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The subject of this article is the linear Diophantine equation

(E) a1x1 + · · ·+ anxn = 0

whose coefficients ai are integers, a = (a1, . . . , an) ∈ Zn, and whose solutions should be
non-negative integers, x = (x1, . . . , xn) ∈ Nn.

Note that in this article N stands for the numbers {0, 1, 2, . . .}, and Nk for
{k, k + 1, . . .}. Think of 0 as being the most natural number.

The solutions form a subsemigroup of Nn that is finitely generated and has a uniquely
determined system of generators consisting of the indecomposable (or minimal non-zero)
solutions [18], see also Remark 2 after Theorem 1 below. Thus the general goal is the
determination of all indecomposable solutions, with the partial tasks:

(I) Find bounds for the coordinates of the indecomposable solutions that are as strong
as possible.

(II) Find an algorithm that constructs all indecomposable solutions and is as efficient
as possible.

(III) Determine the number of indecomposable solutions, at least give good estimates of
this number.

The article [21] treats the linear congruence in an analogous way.
For applications in combinatorics see [25], [26],[4], and [10], for applications to non-

unique factorization in commutative algebra see [9], for applications in logic see [27], for
applications in invariant theory see [20]. There are even applications in chemistry [16],
electrical engineering [23], and computer science [1].
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Notation

We equip Nn with the (partial) order relation

x ≤ y ⇔ y − x ∈ Nn

and use the norms

‖x‖1 = x1 + · · ·+ xn, ‖x‖∞ = max{|x1|, . . . , |xn|},

for a vector x = (x1, . . . , xn) ∈ Rn, the notation

supp(x) := {i = 1, . . . , n | xi 6= 0}

for its support, and
σ(x) := # supp(x).

for the cardinality of its support, called the width of x. We abbreviate

λ(x) := x1 + · · ·+ n · xn

and call it the weight of x. Moreover we call

• ‖x‖1 = |x1|+ · · ·+ |xn| the length (sometimes [12] also called the degree—this is
also the length of the associated multiset [24]),

• ‖x‖∞ the height,

• ‖x‖1 + σ(x) the total size (= length + width)

of x. Clearly in N, for a vector x ∈ Nn,

σ(x) =
∑
xi 6=0

1 ≤
∑
xi 6=0

xi = ‖x‖1 ≤
∑
xi 6=0

i · xi = λ(x).

We denote the canonical unit vectors in Rn by e1, . . . , en, that is ei = (δij)1≤j≤n, or
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . .

Trivial Cases

The case n = 1: If the coefficient a ∈ Z is zero, the solution set is N, and the unique
indecomposable solution is 1. If a 6= 0, the solution set consists of 0 only, and the set of
indecomposable solutions is empty.

More generally:

Proposition 1 Let a ∈ Zn and I0 = {i = 1, . . . , n | ai = 0}. Then for (E):

(i) If I0 = {i = 1, . . . , n}, then the indecomposable solutions are the n unit vectors
e1, . . . , en.
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(ii) If #I0 = n − 1, that is ai 6= 0 for exactly one index i, then the indecomposable
solutions are the n− 1 unit vectors ej for j 6= i.

(iii) If I0 = ∅ and all the coefficients ai have the same sign (+ or −), then 0 is the only
solution in Nn.

(iv) Every solution x ∈ Nn directly decomposes into two parts:

(xi)i∈I0 ∈ N#I0 arbitrary

and a solution of the remaining Diophantine equation∑
i 6∈I0

aixi = 0 .

Proof. Trivial. 3

Because of (iii) we usually assume that some coefficients in (E) are positive and
some are negative (and maybe some are zero). Because of (iv) we often assume that all
coefficients ai are non-zero.

The next elementary case to consider is n = 2. Here is the result:

Proposition 2 Let a, b ∈ Z, a, b 6= 0. Assume a > 0 and b < 0. Then the only indecom-
posable solution of the equation ax+ by = 0 is (− b

d ,
a
d) where d = gcd(a, b).

Proof. Clearly this is a solution. On the other hand if (x, y) is a solution, then using that
a
d is coprime with b we conclude that a

d | y, and likewise b
d |x, hence (x, y) ≥ (− b

d ,
a
d). 3

1 Outline of a Naive Algorithm

Let n ∈ N1, a = (a1, . . . , an) ∈ Zn. In the literature we find several algorithms for
constructing all indecomposable solutions x ∈ Nn of the linear equation (E), see for
example [6, 14, 3, 5, 22, 7, 17, 16, 2]. An obvious algorithm is:

1. Given a finite subset D ⊆ Nn that is guaranteed to contain all indecomposable
solutions, enumerate all vectors > 0 in D.

2. Test each vector whether it satisfies (E) to get the list of all solutions > 0 in D.

3. Eliminate all vectors from the list that are not minimal.

The first goal is to find a suitable set D, see Section 2. Note that a description of D
by inequalities makes the solution of (E) accessible to the methods of integer linear
programming. Unfortunately linear programming algorithms are not good at finding all
indecomposable solutions.
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A first candidate subset D ⊆ Nn is provided by Huet’s bound [14] that implies that
‖x‖∞ ≤M := ‖a‖∞ for each indecomposable solution of (E):

D = {x ∈ Nn | ‖x‖∞ ≤M}.

For a proof see Corollary 1 of Theorem 1 below. For this subset D step 1 of the naive
algorithms consists of enumerating all integer vectors x in the hypercube [0,M ]n ⊆ Rn.
This is done by the Python routine dlist0 in Appendix A.1. The algorithm is in Ap-
pendix A.2. It is called in the form

solve_E_0.py <coefficients>

For the example:

2x1 − 3x2 + x3 + 0x4 + 4x5 − 2x6 = 0 (with n = 6, M = 4)

the call

solve_E_0.py 2 -3 1 0 4 -2

yields the result

[0,0,0,0,1,2], [0,0,0,1,0,0], [0,0,2,0,0,1], [0,1,1,0,1,1],

[0,1,3,0,0,0], [0,2,0,0,2,1], [0,2,2,0,1,0], [0,3,1,0,2,0],

[0,4,0,0,3,0], [1,0,0,0,0,1], [1,1,1,0,0,0], [1,2,0,0,1,0],

[3,2,0,0,0,0]

This naive algorithm is extremely inefficient. A call with n = 10, M = 5 already requires
an excessive amount of computing power. The obvious approach to get a faster algorithm
is to search for tighter bounds for the indecomposable solutions.

2 Bounds for Indecomposable Solutions

A result similar to Tinsley’s for the linear congruence, see [21], is Lambert’s bound for the
indecomposable solutions of the linear Diophantine equation (E). We prove a stronger
version, together with a different bound by Sissokho [24], following the approach of [24].

The linear Diophantine equation (E) is completely specified by the coefficient vector
a = (a1, . . . , an) ∈ Zn with n ≥ 1. For this we define a setting consisting of

P = {i | ai > 0}, N = {i | ai < 0}, p = #P, r = #N,

A∞ = max{ai | i ∈ P}, B∞ = max{−ai | i ∈ N}, M = max{A∞, B∞} = ‖a‖∞.

Depending on a we define for a vector x ∈ Nn

x+ = (xi)i∈P ∈ Np, x− = (xi)i∈N ∈ Nr,

supp+(x) = {ai | i ∈ P, xi 6= 0}, supp−(x) = {−ai | i ∈ N, xi 6= 0},
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σ+(x) = # supp+(x), σ−(x) = # supp−(x), α(x) =
∑
i∈P

aixi.

In the example above we have a = (2,−3, 1, 0, 4,−2), hence

P = {1, 3, 5}, N = {2, 6}, p = 3, r = 2,

A∞ = 4, B∞ = 3, M = 4,

x+ = (x1, x3, x5), x− = (x2, x6).

For the indecomposable solution x = (0, 3, 1, 0, 2, 0) we have

supp+(x) = {a3, a5} = {1, 4}, σ+(x) = 2,

supp−(x) = {a2} = {3}, σ−(x) = 1,

‖x+‖1 = x1 + x3 + x5 = 3, ‖x−‖1 = x2 + x6 = 3,

‖x+‖1 · ‖x−‖1 = 9, α(x) = a1x1 + a3x3 + a5x5 = 0 + 1 + 8 = 9.

