proves

Corollary 1 Let k be a field and A be an \mathbb{N}^{l}-graded k-algebra with $A_{0}=k$. Assume $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=n$ is finite. Then the minimal cardinality of a set of generators of A is n, and there is a set of homogeneous generators of cardinality n. Moreover each minimal set of homogeneous generators contains exactly n elements.

