Linear Congruences with Two Unknowns

Klaus Pommerening
Johannes-Gutenberg-Universität
Mainz, Germany

October 1986 - english version August 2016 - Version 2, February 2018
last change: February 25, 2018

Given $m \in \mathbb{N}_{2}$ and $a, b \in \mathbb{N}$. We want to find all solutions $(x, y) \in \mathbb{N}^{2}$ of the linear congruence

$$
\left(\mathbf{A}_{2}\right)
$$

$$
a x+b y \equiv 0 \quad(\bmod m) .
$$

Without loss of generality we may assume that $a, b \in\{0, \ldots, m-1\}$.
The semigroup \mathbb{N}^{2} has the (partial) order

$$
(x, y) \leq\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x \leq x^{\prime} \text { and } y \leq y^{\prime}
$$

The solution set of $\left(\mathbf{A}_{\mathbf{2}}\right)$ is a sub-semigroup $H \leq \mathbb{N}^{2}$ with the property

$$
(x, y),\left(x^{\prime}, y^{\prime}\right) \in H,(x, y) \leq\left(x^{\prime}, y^{\prime}\right) \Longrightarrow\left(x^{\prime}-x, y^{\prime}-y\right) \in H .
$$

Consider the set M of minimal elements >0 of H. From Dickson's lemma [1], see also [2], we get that M is finite, consists of the indecomposable elements of H, and generates H. Thus H has a canonical minimal system of generators that is finite.

Caution: Not every sub-semigroup of \mathbb{N}^{2} is finitely generated. As an example take $H=\{(p, q) \mid q \geq 1\} \cup\{(0,0)\}$.

Thus solving the the linear congruence $\left(\mathbf{A}_{\mathbf{2}}\right)$ boils down to determining the indecomposable solutions. In particular:
(I) Find an efficient algorithm that yields all indecomposable solutions.
(II) Determine the number of indecomposable solutions.

The analogous problem for the linear congruence with one unknwon is trivial:
Let $m \in \mathbb{N}_{2}$ and $a \in \mathbb{N}$. Then the only indecomposable solution of the congruence $a x \equiv 0(\bmod m)$ is the minimal integer $x>0$ with $m \mid a x$. If m and a are coprime, then $x=m$.
The results for two unknowns are considerably more involved, but known, see [7], [5]. Here we give a particularily simple derivation plus some extensions. For more unknowns see [4].

1 Reductions

First we reduce $\left(\mathbf{A}_{\mathbf{2}}\right)$ to the case $a=1$:
Lemma 1 Let $m \in \mathbb{N}_{2}$ and $a, b \in \mathbb{N}$.
(i) Let $d:=\operatorname{gcd}(m, a)$ and $d^{\prime}:=\operatorname{gcd}(d, b), d=d^{\prime}$ e. Then for $(x, y) \in \mathbb{N}_{2}$ the following two statements are equivalent for $(x, y) \in \mathbb{N}^{2}$:

1. (x, y) is an indecomposable solution of $\left(\mathbf{A}_{2}\right)$.
2. $x<\frac{m}{d}$, e|y, and $\left(x, \frac{y}{e}\right)$ is an indecomposable solution of

$$
\frac{a}{d} \cdot s+\frac{b}{d^{\prime}} \cdot t \equiv 0 \quad\left(\bmod \frac{m}{d}\right)
$$

(ii) If a and m are coprime, then the indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}\right)$ are exactly the same as for $1 \cdot x+b^{\prime} \cdot y \equiv 0(\bmod m)$ where c is the inverse of a modulo m, and $b^{\prime}=b c \bmod m$.

Proof. (i) If $x \geq \frac{m}{d}$, then $\left(\frac{m}{d}, 0\right)$ is a solution $\leq x$. If $a x+b y=k m$, then $d|b y, e| \frac{b}{d^{\prime}} y$, hence $e \mid y$. Thus

$$
a x+b y=k m \Leftrightarrow \frac{a}{d} x+\frac{b}{d^{\prime}} \frac{y}{e}=k \frac{m}{d} .
$$

Therefore the mapping $(x, y) \mapsto\left(x, \frac{y}{e}\right)$ is a bijection between the respective sets of solutions, and obviously it preserves the indecomposability (in both directions).
(ii) We have $a c \equiv 1(\bmod m)$, thus $a x+b y=k m \Leftrightarrow x+b c y=k c m . \diamond$

Corollary 1 Let $m \in \mathbb{N}_{2}$ and $a, b \in \mathbb{N}$. Let $d=\operatorname{gcd}(a, m), d^{\prime}:=\operatorname{gcd}(d, b), a^{\prime}=a / d$, $m^{\prime}=m / d$, c the multiplicative inverse of $a^{\prime} \bmod m^{\prime}$, and $b^{\prime}=c \cdot\left(b / d^{\prime} \bmod m^{\prime}\right)$. Then $x \in \mathbb{N}$ is the first coordinate of an indecomposable solution of $\left(\mathbf{A}_{\mathbf{2}}\right) a x+b y \equiv 0(\bmod m)$ if and only if x is the first coordinate of an indecomposable solution of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right) x+b^{\prime} y \equiv 0\left(\bmod m^{\prime}\right)$.