All indecomposable solutions have ‖x+‖1 ≤ 3. Only the solution x = (0, 4, 0, 0, 3, 0) has
‖x−‖1 = 4, and all the other indecomposable ones have ‖x−‖1 ≤ 3.

This example illustrates the following theorem:

Theorem 1 Let a ∈ Zn with n ≥ 1, and assume that p ≥ 1 and r ≥ 1, thus there are
positive and negative coefficients in (E). Then for all indecomposable solutions x ∈ Nn
of (E):

(i) (Lambert)
‖x+‖1 ≤ B∞ and ‖x−‖1 ≤ A∞.

(ii) If ‖x+‖1 = B∞, then supp−(x) = {B∞}, in particular σ−(x) = 1. If ‖x−‖1 = A∞,
then supp+(x) = {A∞}, in particular σ+(x) = 1.

(iii) (Sissokho)
‖x+‖1 · ‖x−‖1 ≤ α(x).

Proof. A permutation of the indices doesn’t affect the statements of the theorem. Thus
we may assume that

P = {1, . . . , p} and N = {p+ 1, . . . ,m}

where m = p + r. Then x+ = (x1, . . . , xp) ∈ Np, x− = (xp+1, . . . , xm) ∈ Nr, and
‖x‖1 = ‖x+‖1 + ‖x−‖1 + xm+1 + · · ·+ xn. We may even assume that

1 ≤ a1 ≤ . . . ≤ ap and 1 ≤ b1 := −ap+1 ≤ . . . ≤ br := −am,

and then A∞ = ap, B∞ = br. The equation (E) boils down to

a1x1 + · · ·+ apxp = b1xp+1 + · · ·+ brxm.
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We prove all three statements (i), (ii), and (iii) together by induction on ‖x‖1 for all
coefficient vectors a ∈ Ns (with any s) at the same time, and for minimal solutions x.

If ‖x‖1 = 1, then x is a unit vector, x = ei for some index i, and necessarily xi must
have coefficient ai = 0 in (E). Hence i > m, x+ = 0, x− = 0, σ+(x) = σ−(x) = 0,
and assertions (i) and (iii) are trivial. The preconditions in (ii), ‖x+‖1 = B∞ ≥ 1 or
‖x−‖1 = A∞ ≥ 1, are false, hence (ii) is true.

Now we assume that ‖x‖1 ≥ 2. If x has coefficients xi 6= 0 only for i > m, then
again there is nothing to prove. Hence we may assume that xi 6= 0 for at least one index
i ∈ P , and then necessarily also for at least one index i ∈ N (or vice versa). Hence both
‖x+‖1, ‖x−‖1 ≥ 1, and necessarily xi = 0 for i > m by the minimality of x.

In the special case of a pair (i, j) ∈ P × N of indices with ai = −aj and xi > 0,
xj > 0 we have the non-zero solution ei + ej ≤ x, hence = x, and ‖x+‖1 = ‖x−‖1 = 1,
σ+(x) = σ−(x) = 1, thus (i) and (iii) are trivial. The first condition in (ii), ‖x+‖1 = B∞,
implies B∞ = 1, hence b1 = . . . = br = 1, hence supp−(x) = {1} = {B∞}, and the first
statement of (ii) is true. The analogous reasoning holds for the second statement, so also
(ii) is proved in this special case.

Otherwise we have
{a1, . . . , ap} ∩ {b1, . . . , br} = ∅.

We may assume (without loss of generality) that xp, xm > 0 and ap > br. We consider
the modified equation

(E’) (ap− br)u0 +a1u1 + · · ·+apup = b1v1 + · · ·+ brvr

that has the solution x′ = (1, x1, . . . , xp−1, xp − 1, xp+1, . . . , xm−1, xm − 1), and this
solution is minimal > 0:

Suppose that we have a solution y ≤ x′ of (E’). Then y has the form

y = (u0, u1, . . . , up, v1, . . . , vr)

where u0 ≤ 1. The assumption u0 = 0 makes (u1, . . . , up, v1, . . . , vr, 0, . . . , 0)
a solution of (E) and < x, hence = 0, thus y = 0. If u0 = 1, then

(ap − br) + a1u1 + · · ·+ apup = b1v1 + · · ·+ brvr,

a1u1 + · · ·+ ap(up + 1) = b1v1 + · · ·+ br(vr + 1),

and from y ≤ x′ we conclude that ui ≤ xi for 1 ≤ i < p, up ≤ xp − 1 or
up + 1 ≤ xp, and vi ≤ xp+i for 1 ≤ i < r, vr ≤ xm − 1 or vr + 1 ≤ xm.
The minimality of x enforces that all these inequalities are equalities, and
therefore y = x′.

Now ‖x′‖1 = ‖x‖1 − 1, and by induction the statements (i)–(iii) hold for x′ and (E’).
Moreover ‖x′+‖1 = ‖x+‖1 and ‖x′−‖1 = ‖x−‖1 − 1. Hence by (i) and (iii)

(1) ‖x+‖1 ≤ br, ‖x−‖1 − 1 ≤ ap,
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(2) ‖x+‖1 · (‖x−‖1 − 1) ≤ (ap − br) + a1x1 + · · ·+ ap−1xp−1 + ap(xp − 1) = α(x)− br.

From Formula (2) and br‖x−‖1 ≥ b1xp+1 + · · ·+ brxm = α(x) we get

α(x) · ‖x−‖1 − br‖x−‖1 ≤ α(x) · ‖x−‖1 − α(x),

(α(x)− br)‖x−‖1 ≤ α(x) · (‖x−‖1 − 1),

‖x+‖1 · (‖x−‖1 − 1) · ‖x−‖1 ≤ α(x) · (‖x−‖1 − 1).

If ‖x−‖1 = 1, then ‖x+‖1 · ‖x−‖1 = ‖x+‖1 ≤ α(x), so we are done with (iii). Otherwise
dividing by ‖x−‖1 − 1 yields (iii).

In Formula (1) we might have ‖x−‖1 − 1 = ap. Statement (ii) for (E’) implies
supp+(x′) = {ap}, thus xi 6= 0 for i ∈ P only if ai = ap, and necessarily the addi-
tional coefficient ap − br (with x′-coordinate 1) must be 0, contradicting ap > br. Hence
‖x−‖1 − 1 ≤ ap − 1, and the proof of (i) is complete.

For (ii) first assume that ‖x+‖1 = B∞ = br. Then

brxp+1 + · · ·+ brxm = br · ‖x−‖1 = ‖x+‖1 · ‖x−‖1 ≤ α(x) = b1xp+1 + · · ·+ brxm.

Hence xi 6= 0 for i ∈ N only if bi = br. Since we didn’t use the inequality br < ap the
analogous reasoning shows that ‖x−‖1 = ap implies that xi 6= 0 for i ∈ P only if ai = ap.
3

In particular the linear Diophantine equation (E) has only finitely many indecom-
posable solutions. A coarser bound is:

Corollary 1 (Huet) For each indecomposable solution x of (E) we have ‖x‖∞ ≤ ‖a‖∞.

Proof. By the theorem each single coordinate xi is bounded by A∞ or by B∞, hence by
‖a‖∞. 3

The number of vectors x ∈ Nr with ‖x‖1 ≤ q equals the number of ways to put up
to q balls into r (distinguishable) urns, or the number of ways to put exactly q balls into
r + 1 urns, that is (

q + r

r

)
.

Thus Lambert’s bound gives a coarse upper bound for the number of indecomposable
solutions: (

B∞ + p

p

)
possibilities for the partial vector (xi)i∈P ,(

A∞ + r

r

)
possibilities for the partial vector (xi)i∈N ,

plus the n− p− r solutions ei for i ∈ {1, . . . , n} − P −N . The total is:
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Corollary 2 The number of indecomposable solutions of (E) is at most(
B∞ + p

p

)
+

(
A∞ + r

r

)
+ n− p− r.

Clearly each indecomposable solution x has ‖x‖1 ≤ A∞ + B∞. Thus we get the
coarser bound:

Corollary 3 Let C = A∞ + B∞. Then the number of indecomposable solutions of (E)
is at most (

n+ C

n

)
=

1

n!
Cn + O(Cn−1).

Remarks

1. The usual measure of the size of an integer is bitlength `(C) = 1 + blog2Cc. Thus
the bound in the corollary is exponential in `(C) as well as in n.

2. The qualitative statement of the theorem—the number of indecomposable so-
lutions is finite—didn’t use Dickson’s lemma [18]. With the weaker bound
‖x‖∞ < n · ‖a‖∞ the result was known already in the 19th century, see
[8, Chap. VI, No. 97] or [6].

3 More Efficient Algorithms

Using the bound from Theorem 1 (i) we speed up the naive algorithm from Section 1.
We find all indecomposable solutions of (E) by the following steps:

1. Set P = {i | ai > 0}, N = {i | ai < 0}, Z = {i | ai = 0}, p = #P , r = #N .

2. Set A = max{ai | i ∈ P}, B = max{−aj | j ∈ N}.

3. Initialize the list sollist of solutions by listing the trivial solutions ei with i ∈ Z.

4. Construct lists

(a) xlist of all vectors x ∈ Np − {0} with x1 + · · ·+ xp ≤ B,

(b) ylist of all vectors y ∈ Nr − {0} with y1 + · · ·+ yr ≤ A.

5. Construct a candidate list dlist by combining each vector in xlist with each
vector in ylist.

6. For each x in dlist check (E). In the positive case append x to sollist.

7. Reduce sollist to its minimal elements.
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For Python code see Appendix A.3. It uses the auxiliary routines dlist1 that lists
the integer elements in a simplex, smaller that compares two vectors, and minelts that
eliminates all non-minimal elements from a list of vectors from Appendix A.1.

The program works fine for n and C = A + B up to about 10, but leaves ample
prospects for optimization. Here are two sample results:

• 0x1 + 1x2 + 2x3 + 3x4 + 0x5 − 1x6 − 2x7 − 3x8 (with n = 8, C = 6). Called as

solve_E_1.py 0 1 2 3 0 -1 -2 -3

the result is the following 15 indecomposable solutions:

[1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,1],

[0,0,0,1,0,1,1,0], [0,0,0,1,0,3,0,0], [0,0,0,2,0,0,3,0],

[0,0,1,0,0,0,1,0], [0,0,1,0,0,2,0,0], [0,0,2,0,0,1,0,1],

[0,0,3,0,0,0,0,2], [0,1,0,0,0,1,0,0], [0,1,0,1,0,0,2,0],

[0,1,1,0,0,0,0,1], [0,2,0,0,0,0,1,0], [0,3,0,0,0,0,0,1]

• 2x1 − 3x2 + x3 + 4x4 − 2x5 (with n = 5, C = 7) yields the result

[0,0,0,1,2], [0,0,2,0,1], [0,1,1,1,1], [0,1,3,0,0], [0,2,0,2,1],

[0,2,2,1,0], [0,3,1,2,0], [0,4,0,3,0], [1,0,0,0,1], [1,1,1,0,0],

[1,2,0,1,0], [3,2,0,0,0]

Sissokho’s bound leads to a further improvement of the algorithm:

1. Set P = {i | ai > 0}, N = {i | ai < 0}, Z = {i | ai = 0}, p = #I, r = #J .

2. Set A = max{ai | i ∈ P}, B = max{−aj | j ∈ N}.

3. Initialize the list sollist of solutions by listing the trivial solutions ei with i ∈ Z.

4. Construct lists

(a) xlist of all vectors x ∈ Np − {0} with ‖x‖1 = x1 + · · ·+ xp ≤ B.
For each vector x in xlist calculate A′ = bα(x)/‖x‖1c.
If A′ < A, set A(x) = A′, otherwise set A(x) = A and store A(x).

(b) ylist of all vectors y ∈ Nr − {0} with ‖y‖1 = y1 + · · ·+ yr ≤ A.
For each vector y in ylist store ‖y‖1.

5. Construct a candidate list dlist by combining each vector x in xlist with each
vector y in ylist that satisfies ‖y‖1 ≤ A(x).

6. For each z in dlist check (E). In the positive case append z to sollist.

7. Reduce sollist to its minimal elements.
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For Python code see Appendix A.4. The improvement allows to increment the pa-
rameters n, A, and B roughly by 1 and still have a tolerable runtime.

The following table compares runtimes of the algorithms from Sections 1 (column
“naiv”), 3 using Lambert’s bound (column “lamb”), and 3 using Sissokho’s bound too
(column “siss”), where M = max{A,B} = n. The entries represent seconds on a typical
desktop computer for a typical instance, where “0” means < 0.0005 or immediate output,
“0.00” means < 0.005, and “—” means more than 10 minutes or “forget it”.

M naiv lamb siss

2 0 0 0
3 0.01 0.00 0.00
4 1.47 0.03 0.01
5 — 0.45 0.11
6 — 7.32 1.17
7 — 152.03 14.32
8 — — 163.55
9 — — —

4 Reduction to Normal Form

Let a ∈ Zn and set q := ‖a‖∞ = max{|a1|, . . . , |an|}. For r = −q, . . . , 0, . . . , q let

Ir := {i = 1, . . . , n | ai = r}

be the set of all indices where the coefficient equals r. Hence

{1, . . . , n} =

q⋃
r=−q

Ir .

Note that some of the sets Ir may be empty. Consider the homomorphism of Z-modules

Φa : Zn −→ Z2q+1, (x1, . . . , xn) 7→ (y−q, . . . , y−1, y0, y1, . . . , yq),

where
yr :=

∑
i∈Ir

xi for r = −q, . . . , 0, . . . , q .

Its image is
Φa(Zn) = {(yr)−q≤r≤n | yr = 0 if Ir = ∅}.

Furthermore we consider the homomorphism (not the α from Theorem 1)

α : Zn −→ Z, α(x) = a1x1 + · · ·+ anxn.
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Remarks

1. The semigroup Nn ∩ kerα is the solution set of (E) for the given coefficient vector
a ∈ Nn. The minimal elements > 0 of kerα are the indecomposable solutions of
(E).

2. For x ∈ Nn we have ‖Φa(x)‖1 = ‖x‖1.

Reduction to a Special Case

As a special case we consider the homomorphism

ρ : Z2q+1 −→ Z, y = (y−q, . . . , yq) 7→
q∑

r=−q
ryr = −qy−q + · · ·+ qyq.

Then for x ∈ Nn

ρ(Φa(x)) =

q∑
r=−q

r ·
∑
i∈Ir

xi =

q∑
r=−q

∑
i∈Ir

rxi =

q∑
r=−q

∑
i∈Ir

aixi =
n∑
i=1

aixi = α(x).

This proves the first part of

Lemma 1 (i) ρ ◦ Φa = α.

(ii) The preimage of y ∈ Φa(Zn) is Φ−1a (y) = {x |
∑

i∈Ir = yr for all r}.

(iii) Φa(Zn) ∩ ker ρ = Φa(kerα).

Proof. (ii) is trivial.
(iii) From (i) we conclude that α(x) = 0⇐⇒ ρ(Φa(x)) = 0. Hence Φa(kerα) ⊆ ker ρ.

On the other hand for y ∈ Φa(Zn) we choose a preimage x by (ii), and y ∈ ker ρ implies
x ∈ kerα by (i). Thus y ∈ Φa(kerα). 3

A commutative diagram visualizes statement (i) of Lemma 1:

Zn

Z

-Φa

�
�

�	

@
@
@R

Z2q+1

α ρ

Let M′q be the set of indecomposable solutions y = (y−q, . . . , y0, . . . , yq) ∈ N2q+1 of
the special equation

(D′q) − q · y−q − · · · − 1 · y−1 + 0 · y0 + 1 · y1 + · · ·+ q · yq = 0 ,
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or in other words, the set of minimal elements > 0 of ker ρ. For each y ∈M′q choose an
arbitrary x ∈ Nn ∩ Φ−1a (y), that is with∑

i∈Ir

xi = yr for r = −q, . . . , 0, . . . , q .