Note that each $x \in \mathbb{N}$ occurs at most once as the first coordinate of an indecomposable solution of $\left(\mathbf{A}_{\mathbf{2}}\right)$, and only if $x \leq m$. (In particular the number of indecomposable solutions is at most $m+1$.) The corresponding second coordinate y is

$$
y=\min \left\{t \in \mathbb{N}_{1} \mid a x+b t \equiv 0 \quad(\bmod m)\right\}
$$

except for the one case $x>0$ and $a x \equiv 0(\bmod m)$, where $y=0$.
So we need to study only the simplified congruence

$$
\begin{equation*}
x+b y \equiv 0 \quad(\bmod m) \tag{2}
\end{equation*}
$$

where $m \in \mathbb{N}_{2}$ and $b \in \mathbb{N}$ arbitrary. We include the degenerate cases $m=1$ and $b=0$.

- The congruence $x+b y \equiv 0(\bmod 1)$ with arbitrary $b \in \mathbb{N}$ has two indecomposable solutions: $(1,0)$ and $(0,1)$.
- The congruence $x+0 \cdot y \equiv 0(\bmod m)$ with arbitrary $m \in \mathbb{N}_{1}$ has two indecomposable solutions: $(m, 0)$ and $(0,1)$.

Our next goal is to find a reduction to a smaller value of the module m, derive a recursive (or iterative) construction of the indecomposable solutions, and determine their number. (We start by looking in the opposite direction, going from m to $m+b$.)

Lemma 2 Let $m \in \mathbb{N}_{1}, b \in \mathbb{N}$. Assume $(s, t) \in \mathbb{N}^{2}$ is an indecomposable solution of $s+b t \equiv 0(\bmod m)$. Let $u:=\frac{s+b t}{m}$. Then:
(i) $u=\left\lceil\frac{b t}{m}\right\rceil$, except for $(s, t)=(m, 0)$.
(ii) $t+u \leq m+b$; even $t+u<m+b$, except for $(s, t)=(0, m)$, or for $m=1, b=0$.
(iii) $(s, t+u)$ is an indecomposable solution of

$$
\begin{equation*}
x+b y \equiv 0 \quad(\bmod m+b) . \tag{1}
\end{equation*}
$$

Proof. (i) If $(s, t) \neq(m, 0)$, then $0 \leq s<m$, hence $\frac{b t}{m} \leq u<\frac{m+b t}{m}=1+\frac{b t}{m}$.
(ii) Assume $(s, t) \neq(0, m)$. Then $0 \leq t \leq m-1$. By (i) we have $u<1+\frac{b t}{m}$, or $t=0$, $s=m, u=1$. In the first case $t+u<m+\frac{b t}{m} \leq m+b \cdot \frac{m-1}{m}<m+b$. In the second case $t+u=1<2 \leq m+b$, except in the case $m=1, b=0$; here $(s, t)=(1,0)$ and $u=1$.

Now let $(s, t)=(0, m)$. Then $u=b$ and $t+u=m+b$.
(iii) If $(s, t)=(m, 0)$, then $(s, t+u)=(m, 1)$ is an indecomposable solution of (11).

Now assume $0 \leq s<m, 0<t \leq m$. Then $s+b \cdot(t+u)=u \cdot(m+b)$, hence $(s, t+u)$ a solution of (1). Assume (x, y) is a solution of (1) with $0<(x, y) \leq(s, t+u)$. Then $x+b y=v \cdot(m+b)$ with $1 \leq v \leq u$. Since $x \leq s<m \leq v m$, we have $b y=v m+b v-x>b v$. Hence $y>v$ and $x+b \cdot(y-v)=v m \equiv 0(\bmod m)$. The assumption $y-v>t$ leads to $v m>b \cdot(y-v)>b t=u m-s>(u-1) \cdot m$, hence $v \geq u, y>t+u$, a contradiction. Thus $y-v \leq t, 0<(x, y-v) \leq(s, t), x=s, y=t+v, v m=u m, v=u,(x, y)=(s, t+u)$.

Proposition 1 Let $m \in \mathbb{N}_{1}, b \in \mathbb{N}$. The assignment $(s, t) \mapsto(s, t+u)$ with $u=\frac{s+b t}{m}$ defines a bijection between
(i) the set of indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right) s+b t \equiv 0(\bmod m)$
(ii) and the set of indecomposable solutions of (1) $x+b y \equiv 0(\bmod m+b)$ except $(m+b, 0)$.

Proof. By Lemma 2 the map exists and is injective, for each indecomposable solution of (1) is uniquely characterized by its first coordinate. Clearly $(m+b, 0)$ is not in the image of this map. We have yet to show the surjectivity.