Clearly then 0 = ρ(y) = ρ(Φa(x)) = α(x), thus x is a solution of (E) in Nn − {0}, and
is minimal. Each minimal solution x is obtained in this way.

Corollary 1 The set Nn ∩Φ−1a (M′q) consists exactly of the indecomposable solutions of
(E).

Applying Proposition 1 (iv) to (D′q) we conclude that each y ∈ M′q has one of the
forms

• y0 = 1, y−q = · · · = y−1 = y1 = · · · = yq = 0,

• y0 = 0, and (y−q, . . . , y−1, y1, . . . , yq) ∈ N2q with y−i = xi for 1 ≤ i ≤ q is an
indecomposable solution of the equation

(Dq) 1 · x1 + · · ·+ q · xq = 1 · y1 + · · ·+ q · yq .

We denote the set of indecomposable solutions of (Dq) by Mq.
In summary the equation (E) is reduced to the special case where all coefficients

ai are different and non-zero. Note that “duplicate” coefficients might occur in some
situations in a natural way: for example when the coefficients are not known a priori but
result from intermediary computations of a comprehending algorithm.

Normal Forms

For the general case of (E) consider the sets J+ of values r > 0 with Ir 6= ∅, and J− of
values r > 0 with I−r 6= ∅. Then

P =
⋃
r∈J+

Ir and N =
⋃
r∈J−

Ir.

The solution of (E) is reduced to the equation

(Dq(J))
∑
r∈J−

r · zr =
∑
r∈J+

r · yr .

Call the equations (Dq(J)) for all sets J = J+ ∪ (−J−) with subsets J+, J− ⊆ {1, . . . , q}
the normal forms of linear Diophantine equations. Let Mq(J) be the set of indecom-
posable solutions of (Dq(J)). Then we have shown (see also [3]):

Proposition 3 All indecomposable solutions x of (E) arise in one of the two following
ways (where q = ‖a‖∞):
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(i) For i ∈ I0 set xi = 1, and xj = 0 for j 6= i.

(ii) For each (z, y) ∈ Mq(J) where y = (yr)r∈J+ and z = (zr)r∈J− choose xi ∈ N for
i ∈ I−q ∪ · · · ∪ I−1 ∪ I1 ∪ · · · ∪ Iq with∑

i∈Ir

xi = z−r for r = −q, . . . ,−1 and
∑
i∈Ir

xi = yr for r = 1, . . . , q.

Remark 3 If in (ii) we set x+ = (xi)i∈P and x− = (xi)i∈N , then

‖x+‖1 = ‖y‖1 and ‖x−‖1 = ‖z‖1.

Moreover ∑
i∈P

aixi =
∑
r∈J+

ryr =
∑
r∈J−

r · zr =
∑
i∈N

(−ai)xi.

The Standard Equation

For a subset I ⊆ {1, . . . , q} consider the embedding

τI : NI −→ Nq, (xi)i∈I 7→ x̄,

that consists of filling up the positions different from I with zeros, that is

x̄ = (x̄1, . . . , x̄q) where x̄i =

{
xi for i ∈ I,
0 otherwise.

Then clearly (x, y) is a solution of (Dq(J)) if and only if (τJ−(x), τJ+(y)) is a solution of
(Dq), and (x, y) is an indecomposable solution of (Dq(J)) if and only if (τJ−(x), τJ+(y))
is an indecomposable solution of (Dq). In other words, the natural embedding

(τJ− , τJ+) :Mq(J) −→Mq

is a bijection withMq ∩ (τJ− , τJ+)(NJ− ×NJ+). Therefore the following procedure gives
all indecomposable solutions of (Dq(J)) under the assumption that the complete setMq

of indecomposable solutions of (Dq) is known:

• Remove the vectors from Mq that have at least one non-zero entry at an index
not belonging to J− or J+.

• From the remaining vectors remove the (zero) components for indices not belonging
to J− or J+.

This finally reduces the search for the indecomposable solutions of (E) to the special
case (Dq), and justifies calling (Dq) the standard linear Diophantine equation for
the parameter q.

From a theoretical standpoint the breakdown of the general case of (E) to an instance
of a well-arranged set of standard cases (Dq) might seem interesting. Unfortunately this
reduction does not result in an essential reduction in complexity. It doesn’t make it much
easier to find all indecomposable solutions nor does it help much with counting them.
But we may hope that results for the special case generalize in a useful way.
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5 Examples

We consider the standard equation

(Dq) x1 + · · ·+ qxq = y1 + · · ·+ qyq .

For convenience (in the present context) we often write vectors (x, y) ∈ Nq × Nq in the
form

(3)

(
x1 . . . xq
y1 . . . yq

)
and use the linear form (the weight)

λ : Zq −→ Z, (z1, . . . , zq) 7→
q∑
i=1

i · zi = z1 + · · ·+ qzq .

Let us start with the simple example q = 1. The Diophantine equation is x1 = y1.
The unique indecomposable solution is (

1
1

)
.

For q = 2 the equation is x1 + 2x2 = y1 + 2y2, and we immediately find the indecom-
posable solutions (

1 0
1 0

)
and

(
0 1
0 1

)
.

Hence every other indecomposable solution has at least one of the coordinates x1 or y1
zero, likewise one of x2 or y2. These conditions only leave the possibilities (see Proposi-
tion 2) (

2 0
0 1

)
and

(
0 1
2 0

)
.

As a first non-trivial case we take q = 3. The following 9 indecomposable solutions
have exactly two non-zero coordinates:(

1 0 0
1 0 0

)
,

(
2 0 0
0 1 0

)
,

(
3 0 0
0 0 1

)
,

(
0 1 0
2 0 0

)
,

(
0 1 0
0 1 0

)
,

(
0 3 0
0 0 2

)
,

(
0 0 1
3 0 0

)
,

(
0 0 2
0 3 0

)
,

(
0 0 1
0 0 1

)
.

Every other indecomposable solution has at least 3 coordinates 6= 0, and a 0 in each
column. The possible patterns are (up to interchanging x and y):(

∗ 0 0
0 ∗ ∗

)
,

(
0 ∗ 0
∗ 0 ∗

)
,

(
0 0 ∗
∗ ∗ 0

)
.
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In the first case we conclude that x1 = 2y2 + 3y3 ≥ 5, hence

(x, y) >

(
2 0 0
0 1 0

)
,

thus the first pattern doesn’t support an indecomposable solution. In the second case
2x2 = y1 +3y3 ≥ 4, and in the third case 3x3 = y1 +2y2 ≥ 3. The remaining possibilities
yield the indecomposable solutions(

0 2 0
1 0 1

)
and

(
0 0 1
1 1 0

)
, and by symmetry

(
1 0 1
0 2 0

)
and

(
1 1 0
0 0 1

)
.

6 Simple Remarks

The observations in the examples of Section 5 lead to some simple general remarks:

Lemma 2 Let q ≥ 2.

(i) For i = 1, . . . q the vector (ei, ei) is an indecomposable solution of (Dq).

(ii) All other indecomposable solutions (x, y) have xiyi = 0 for all i, that is, every
column of the matrix (3) contains at most one non-zero entry.

(iii) The indecomposable solutions with exactly two non-zero coordinates are the

uij =
1

gcd(i, j)
(jei, iej) for i, j = 1, . . . q

including the (ei, ei) = uii for i = 1, . . . q.

Proof. (i) is trivial.
(ii) Otherwise (x, y) ≥ (ei, ei).
(iii) See Proposition 2. 3

Remark 1 The indecomposable solutions (x, y) of (Dq−1) canonically yield indecom-
posable solutions of (Dq) by appending a zero as last coordinate to each of x and
y. All the other indecomposable solutions of (Dq) have the form(

. . . a

. . . b

)
where at least one of a and b is > 0. They fall into one of three cases:

1. a = 0, b ∈ {1, . . . , q},
2. b = 0, a ∈ {1, . . . , q},
3. a > 0 and b > 0—there is exactly one indecomposable solution of this type:

(eq, eq) = uqq.
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The article [21] treats the standard congruence

(Cq) x1 + · · ·+ (q − 1)xq−1 ≡ 0 (mod q).

It has a connection with the present context:

Proposition 4 The indecomposable solutions (x, y) of (Dq) with y = keq (k > 0) are

(i) (eq, eq).

(ii) (x, y) where x = (x′, 0) with x′ ∈ Nq−1 an indecomposable solution of (Cq) and
λ(x′) = kq.

Proof. Let (x, y) be an indecomposable solution of (Dq) with y = keq, and
(x, y) 6= (eq, eq). Then xq = 0 and λ(x) = λ(y) = kq ≡ 0 (mod q), hence
x′ = (x1, . . . , xq−1) is a solution of (Cq) with λ(x′) = λ(x) = kq. Let u ∈ Nq−1 be a
solution of (Cq) with 0 < u ≤ x′. Then

λ(u) = u1 + · · ·+ (q − 1) · uq−1 ≡ 0 (mod q), hence = lq for some l ∈ N.

Since λ(u) ≤ λ(x′) = λ(x) we have l ≤ k. Thus ((u, 0), leq) is a solution ≤ (x, y) of (Dq).
We conclude that u = x′, thus x′ is indecomposable.

For the reverse direction assume that x′ ∈ Nq−1 is an indecomposable solution of
(Cq), and x′1 + · · ·+ (q − 1) · x′q−1 = lq. Then

(x, y) = ((x′1, . . . , x
′
q−1, 0), (0, . . . , 0, l)) ∈ Nq × Nq

is a solution of (Dq). Let (u, v) ≤ (x, y) be a possibly smaller non-zero solution of (Dq).
Then 0 ≤ ui ≤ x′i for i = 1, . . . , q − 1, uq = 0, and

u1 + · · ·+ (q − 1) · uq−1 = λ(u) = λ(v) = q · vq ≡ 0 (mod q).

Hence u′ = (u1, . . . , uq−1) is a solution of (Cq) and ≤ x′, hence u′ = x′, (u, v) = (x, y),
and l = k. 3

Remark 2 Each solution (x, y) of (Dq) consists of a pair of partitions of the same
number r = x1 + · · ·+ qxq = y1 + · · ·+ qyq into pieces of size ≤ q, namely x1 pieces
of size 1, . . . , xq pieces of size q, same for y. This suggests yet another universal
way to construct indecomposable solutions: Fix r ∈ {1, . . . , q} and set yr = 1,
yj = 0 else. Then solve x1 + · · · + qxq = r; each solution corresponds to a unique
partition of r and yields an indecomposable solution (x, y) of (Dq). Let P be the
partition function (number of partitions of its argument). Then in particular there
are exactly P (q) solutions of each of the types (eq, y) or (x, eq) where x or y is a
partition of q.

Application of Theorem 1 to the standard equation (Dq) yields:
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Proposition 5 Let q ≥ 2 and (x, y) be an indecomposable solution of (Dq). Then:

(i) ‖x‖1 ≤ q and ‖y‖1 ≤ q.

(ii) If ‖x‖1 = q, then (x, y) = uiq for some index i < q, coprime with q. Likewise if
‖y‖1 = q, then (x, y) = uqj for some index j < q, coprime with q.

(iii) ‖x‖1 · ‖y‖1 ≤ λ(x) = λ(y).

Proof. (i) and (iii) are immediate consequences. So we only need to prove the statement
(ii) for ‖y‖1 = q. Theorem 1 yields xi = 0 except for ai = q, that is i = q. Hence x = jeq
for some integer j, 1 ≤ j ≤ q. Since (eq, eq) is a solution of (Dq), necessarily yq = 0.

Otherwise the minimality of (x, y) enforces (x, y) = (eq, eq), leading to the
contradiction q = ‖y‖1 = ‖eq‖1 = 1.

Now y = (y′, 0) where y′ ∈ Nq−1 is an indecomposable solution of (Cq) and
λ(y′) = λ(x) = jq by Proposition 4. Since ‖y′‖1 = ‖y‖1 = q, Theorem 2 of [21] im-
plies ‖y′‖1 + σ(y′) ≤ q + 1, hence σ(y) = σ(y′) ≤ 1, hence y = qei for some index i with
1 ≤ i ≤ q − 1, and qi = λ(y) = λ(x) = jq, hence j = i, and finally (x, y) = uqj , and this
is a minimal solution if and only if q and j are coprime. 3

Corollary 1 Let (x, y) be an indecomposable solution of (Dq). Then

(i) λ(x) ≤ q · (q − 1).

(ii) If λ(x) = q · (q − 1), then (x, y) = uq−1,q or uq,q−1.

Proof. (i) If ‖x‖1 = q, then (x, y) = uiq with i < q, and λ(x) = q ·i ≤ q ·(q−1). Otherwise
‖x‖1 ≤ q − 1, and

λ(x) = x1 + · · · qxq ≤ q · (x1 + · · ·+ xq) ≤ q · (q − 1).

(ii) If xq = yq = 0, then x = (x′, 0) and y = (y′, 0) with x′, y′ ∈ Nq−1, and (x′, y′)
solves (Dq−1). Hence λ(x) = λ(x′) ≤ (q− 1)(q− 2) by (i). Thus we may assume without
loss of generality that yq > 0. Then xq = 0 and

q · (q − 1) = λ(x) = x1 + · · ·+ (q − 1)xq−1 ≤ (q − 1) · ‖x‖1.

This implies ‖x‖1 = q and (x, y) = uq−1,q. In the same way, if xq > 0 we conclunde that
(x, y) = uq,q−1. 3

Remark 3 From Proposition 5 we derive another variant of enumerating all indecom-
posable solutions of (Dq). They fall into six cases. For x = (x1, . . . , xq) ∈ Nq we
denote the truncated vector as x′ = (x1, . . . , xq−1) ∈ Nq−1. (We assume that q ≥ 2.)

1. (x, y) = (eq, eq). Then x′ = y′ = 0 ∈ Nq−1, and xq = yq = 1.
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2. (x, y) = ukq = (qek, keq) where gcd(k, q) = 1. Then x′ = qek, y
′ = 0, xq = 0,

yq = k, ‖x′‖1 = q, ‖y′‖1 = 0.

3. (x, y) = uqk = (keq, qek) where gcd(k, q) = 1. Then x′ = 0, y′ = qek, xq = k,
yq = 0, ‖x′‖1 = 0, ‖y′‖1 = q.

4. ((x′, 0), (y′, 0)) where (x′, y′) is an indecomposable solution of (Dq−1). Then
xq = yq = 0 and ‖x′‖1 ≤ q − 1, ‖y′‖1 ≤ q − 1.

5. xq = 0, yq > 0, ‖x‖1 ≤ q−1, ‖y‖1 ≤ q−1. Then λ(x′) = λ(x) = λ(y) = λ(y′)+qyq.
This equation determines yq uniquely as

yq =
λ(x′)− λ(y′)

q
.

A solution for yq exists if and only if λ(x′) > λ(y′) and the right-hand side is an
integer.

6. xq > 0, yq = 0, ‖x‖1 ≤ q−1, ‖y‖1 ≤ q−1. Then λ(y′) = λ(y) = λ(x) = λ(x′)+qxq.
This equation determines xq uniquely as

xq =
λ(y′)− λ(x′)

q
.

A solution for yq exists if and only if λ(y′) > λ(x′) and the right-hand side is an
integer.
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7 The Support of an Indecomposable Solution

From the results of Section 6 we immediately derive some lemmas:

Lemma 3 Every indecomposable solution (x, y) ∈ Nq × Nq of (Dq) has σ(x, y) ≥ 2,
σ(x) ≥ 1, σ(y) ≥ 1. The only indecomposable solutions with two-element support are the
uij for 1 ≤ i, j ≤ q.