Let $(x, y) \in \mathbb{N}^{2}$ be an indecomposable solution $\neq(m+b, 0)$ of $\left.\mathbb{1}\right)$, say $x+b y=u \cdot(m+b)$ with $u \in \mathbb{N}_{1}$. By Lemma 2 (i) we have

$$
u=\left\lceil\frac{b y}{m+b}\right\rceil<\frac{b y}{m+b}+1<y+1
$$

hence $u \leq y$. From $x+b \cdot(y-u)=u m$ we get that $(x, y-u)$ is a solution $\bmod m$. Is it indecomposable? It is $\neq 0$, for otherwise $x=0, y=u, b u=u m+u b$, contradiction. Now assume $0 \leq(s, t) \leq(x, y-u)$ with $s+b t \equiv 0(\bmod m)$, say $s+b t=v m$ with $0 \leq v \leq u$. Then $s+b \cdot(t+v)=v \cdot(m+b)$ and $s \leq x, t+v \leq y-u+v \leq y$. We conclude

$$
s=x, \quad t+v=y, \quad v=u, \quad t=y-u
$$

or otherwise

$$
s=0, \quad t+v=0, \quad t=0 .
$$

Thus (x, y) has $(x, y-u)$ as pre-image. \diamond

2 Counting the Indecomposable Solutions

For $b \in \mathbb{N}$ and $m \in \mathbb{N}_{1}$ let $A(m, b)$ be the number of indecomposable solutions of the congruence $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right) x+b y \equiv 0(\bmod m)$.

Note that by the corollary of Lemma 1 the number of indecomposable solutions of $\left(\mathbf{A}_{2}\right) a x+b y \equiv 0(\bmod m)$ is $A\left(m^{\prime}, b^{\prime}\right)$.

Lemma 3 (i) $A(m, 0)=2$ for all $m \in \mathbb{N}_{1}$.
(ii) $A(m, 1)=m+1$ for all $m \in \mathbb{N}_{1}$.
(iii) A is periodic in its second variable: $A(m, m+b)=A(m, b)$ for all $m \in \mathbb{N}_{1}$ and $b \in \mathbb{N}$.
(iv) A is quasiperiodic in its first variable: $A(m+b, b)=1+A(m, b)$ for all $m \in \mathbb{N}_{1}$ and $b \in \mathbb{N}_{1}$.
(v) If $a b \equiv 1(\bmod m)$, then $A(m, a)=A(m, b)$.

Proof. (i) The indecomposable solutions are $(m, 0)$ and $(0,1)$.
(ii) The indecomposable solutions are $(k, m-k)$ for $k=0, \ldots, m$.
(iii) $x+b y \equiv 0(\bmod m) \Leftrightarrow x+(b+m) y \equiv 0(\bmod m)$.
(iv) follows directly from Proposition 1.
(v) $x+a y \equiv 0(\bmod m) \Leftrightarrow b x+b a y \equiv 0(\bmod m) \Leftrightarrow y+b x \equiv 0(\bmod m)$.

The recursive formulas (iii) and (iv) allow a very efficient calculation of the table of all $A(m, b)$ from the initial conditions $A(m, 0)=2$, see Table 1. This is the algorithm: In row r

Table 1: Numbers $A(m, b)$ of indecomposable solutions

	$b=$										
	0	1	2	3	4	5	6	7	8	9	10
$m=1$	2	2	2	2	2	2	2	2	2	2	2
2	2	3	2	3	2	3	2	3	2	3	2
3	2	4	3	2	4	3	2	4	3	2	4
4	2	5	3	3	2	5	3	3	2	5	3
5	2	6	4	4	3	2	6	4	4	3	2
6	2	7	4	3	3	3	2	7	4	3	3
7	2	8	5	4	5	4	3	2	8	5	4
8	2	9	5	5	3	4	3	3	2	9	5
9	2	10	6	4	4	6	3	4	3	2	10
10	2	11	6	5	4	3	4	5	3	3	2

- set the first entry $A(m, 0)=2$,
- calculate the entries $A(m, 1), \ldots, A(m, m-1)$ by quasi-peridocity from the formula $A(m, b)=A(m-b, b)$,
- calculate the entries from $A(m, m)$ to the right by peridocity from the formula $A(m, b)=A(m, b-m)$,

The corresponding Python program is in Appendix A.3.
Examples We calculate some values for small parameters by paper and pencil.

- $A(3,2)=1+A(1,2)=1+A(1,0)=3$.
- $A(4,2)=1+A(2,2)=1+A(2,0)=3$.

Remark Here are some obvious general rules:

1. For $m=2 r-1$ odd: $A(m, 2)=1+A(m-2,2)=\ldots=r-1+A(1,2)=r+1$.
2. Likewise for $m=2 r$ even: $A(m, 2)=r-1+A(2,2)=r+1$.
3. $A(m, m-1)=1+A(1, m-1)=3$ for $m \geq 2$.
4. $A(m, m-2)=1+A(2, m-2)=4$ for odd $m \geq 3$, and $=3$ for even $m \geq 4$.

As an easy application of these rules we improve the trivial bound $m+1$ on the number of indecomposable solutions:

Proposition 2 Assume that $m \geq 4$ and $b \not \equiv 1(\bmod m)$. Then $A(m, b) \leq m-1$.