Lemma 4 If (x, y) is an indecomposable solution of (Dq) with σ(x, y) ≥ 3 (that is other
than uij for some pair of indices i, j), then ‖x‖1 ≤ q − 1 and ‖y‖1 ≤ q − 1.

Lemma 5 If (x, y) is an indecomposable solution of (Dq) other than (ei, ei) for some
index i, then supp(x), supp(y) ⊆ {1, . . . , q} are disjoint subsets.

Lemma 6 Assume that q ≥ 2, and that (x, y) ∈ N2q is an indecomposable solution of
(Dq). Then its width is

σ(x, y) = σ(x) + σ(y) ≤ q.

Lemma 7 Assume that q ≥ 4, and let (x, y) ∈ N2q be an indecomposable solution of
(Dq) with yq ≥ 1. Then

σ(x) ≤ q

2
.

Proof. If xq ≥ 1, then (x, y) = (eq, eq), and σ(x) = 1.
Otherwise we have xq = 0. Assume that σ(x) > q

2 . Then among the q − 1 indices
1, . . . , q − 1 there is a pair i, q − i with q − i 6= i such that xi > 0 and xq−i > 0. This
makes (ei + eq−i, eq) a solution of (Dq), and (ei + eq−i, eq) ≤ (x, y). Hence x = ei + eq−i
and σ(x) ≤ 2, contradiction. 3

See Section 5 for counterexamples with q = 1, 2, or 3.

Lemma 8 If (x, y) is a solution of (Dq), then (y, x) is also a solution. If (x, y) is
indecomposable, then so is (y, x).

Call a solution (x, y) of (Dq) flat if all of its non-zero coordinates are 1, or equiva-
lently, if ‖(x, y)‖1 = σ(x, y), or ‖(x, y)‖∞ = 1.

Lemma 9 Assume that (x, y) ∈ N2q is a flat solution of (Dq). Then no proper superset
S ⊃ supp(x, y) can support an indecomposable solution.

8 An Enhanced Algorithm for the Standard Equation (Dq)

The results and remarks in Sections 6 and 7 lead to noteworthy enhancements of our
algorithm for the standard equation.

A preliminary construction of all the indecomposable solution uij with two-element
support makes sense. Then all other solutions satisfy Lemmas 4, 5, and 6.
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We look at the support of the first half x of a possible indecomposable solution, and
loop over its size s from 1 to q. For each subset S ⊆ {1, . . . , q} of size s we consider all
subsets T ⊆ {1, . . . , q} with T ∩ S = ∅. Then we check all vectors (x, y) with supports
S and T , all coordinates ≥ 1, ≤ q − 1, and ‖x‖1 ≤ q − 1, ‖y‖1 ≤ q − 1, whether they
solve (Dq). If we find a solution (x, y) we add it to the list of solutions, as well as its
“complementary” vector (y, x). Doing so allows us to

• reduce our loop for s to 1, . . . , bq/2c,

• assume that σ(x) ≤ σ(y), or in other words restrict the choice of T to sets of size
#T = t with s ≤ t ≤ q − s.

If we detect a flat solution we add its support to a stoplist and never consider supersets
of it as possible supports (S, T ).

Here is the sketch of the algorithm:

1. Initialize the list solulist of indecomposable solutions as well as the stoplist as
empty lists.

2. If q = 1 output the one-element solulist consisting of (1, 1).

3. For q ≥ 2 first treat the case s = t = 1 separately, i. e. construct the uij . Loop over
i = 1, . . . , q and over j = 1, . . . , q.

• Compute d = gcd(i, j) and set xi = j/d, yj = i/d, xk = yh = 0 for all other
indices.

• Add (x, y) to solulist.

If q = 2 output solulist and exit.

4. Loop over s = 1, . . . , b q2c. (At this point q ≥ 3.)

• Construct all subsets S ⊆ {1, . . . , q} with s elements. Loop over S. For each
S construct all subsets T ⊆ {1, . . . , q} − S with t ≥ s elements (for s = 1:
with t ≥ 2 elements).

• Skip (S, T ) if it has a subset contained in the stoplist.

• Check whether (S, T ) supports a flat solution (x, y), that is whether∑
i∈S i =

∑
j∈T j. If this is the case, add (x, y) to the solulist and add

(S, T ) to the stoplist. Furthermore add (y, x) to the solulist and add
(T, S) to the stoplist.

• Else (no flat solution): Construct all indecomposable solutions (x, y) sup-
ported by (S, T ) and add them to solulist, as well as (y, x).

5. Reduce solulist to its indecomposable elements, and output it.
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The next to last step, constructing all indecomposable solutions (x, y) supported by
(S, T ), is done by letting all coordinates in (S, T ) separately run from 1 to q − 1 with
the restrictions ‖x‖1 ≤ q− 1, ‖y‖1 ≤ q− 1, and check whether they make up a solution,
that is check whether λ(x) = λ(y).

Appendix A.5 contains the Python code.

9 A Lower Bound for the Number of Indecomposable So-
lutions of the Standard Equation

Let N(q) be the number of indecomposable solutions of (Dq). From the examples in Sec-
tion 5 we know N(1) = 1, N(2) = 4, and N(3) = 13. The algorithm from Section 3 yields
N(4) = 34, N(5) = 99, N(6) = 210, N(7) = 559, and N(8) = 1164. The enhancements
of Section 8 enable the computation of N(9) = 2531, N(10) = 4940, N(11) = 10735.
There doesn’t seem to be a known closed formula for N(q). Anyway the following tasks
make sense:

• Find upper and lower bounds for N(q).

• Determine the asymptotic behaviour of N(q) depending on q.

The explicit numerical results suggest a simple exponential growth, maybe slightly subex-
ponential, see Figure 1.

Figure 1: 2-logarithm of the number N(q) of indecomposable solutions of (Dq)

The trivial lower bound N(q) ≥ q2 results from the q2 indecomposable solutions uij .
A stronger lower bound derives from Remark 2 in Section 6: If we denote the number

of partitions of r by P (r), then we easily get

N(q) ≥ N(q − 1) + 2 · P (q),
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Table 1: Numbers of indecomposable solutions and lower bounds

q 1 2 3 4 5 6 7 8 9 10 11

N(q) 1 4 13 34 99 210 559 1164 2531 4940 10735
P (q) 1 2 3 5 7 11 15 22 30 42 56

bound 2 6 12 22 36 58 88 132 192 276 388

and by induction prove:

Theorem 2 The number N(q) of indecomposable solutions of (Dq) has the lower bound

N(q) ≥ 2 ·
q∑
r=1

P (r)

for q ≥ 3 where P is the partition function.

Table 1 gives an impression of the quality of this lower bound: It seems to be far too
low.

Now we estimate the asymptotic behaviour. We use the Hardy-Ramanujan bound
[11]:

P (q) ≥ c

q
· eπ·

√
2q
3

for almost all q if c ∈ [0, 1
4
√
3
[. In order to apply it to the growth of

∑
P (r) we first

consider an auxiliary function.

Lemma 10 Let f :]0,∞[−→ R be the function

f(x) =
1

x
· ea
√
x where a = π ·

√
2

3
.

Then

(i) f is monotonocally increasing for x ≥ 1.

(ii) In particular

f(r) ≥
∫ r

r−1
f(x) dx for r ≥ 2

Proof. The derivation

f ′(x) =
x · a

2
√
x
· ea
√
x − ea

√
x

x2
=
a
√
x− 2

x2
· ea
√
x

has a single zero in ]0,∞[ at x = 4
a2

= 6
π2 < 1. For x > 6

π2 we have f ′(x) > 0, hence f is
monotonically increasing. The statement (ii) is an immediate consequence. 3
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The inequality (ii) allows to replace the sum in Theorem 2 by an integral:

q∑
r=1

p(r) = 1 +

q∑
r=2

p(r) ≥ 1 +

q∑
r=2

c · f(r) ≥ 1 + c · η + c ·
∫ q

1
f(x) dx

where

η = f(2)−
∫ 2

1
f(x) dx.