Proof. We may assume that $2 \leq b \leq m-1$, and the case $b=2$ is settled by the rules 1 and 2 . For $b \geq 3$ we get

$$
A(m, b)=1+A(m-b, b) \leq 1+(m-b)+1=m+2-b \leq m-1
$$

Corollary 1 Assume that $m \geq 4$ and $b \not \equiv a(\bmod m)$. Then the congruence $\left(\mathbf{A}_{\mathbf{2}}\right)$ has at most $m-1$ indecomposable solutions.

Proof. The corollary of Lemma 1 reduces the assertion to Proposition 2, (Note that m^{\prime} might be 2 or 3 , but then the weaker statement $A\left(m^{\prime}, b^{\prime}\right) \leq m^{\prime}+1$ suffices.)

The stepwise reduction by quasi-periodicity in the examples reminds us of the Euclidean algorithm [3], and indeed:

Proposition 3 Let $m \in \mathbb{N}_{1}, b \in \mathbb{N}$, and consider the Euclidean division chain

$$
r_{0}=m, r_{1}=b, \ldots, r_{i-1}=q_{i} r_{i}+r_{i+1}, \ldots, r_{n-1}=q_{n} r_{n}
$$

with $0<r_{n}<\ldots<r_{1}, r_{n}=\operatorname{gcd}(m, b), r_{n+1}=0$. Furthermore let

$$
\tilde{A}(m, b)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q_{2 k+1}
$$

be the sum of the quotients with odd index. Then

$$
A(m, b)= \begin{cases}\tilde{A}(m, b)+1, & \text { if } n \text { is odd } \\ \tilde{A}(m, b)+2, & \text { if } n \text { is even }\end{cases}
$$

In other words we can explicitly calculate $A(m, b)$ by the Euclidean algorithm, or, in yet other words, from the continued fraction expansion of $\frac{m}{b}$, cf. [5].

Proof. Since $m=q_{1} b+r_{2}$ or $m=q_{1} b$, Lemma 3 (iv) immediately yields

$$
A(m, b)= \begin{cases}q_{1}+A\left(r_{2}, b\right), & \text { if } n \geq 2 \\ q_{1}-1+A(b, b)=q_{1}-1+A(b, 0)=q_{1}+1, & \text { if } n=1\end{cases}
$$

From this the assertion follows inductively step by step: For $n \geq 3$ we have $r_{1}=q_{2} r_{2}+r_{3}$, hence $A\left(r_{2}, b\right)=A\left(r_{2}, r_{1}\right)=A\left(r_{2}, r_{3}\right)$.

Now if $n=2 t+1$ is odd: $r_{n-2}=q_{n-1} r_{n-1}+r_{n}, r_{n-1}=q_{n} r_{n}$, hence

$$
A(m, b)=q_{1}+\cdots+q_{n-2}+\underbrace{A\left(r_{n-1}, r_{n}\right)}_{q_{n}+1}
$$

And if $n=2 t$ is even

$$
A(m, b)=q_{1}+\cdots+q_{n-1}+\underbrace{A\left(r_{n}, 0\right)}_{2} .
$$

\diamond

This algorithm is implemented by the Python program in Appendix A.4. Using it we easily compute

- $A(7,3)=4$
- $A(20,5)=5$
- $A(25000,753)=37$

3 Computing the Indecomposable Solutions

Proposition 11 yields more than just the numbers of indecomposable solutions: It leads to the solutions themselves:

Theorem 1 (Tinsley, Riemenschneider) Let $m \in \mathbb{M}_{2}, b \in \mathbb{N}_{1}$, and let $r_{0}=m$, $r_{1}=b, \ldots, r_{n}$ be the Euclidean division chain, $r_{i-1}=q_{i} r_{i}+r_{i+1}$ for $1 \leq i \leq n$. Then the first coordinates of the indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right) x+b y \equiv 0(\bmod m)$ are exactly the numbers $r_{0}(=m)$ and

$$
r_{2 i}-j \cdot r_{2 i+1} \quad \text { for } 0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor, \quad 1 \leq j \leq q_{2 i+1}
$$

and additionally 0 if n is even. The corresponding second coordinates y derive from the first coordinates x as the minimum values ≥ 0 such that $m \mid x+b y$ (except for $x=0$).

Proof. The indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right)$ are of two different types:

1. $(m, 0)$,
2. $(s, t+u)$ where (s, t) is an indecomposable solution of $s+b t \equiv 0(\bmod m-b)$ and $u=(s+b t) /(m-b)$.

After q_{1} steps of this kind we may state: The indecomposable solutions of $x+r_{1} y \equiv 0\left(\bmod r_{0}\right)$ are of two different types:

1. $(x, *)$ with $x=r_{0}, r_{0}-r_{1}, \ldots, r_{0}-q_{1} r_{1}=r_{2}$,
2. $(s, *)$ where (s, t) is an indecomposable solution of $s+r_{1} t \equiv 0\left(\bmod r_{2}\right)$, or equivalently, of $s+r_{3} t \equiv 0\left(\bmod r_{2}\right)$.