Collecting the inequalities together we get:

Lemma 11 For almost all q ≥ 2 and arbitrary c ∈ [0, 1
4
√
3
[

N(q) ≥ 2 + 2c · η + 2c ·
∫ q

1
f(x) dx.

We have no closed formula for this integral but a useful inequality:

Lemma 12 Let g :]0,∞[−→ R be the function

g(x) =
1√
x
· ea
√
x.

Then for all x > 0

f(x) ≥
√

6

π
· g′(x).

Proof. We calculate

g′(x) =

√
x · a

2
√
x
· ea
√
x − 1

2
√
x
· ea
√
x

x
=
ea
√
x

2x
·
(
a− 1√

x

)
=

1

2
· f(x) ·

(
a− 1√

x

)
≤ a

2
· f(x),

and note that a
2 = π√

6
. 3

By the main theorem of calculus we conclude that∫ q

1
f(x) dx ≥

√
6

π
·
∫ q

1
g′(x) dx =

√
6

π
· [g(q)− g(1)]

=

√
6

π · √q
· eπ

√
2q
3 −
√

6

π
· eπ

√
2
3 ,

hence by Lemma 11

N(q) ≥ 2 + 2cη + 2c ·
√

6

π · √q
· eπ

√
2q
3 − 2c ·

√
6

π
· eπ

√
2
3

=
b
√
q
· eπ

√
2q
3 + h(c)
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with

b = 2c ·
√

6

π
∈ [0,

1

π
√

2
[

and

h(x) = 2 + 2xη − 2x ·
√

6

π
· eπ

√
2
3 .

The function h is linear in x with h(0) = 2, and a numeric calculation (using SageMath)
gives h( 1

4
√
3
) ≥ 0.0049. Thus h(x) > 0 for 0 ≤ x ≤ 1

4
√
3
.

This finishes the proof of the slightly subexponential bound:

Theorem 3 The number N(q) of indecomposable solutions of (Dq) has the lower bound

N(q) ≥ b
√
q
· eπ

√
2q
3 for almost all q ∈ N1

for arbitrary b ∈ [0, 1
π
√
2
[.

10 An Upper Bound for the Number of Indecomposable
Solutions of the Standard Equation

Theorem 1 yields an upper bound for N(q). This is slightly enhanced by Remark 3 in
Section 6 via an auxiliary result:

Proposition 6 Let x′, y′ ∈ Nq−1 be given with ‖x′‖1 ≤ q − 1 and ‖y′‖1 ≤ q − 1. Then
there exists at most one pair (xq, yq) ∈ N2 such that ((x′, xq), (y

′, yq)) is an indecompos-
able solution of (Dq).

Proof. In each of the six cases of the remark the values of xq and yq are uniquely
determined. 3

There is a total of
(
2q−2
q−1
)

points x′ ∈ Nq−1 whose coordinate sum ‖x′‖1 is ≤ q − 1.

Thus there are
(
2q−2
q−1
)2

points (x′, y′) ∈ N2q−2 with ‖x′‖1 ≤ q−1 and ‖y′‖1 ≤ q−1. Since
(for q ≥ 2) among these are also the points (ek, 0) and (0, ek) for 1 ≤ k ≤ q − 1 that
don’t lead to solutions of (Dq) as in Proposition 6, we don’t need to separately count
the few missing indecomposable solutions ukq and uqk. The result (valid also for q = 1)
is:

Theorem 4 The number of indecomposable solutions of (Dq) is bounded by

N(q) ≤
(

2q − 2

q − 1

)2

.
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This yields the bounds

N(1) ≤ 1, N(2) ≤ 4, N(3) ≤ 36, N(4) ≤ 400, N(5) < 4900.

Clearly the bound in Theorem 4 is much too large: We counted all integer points in
the product of two simplices, not only the solutions of (Dq), not to mention only the
indecomposable ones!

From the well-known inequality for the middle binomial coefficients (see for example
[19]) (

2n

n

)
<

4n√
πn

for all n ≥ 1

we derive a bound for the asymptotic behaviour of N(q) (assume q ≥ 2):

N(q) ≤
(

2q − 2

q − 2

)2

<
16q−1

π(q − 1)
=

q

q − 1
· 1

π
· 16q−1

q
<

16q−1

q
.

Corollary 1 The number of indecomposable solutions of (Dq) is bounded by

N(q) <
16q−1

q
=

1

q
· e(q−1) log 16 .

Even this bound, although far from the true value, exhibits a slightly subexponential
growth.

Conjecture. Theorem 1 should improve for (Dq) in the following way: Let (x, y) ∈ N2q

be an indecomposable solution of (Dq). Then ‖x‖1 + σ(x) ≤ q + 1 and
‖y‖1 + σ(y) ≤ q + 1. This conjecture is empirically true for q up to 8. For an anal-
ogous result on linear congruences compare Theorem 2 of [21].
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A Python Code

A.1 Auxiliary Routines

def dlist0(n, m):

"""Construct the list of integer vectors > 0 of dimension n and

height <= m."""

if n == 0:

return []

auxlist = [[]]

for r in range(n):

outlist = []

for y in auxlist:

for t in range(m+1):

x = y + [t]

outlist.append(x)

auxlist = [] + outlist

return outlist

def dlist1(n,m):

"""Construct the list of integer vectors (x_1,...,x_n) of dim n

in the simplex x_1+...+x_n <= m, all x_i >= 0"""

if n == 0:

return []

auxlist = [[]]

for r in range(n):

outlist = []

for y in auxlist:

s = sum(y)

for t in range(m+1-s):

x = y + [t]

outlist.append(x)

auxlist = [] + outlist

return outlist
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def dlist2(n,m):

"""generate list of integer vectors (x_1,...,x_n) of dim n

in the simplex x_1+...+x_n <= m, all x_i >= 1"""

if n == 0:

return []

auxlist = [[]]

for r in range(n):

outlist = []

for y in auxlist:

s = sum(y)

for t in range(1,m+1-s):

x = y + [t]

outlist.append(x)

auxlist = [] + outlist

return outlist

def smaller(lista,listb):

"""Compare two integer lists in componentwise (partial) order of Z^n."""

ll = len(lista)

unequal = False

if ll != len(listb):

return False

for i in range(ll):

if lista[i] > listb[i]:

return False

elif (not(unequal) and (lista[i] < listb[i])):

unequal = True

if unequal:

return True

else:

return False
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def minelts(vlist):

"""Delete all entries from vlist that are properly larger than another

entry."""

i = 0

# Loop over i

ll = len(vlist)

while i < ll:

t = vlist[i]

for j in range(ll-1,i,-1):

if smaller(t,vlist[j]):

del vlist[j]

for j in range(i-1,-1,-1):

if smaller(t,vlist[j]):

del vlist[j]

i = i-1

i = i+1

ll = len(vlist)

return vlist

def chkdio(alist, xlist):

"""Check if alist[0]*xlist[0] + ... + alist[l-1]*ilist[l-1] == 0."""

l = len(alist)

if len(xlist) != l:

return False

sum = 0

for i in range(l):

sum = sum + alist[i]*xlist[i]

if sum == 0:

return True

else:

return False
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def stddio(xyvec):

"""Check if 1*xyvec[0] + ... + q*xyvec[q-1] = 1*xyvec[q] + ... + q*xyvec[2q-1]

where q = len(xyvec/2)."""

qq = len(xyvec)//2

xsum = 0

ysum = 0

for i in range(qq):

xsum = xsum + (i+1)*xyvec[i]

for j in range(qq):

ysum = ysum + (j+1)*xyvec[qq+j]

if xsum == ysum:

return True

else:

return False

def subset(l1,l2):

"""Check whether l1 is a subset of l2."""

for elt in l1:

if elt not in l2:

return False

return True

def subsets(n,k):

"""Generate list of all k-element subsets of {1,...,n}."""

setlist = []

NN = 2**n

for i in range(NN):

bitlist = baserep(i,2)

while len(bitlist) < n:

bitlist.insert(0,0)

set = []

for j in range(n):

if bitlist[j] == 1:

set.append(j+1)

if len(set) == k:

setlist.insert(0,set)

return setlist
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def eEuclid(a,b):

"""Compute the gcd d of two integers a and b together with

integer coefficients x and y such that d = ax + by.