Note that we neglect the values of the y-coordinates-they are calculated at the end of the algorithm, see the last sentence of the theorem.

In the i-th step of the procedure we have the analogous alternative: The indecomposable solutions of $x+r_{2 i-1} y \equiv 0\left(\bmod r_{2 i-2}\right)$ are of two different types:

1. $(x, *)$ with $x=r_{2 i-2}, r_{2 i-2}-r_{2 i-1}, \ldots, r_{2 i-2}-q_{2 i-1} r_{2 i-1}=r_{2 i}$,
2. $(s, *)$ where (s, t) is an indecomposable solution of $s+r_{2 i+1} t \equiv 0\left(\bmod r_{2 i}\right)$, as long as $2 i+1 \leq n$. If $2 i=n$, then this alternative has to be replaced by

- $(x, *)$ with $x=r_{n}, 0$.

If $2 i+1=n$ then for the second type of the alternative we have to determine the indecomposable solutions of $s+r_{n} t \equiv 0\left(\bmod r_{n-1}\right)$, and since $r_{n} \mid r_{n-1}$ the x-coordinates of the indecomposable solutions are

- $x=r_{n-1}, r_{n-1}-r_{n}, \ldots, r_{n-1}-q_{n} r_{n}=0$.

This completes the proof. \diamond

Note that the x-coordinates of the indecomposable solutions form the strictly decreasing sequence

$$
r_{0}, r_{0}-r_{1}, \ldots, r_{0}-q_{1} r_{1}=r_{2}, r_{2}-r_{3}, \ldots, r_{2}-q_{3} r_{3}=r_{4}, \ldots, 0
$$

4 Algorithmic Solution

The following algorithm finds all indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right)$:
Initialization Start with the list xlist $=[m]$ of x-values, and set $r=m, s=b \bmod m$.
While $s>0$: $q=\left\lfloor\frac{r}{s}\right\rfloor$.

- For $i=1, \ldots, q$: set $r=r-s$, append r to xlist.
- If $r>0$ set $s=s \bmod r$, else set $s=0$.

Finalization If $r>0$ append 0 to xlist .
Complete result For each $x \in$ xlist:

- If $x>0$: compute $y=\min \{t \in \mathbb{N}|m| x+b t\}$.
- If $x=0$: compute $y=\min \left\{t \in \mathbb{N}_{1}|m| b t\right\}$.

The Python program in Appendix A.5 gives all the indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right)$. Here are some sample results

- For $m=7, b=3:[[7,0],[4,1],[1,2],[0,7]]$
- For $m=20, b=5:[[20,0]$, $[15,1],[10,2],[5,3],[0,4]]$
- For $m=25000, b=753:[[25000,0]$, $[24247,1]$, $[23494,2]$, $[22741,3],[21988,4]$, $[21235,5],[20482,6],[19729,7],[18976,8],[18223,9],[17470,10],[16717,11]$, $[15964,12],[15211,13],[14458,14],[13705,15],[12952,16],[12199,17]$, $[11446,18],[10693,19],[9940,20],[9187,21],[8434,22],[7681,23],[6928,24]$, $[6175,25],[5422,26],[4669,27],[3916,28],[3163,29],[2410,30],[1657,31]$, $[904,32],[151,33],[2,166],[1,12583],[0,25000]]$

Taking all the pieces together we get an algorithm that finds all indecomposable solutions of $\left(\mathbf{A}_{2}\right) a x+b y \equiv 0(\bmod m)$:

Reduction phase Compute $d=\operatorname{gcd}(a, m)$ as well as the coefficients of the linear combination $d=c a+k m$ by the extended Euclidean algorithm (Appendix A.1).

- Set $m^{\prime}=m / d$ and $a^{\prime}=a / d$.
- Set $b^{\prime}=b c \bmod m^{\prime}$.
x-values Compute the list xl ist of the x-coordinates of all indecomposable solutions of $\left(\mathbf{A}_{\mathbf{2}}^{\prime}\right) x+b^{\prime} y \equiv 0(\bmod m)$ (Appendix A.2).
y-values For each $x \in$ xlist compute the corresponding y-coordinate by the formula
- If $x>0$: compute $y=\min \{t \in \mathbb{N}|m| a x+b t\}$.
- If $x=0$: compute $y=\min \left\{t \in \mathbb{N}_{1}|m| b t\right\}$.

The Python code is in Appendix A.6. Here is a sample result:

- $2 x+3 y \equiv 0(\bmod 7):[[7,0],[2,1],[1,4],[0,7]]$

5 Extremal Solutions

Theorem 2 Assume $m \in \mathbb{N}_{3}, a, b \in \mathbb{N}$, and $a \not \equiv b(\bmod m)$. Let $(x, y) \in \mathbb{N}^{2}$ be an indecomposable solution of $\left(\mathbf{A}_{\mathbf{2}}\right)$ with $x \neq 0$ and $y \neq 0$. Then:
(i) $x+y \leq m-1$.
(ii) If $x+y=m-1$, then one of the following statements is true:

- $x=m-2, y=1, \operatorname{gcd}(m, a)=1$, and if c is the $\bmod m$-inverse of a (i.e. $c a \equiv 1(\bmod m))$, then $c b \equiv 2(\bmod m)$.
- $x=1, y=m-2, \operatorname{gcd}(m, b)=1$, and if c is the modm-inverse of b, then $c a \equiv 2(\bmod m)$.

Remarks For $m=2, a=b=1$, the solution $(1,1)$ is a counterexample for (i).
The two items in (ii) describe the same set of cases, only with the denotations of a and b interchanged. The second statements for both cases of (ii) follow directly, since (for instance) $0 \equiv c(a x+b y) \equiv m-2+c b(\bmod m)$.

Definition (For $m \in \mathbb{N}_{3}$) A solution (x, y) of $\left(\mathbf{A}_{2}\right)$ (with $a \not \equiv b(\bmod m)$) is called extremal if it is indecomposable, $x \neq 0, y \neq 0$, and $x+y=m-1$.

Example If $a=1, b=2$, then $(m-2,1)$ is an extremal solution. This is essentially the only example: Theorem 2 tells us that by the action of the mutliplicative group $\bmod m$ we get all extremal solutions for a fixed module m and varying coefficients a and b.

Remark If $a \equiv b(\bmod m)$ the situation is different: In the case where $\operatorname{gcd}(m, a)=1$ the indecomposable solutions are all the pairs (x, y) with $x+y=m$.

Corollary 1 The congruence $\left(\mathbf{A}_{\mathbf{2}}\right)$ admits an extremal solution if and only if a is coprime with m and $b \equiv 2 a(\bmod m)$, or b is coprime with m and $a \equiv 2 b(\bmod m)$. This extremal solution, $(m-2,1)$ or $(1, m-2)$, is unique.

Let us consider the more general linear congruence for integer vectors $x \in \mathbb{N}^{m}$

$$
\left(\mathbf{C}_{m}^{\prime}\right) \quad 0 \cdot x_{0}+1 \cdot x_{1}+\cdots+(m-1) \cdot x_{m-1} \equiv 0 \quad(\bmod m)
$$

The support of a solution x is the set of indices i with $x_{i} \neq 0$. Clearly the indecomposable solutions with one-element support are given by the remark in the introduction:

For each i let x_{i} be the minimal integer >0 with $m \mid i x_{i}$. Then $\left(0, \ldots, x_{i}, \ldots, 0\right)$ is an indecomposable solution. If m and i are coprime, then $x_{i}=m$.

Thus there are exactly $\varphi(m)$ indecomposable solutions with one-element support and $\|x\|_{1}=x_{0}+\cdots+x_{m-1}=m$ (where φ is the Euler function). Theorem 2 provides a nontrivial analogue:

Corollary 2 The number of solutions x of $\left(\mathbf{C}_{m}^{\prime}\right)$ with two-element support and $\|x\|_{1}=m-1$ is $\varphi(m)$.

We prove Theorem 2 by induction on m and assume without loss of generality that $a, b \in\{0, \ldots, m-1\}$. Let $d=\operatorname{gcd}(m, a), d^{\prime}=\operatorname{gcd}(d, b), d=d^{\prime} e$.

If $m=3$, then the case $d \neq 1$ occurs only for $a=0$. Then $(1,0)$ is an indecomposable solution, and any other one has the form $(0, y)$. Therefore the assumption $x \neq 0$ and $y \neq 0$ enforces $d=1, a=1$ or 2 . By symmetry also $b=1$ or 2 , hence $a=1, b=2$ or $a=2, b=1$. In both cases the indecomposable solutions are $(3,0),(1,1),(0,3)$. Hence (i) and (ii) are obviously true.

Now we assume that $m \geq 4$.
Case I, $d \neq 1$. Then by Lemma 1 (i) we have $e \mid y$, and $\left(x, y^{\prime}\right)$ is an indecomposable solution of $a^{\prime} s+b^{\prime} t \equiv 0\left(\bmod m^{\prime}\right)$ where $y^{\prime}=y / e, a^{\prime}=a / d, b^{\prime}=b / d^{\prime}$, and $m^{\prime}=m / d$.

Case Ia, $m^{\prime} \geq 3$. Since $m^{\prime}<m$ the induction hypothesis yields

$$
x+\frac{y}{e} \leq \frac{m}{d}-1, \quad x+y \leq d x+d^{\prime} y \leq m-d<m-1
$$

Thus (i) is true, and (ii) is void.

Case $\mathbf{I b}, m^{\prime}=2, m=2 d$. Then depending on $a^{\prime} \bmod 2$ and $b^{\prime} \bmod 2$, the solution vector (s, t) is one of $(1,0),(2,0),(1,1),(0,1),(0,2)$. The condition $x \neq 0, y \neq 0$ is met only for $(s, t)=(1,1)$. Then $x=1, y=e$,

$$
x+y=1+e \leq d-1+d=m-1
$$

hence (i) is proved, and $x+y=m-1$ implies that $d-1=1$ and $e=d$, that is $d=2$, $m=4$, and $y=2$, as required for (ii).

Case Ic, $m^{\prime}=1$. Then $d=m, d \mid a$, hence $a=0$. Then the indecomposable solutions have the form $(1,0)$ or $(0, y)$ and violate the conditions of the theorem.

Case II, $d=1$. By Lemma 1 (ii) we may assume that $a=1$ (and $b \neq 1$). We may also assume that $b \neq 0$, hence $2 \leq b \leq m-1$:

If $b=0$, then $(0,1)$ is an indecomposable solution, and any other one has the form $(x, 0)$. Thus there is nothing to prove.

We look at the proof of Theorem 1. Since (x, y) is not the solution $(m, 0)$, it has the form $(s, t+u)$ where (s, t) is an indecomposable solution of $s+b t \equiv 0(\bmod m-b)$ with $s=x \neq 0$, and

$$
u=\frac{s+b t}{m-b} \leq 1+\frac{b t}{m-b}
$$

Case IIa. If $(s, t)=(m-b, 0)$, then $u=1$ and $(x, y)=(m-b, 1)$,

$$
x+y=m-b+1 \leq m-1
$$

with equality if and only if $b=2$. We have detected the solution $(m-2,1)$ and are done.
Otherwise $t \geq 1$ and $s<m-b$, hence

$$
u=\frac{s+b t}{m-b}<\frac{(m-b)+b(m-b)}{m-b}=1+b, \quad \text { thus } u \leq b
$$

Moreover $t<m-b$, in particular $u<b+s /(m-b)$. We consider four more subcases:

Case IIb. If $m-b \geq 3$ and $b \not \equiv 1(\bmod m-b)$, then the induction hypothesis applies and yields $s+t \leq m-b-1$. Hence

$$
x+y=s+t+u \leq m-b-1+b=m-1
$$

and (i) is proved. Equality implies $u=b$ and $s+t=m-b-1$. By induction we have one of the following two situations:

1. $s=1, t=m-b-2$, hence $x=1, y=t+u=m-2$, as required for (ii).
2. $s=m-b-2, t=1$, hence $x=m-b-2, y=t+u=b+1$. Then

$$
b=u<1+\frac{b t}{m-b}=1+\frac{b}{m-b} \leq 1+\frac{b}{3}
$$

This implies $3 b<3+b, 2 b<3, b \leq 1$, contradiction.

Case IIc. If $m-b \geq 3$ and $b \equiv 1(\bmod m-b)$, then (s, t) is an indecomposable solution of $s+t \equiv 0(\bmod m-b)$ with $s \neq 0$. Hence $t=m-b-s$ and

$$
u=\frac{s+b t}{m-b}=\frac{s+b(m-b-s)}{m-b}=b+\frac{(1-b) s}{m-b} \leq b
$$

From $u=b$ the contradiction $(1-b) s /(m-b)=0$, hence $b=1$, would result. Therefore $u \leq b-1$, and

$$
x+y=s+t+u \leq m-b+b-1=m-1
$$

and (i) is proved.
Equality enforces $u=b-1$,

$$
\frac{(1-b) s}{m-b}=-1, \quad s=\frac{m-b}{b-1}
$$

hence $m-b \geq b-1, m+1 \geq 2 b$,

$$
b \leq \frac{m+1}{2}, \quad m-b \geq \frac{m-1}{2}
$$

This is compatible with $b \equiv 1(\bmod m-b)$ if and only if $b=(m+1) / 2$ (and m odd). Then $s=(m-b) /(b-1)=1, t=m-b-1$,

$$
x=1, \quad y=m-2
$$

as required for (ii).
Case IId. Assume $m-b=2$. Since Case IIa is done, $(x, y)=(s, t+u)$ where (s, t) an indecomposable solution of $s+b t \equiv 0(\bmod 2)$, with $t \geq 1$ and $u=(s+b t) / 2$.

Assume that b is even. Then (s, t) is one of $(2,0)$ or $(0,1)$, contradicting $t \geq 1$ or $s=x \neq 0$.

Therefore b is odd, and also m is odd and (s, t) is one of $(2,0)$ or $(1,1)$ or $(0,2)$, hence $(s, t)=(1,1)$,

$$
\begin{gathered}
u=\frac{b+1}{2}=\frac{m-1}{2}, \quad x=1, \quad y=t+u=\frac{m+1}{2} \\
x+y=\frac{m+3}{2} \leq m-1
\end{gathered}
$$

the letter inequality since $m \geq 5$ ($m \geq 4$ and odd). This proves (i).
Assertion (ii) is void for $m \geq 7$. For $m=5$ the equality $x+y=m-1=4$ enforces

$$
x=1, \quad y=3=m-2
$$

as required for (ii).
Case IIe. If $m-b=1$, then $b=m-1$, and

$$
x+b y \equiv 0 \quad(\bmod b) \quad \Longleftrightarrow \quad x \equiv y \quad(\bmod b)
$$

The indecomposable solutions are $(m, 0),(1,1),(0, m)$. Therefore (i) is obvious, and (ii) is void except for $m=3$, where it is true.

The proof of Theorem 2 is complete.

A Python Code

A. 1 Extended Euclidean Algorithm

```
def eEuclid(a,b):
    """Compute the gcd d of two integers a and b together with
    integer coefficients x and y such that d = ax + by.
    Ouput the triple [d,x,y]."""
# Initialization
    if a < 0:
            r0 = -a
            v = -1 # keep sign
    else:
            r0 = a
            v}=
    if b < 0:
        r1 = -b
        W = -1 # keep sign
    else:
        r1 = b
        w = 1
    x0 = 1
    x1 = 0
    y0}=
    y1 = 1
# Extended division chain
    while r1 > 0:
        q = r0//r1
        r = r0 - q * r1
        x = x0 - q* x1
        y = y0 - q * y1
# Here we have r0 = |a|*x0+|b|*y0, r1 = |a|*x1+|b|*y1, r = |a|*x+|b|*y.
        r0 = r1
        r1 = r
        x0 = x1
        x1 = x
        y0}=\textrm{y}
        y1 = y
# Finalization
    d = r0
    x = v * x0
    y = w * y0
    return [d,x,y]
```


A. 2 Get the List of x-values for $\left(\mathbf{A}_{2}^{\prime}\right)$

```
def a2prime(m,b):
    """Compute the list of all x-values of indecomposable solutions of
    x + by = 0 (mod m)."""
    xlist = [m]
    r = m
    s = b % m
    while s > 0:
        q=r // s
        for i in range(q):
            r = r-s
            xlist.append(r)
        if r > 0:
            s = s % r
        else:
            s = 0
    if r > 0:
        xlist.append(0)
    return xlist
```


A. 3 Compute the Table of $A(m, b)$

In this program, as well as in the following ones, we access the command line parameters sys.argv by including the line import sys.

```
r = int(sys.argv[1]) # number of rows
s = int(sys.argv[2]) # number of columns
actlst = [2]*(s+1) # worklist for actual row
A = [[], actlst] # dummy row 0 plus first row
for m in range(2,r+1):
    actlst = actlst[0:] # generate new copy
    actlst[0] = 2
    for b in range (1,m):
        actlst[b] = 1 + A[m-b] [b] # quasi-periodicity
    for b in range (m,s+1):
        actlst[b] = actlst[b-m] # periodicity
    A.append(actlst)
del A[0] # remove dummy row
print(A)
```


A. 4 Compute $A(m, b)$ Directly

```
m = int(sys.argv[1]) # module
b = int(sys.argv[2]) # coefficient
r = m
s = b%m
sum = 1
i = 0
while s > 0: # Euclidean step
    i += 1
    q = r//s
    t = r%s
    if i%2 ==1: # i is odd
        sum += q
    r = s
    s = t
if i%2 == 0: # i is even
    sum += 1
print("A(m,b):", sum)
```

```
A. }5\mathrm{ Solve (A'_
m = int(sys.argv[1]) # module
b = int(sys.argv[2]) # coefficient
xlist = [m] # list of x-values
r = m
s = b % m
while s > 0:
    q=r // s
    for i in range(q):
        r = r-s
        xlist.append(r)
    if r > 0:
        s = s % r
    else:
        s = 0
if r > 0:
    xlist.append(0)
xylist = [] # list of solution pairs
for x in xlist:
    go_on = True
    if x == 0:
        y = 1
    else:
        y = 0
    while go_on:
        if (x + b*y) % m == 0:
            y = t
            go_on = False
        else:
            y += 1
    xylist.append([x,y])
print(xylist)
```

```
A.6 Solve (A2)
m = int(sys.argv[1])
a = int(sys.argv[2])
b = int(sys.argv[3])
gcd = eEuclid(a,m)
dprime = eEuclid(d,b)[0]
c = gcd[1]
mprime = m//d
aprime = a//d
bprime = c * ((b//dprime) % mprime)
xlist = a2prime(mprime,bprime)
xylist = []
for x in xlist:
    go_on = True
    if x == 0:
        y = 1
    else:
        y = 0
    while go_on:
        if (a*x + b*y) % m == 0:
            go_on = False
        else:
            y += 1
    xylist.append([x,y])
print(xylist)
```


References

[1] L. E. Dickson: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35 (1913), 413-422.
[2] K. Pommerening: A remark on subsemigroups (Dickson's lemma). Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/Dickson.pdf
[3] K. Pommerening: The Euclidean algorithm. Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/Euclid.pdf
[4] K. Pommerening: The indecomposable solutions of linear congruences. (in preparation) Online:
http://www.staff.uni-mainz.de/pommeren/MathMisc/LinCong.pdf
[5] O. Riemenschneider: Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann. 209 (1974), 211-248.
[6] O. Riemenschneider: Die Invarianten der endlichen Untergruppen von $G L(2, \mathbb{C})$. Math. Z. 153 (1977), 37-50.
[7] M. F. Tinsley: Permanents of cyclic matrices. Pacific J. Math. 10 (1960), 10671082.