Ouput the triple [d,x,y]."""

# Initialization

if a < 0:

r0 = -a

v = -1 # keep sign

else:

r0 = a

v = 1

if b < 0:

r1 = -b

w = -1 # keep sign

else:

r1 = b

w = 1

x0 = 1

x1 = 0

y0 = 0

y1 = 1

# Extended division chain

while r1 > 0:

q = r0//r1

r = r0 - q * r1

x = x0 - q* x1

y = y0 - q * y1

# Here we have r0 = |a|*x0+|b|*y0, r1 = |a|*x1+|b|*y1, r = |a|*x+|b|*y.

r0 = r1

r1 = r

x0 = x1

x1 = x

y0 = y1

y1 = y

# Finalization

d = r0

x = v * x0

y = w * y0

return [d,x,y]
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def D2q(q):

"""Generate list of all solutions with 2-element support."""

outlist = []

nullvec = [0]*q

for i in range(q):

for j in range(q):

x = nullvec[0:]

y = nullvec[0:]

d = eEuclid(i+1,j+1)[0]

x[i] = (j+1)//d

y[j] = (i+1)//d

x.extend(y)

outlist.append(x)

return outlist

A.2 Solving (E)—Naive Algorithm

See Section 1.

### Process command line parameters

coeff = sys.argv[1:]

ll = len(coeff) # = dimension

for i in range(ll):

coeff[i] = int(coeff[i]) # strings to numbers

A = 0 # max of pos coeff

B = 0 # -min of neg coeff

for a in coeff:

if a > A:

A = a

elif a < -B:

B = -a

M = A

if B > A:

M = B

sollist = []

dlist = dlist0(ll,M)

nullvec = [0]*ll

dlist.remove(nullvec)

for xlist in dlist:

if chkdio(coeff,xlist):

sollist.append(xlist)

redlist = minelts(sollist)

print(redlist)
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A.3 Solving (E) More Efficiently

See Section 3.

### Process command line parameters

coeff = sys.argv[1:]

ll = len(coeff) # = dimension

A = 0 # max of positive coefficients

B = 0 # -min of negative coefficients

posit = [] # list of indices of positive coefficients

negat = [] # list of indices of negative coefficients

zeros = [] # list of indices of zero coefficients

for i in range(ll):

coeff[i] = int(coeff[i]) # strings to numbers

if coeff[i] > 0:

posit.append(i)

if coeff[i] > A:

A = coeff[i]

elif coeff[i] < 0:

negat.append(i)

if coeff[i] < -B:

B = -coeff[i]

else:

zeros.append(i)

lx = len(posit)

ly = len(negat)

lz = len(zeros)

### Register the trivial solutions

sollist = []

nullvec = [0]*ll

for iz in zeros: # generate unit vector

zsol = nullvec[:]

zsol[iz] = 1

sollist.append(zsol)
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### Construct all candidate vectors in the critical domain D

xlist = dlist1(lx,B)

xnullvec = [0]*lx

if xlist != []:

xlist.remove(xnullvec)

ylist = dlist1(ly,A)

ynullvec = [0]*ly

if ylist != []:

ylist.remove(ynullvec)

dlist = [] # combine x- and y-vectors

for x in xlist:

vec = nullvec[:]

for i in range(lx):

vec[posit[i]] = x[i]

for y in ylist:

xy = vec[:]

for j in range(ly):

xy[negat[j]] = y[j]

dlist.append(xy)

### Single out the solutions, then the minimal solutions

for xyz in dlist:

if chkdio(coeff,xyz):

sollist.append(xyz)

redlist = minelts(sollist)

print(redlist)
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A.4 Improved Algorithm Using Sissokho’s Bound

See Section 3

### Process command line parameters

coeff = sys.argv[1:]

ll = len(coeff)

A = 0 # max of positive coefficients

B = 0 # -min of negative coefficients

posit = [] # list of indices of positive coefficients

negat = [] # list of indices of negative coefficients

zeros = [] # list of indices of zero coefficients

for i in range(ll):

coeff[i] = int(coeff[i]) # strings to numbers

if coeff[i] > 0:

posit.append(i)

if coeff[i] > A:

A = coeff[i]

elif coeff[i] < 0:

negat.append(i)

if coeff[i] < -B:

B = -coeff[i]

else:

zeros.append(i)

lx = len(posit)

ly = len(negat)

lz = len(zeros)

### Register the trivial solutions

sollist = []

nullvec = [0]*ll

for iz in zeros: # generate unit vector

zsol = nullvec[:]

zsol[iz] = 1

sollist.append(zsol)
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### Construct all candidate vectors in the critical domain D

xlist = dlist1(lx,B)

xnullvec = [0]*lx

if xlist != []:

xlist.remove(xnullvec)

Alist = [] # list of corresponding A-values

for x in xlist:

xsum = sum(x)

asum = 0

for i in range(lx):

asum = asum + coeff[posit[i]] * x[i]

asum = asum//xsum

if asum < A:

Alist.append(asum)

else:

Alist.append(A)

ylist = dlist1(ly,A)

ynullvec = [0]*ly

if ylist != []:

ylist.remove(ynullvec)

Nlist = [] # list of corresponding 1-norms

for y in ylist:

ysum = sum(y)

Nlist.append(ysum)

dlist = [] # combine x- and y-vectors

for ix in range(len(xlist)):

x = xlist[ix]

Ax = Alist[ix]

vec = nullvec[:]

for i in range(lx):

vec[posit[i]] = x[i]

for iy in range(len(ylist)):

y = ylist[iy]

Ny = Nlist[iy]

if Ny <= Ax:

xy = vec[:]

for j in range(ly):

xy[negat[j]] = y[j]

dlist.append(xy)
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### Single out the solutions, then the minimal solutions

for xyz in dlist:

if chkdio(coeff,xyz):

sollist.append(xyz)

redlist = minelts(sollist)

print(len(redlist), "indecomposable solutions:")

print(redlist)
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A.5 Solving the Standard Equation

See Section 8

### Process command line parameters

q = int(sys.argv[1])

solulist = []

stoplist = []

nullvec = [0]*q

if q == 1:

solulist.append([1,1])

print(solulist)

exit()

# At this point q >= 2

# First compute the solutions with 2-element support.

twolst = D2q(q)

solulist.extend(twolst)

if q == 2:

print(solulist)

exit()

# At this point q >= 3

qhalf = q//2

for s in range(1,qhalf+1):

sublist = subsets(q,s)

for sset in sublist:

t0 = s

if t0 == 1:

t0 = 2

for t in range(t0,q-s+1):

sublist1 = subsets(q,t)

sublist2 = []

for tset in sublist1:

meet = False

for el in sset:

if el in tset:

meet = True

if not(meet):

sublist2.append(tset)

supp = sset[:]

for tt in tset:

supp.append(tt+q)

include = True
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for stopset in stoplist:

if subset(stopset,supp):

include = False

if include:

ssum = sum(sset)

tsum = sum(tset)

if ssum == tsum: # Flat solution detected

xy = [0]*(2*q)

for index in supp:

xy[index-1] = 1

if not(xy in solulist):

solulist.append(xy)

stoplist.append(supp)

suppcpl = tset[:]

for ss in sset:

suppcpl.append(ss+q)

yx = [0]*(2*q)

for index in suppcpl:

yx[index-1] = 1

if not(yx in solulist):

solulist.append(yx)

stoplist.append(suppcpl)

else: # Now construct solutions supported by (sset, tset).

xlist = dlist2(len(sset),q-1)

ylist = dlist2(len(tset),q-1)

for z in xlist:

x = nullvec[:]

zc = z[:]

for ind in sset:

t = zc.pop(0)

x[ind-1] = t

for w in ylist:

y = nullvec[:]

wc = w[:]

for ind in tset:

u = wc.pop(0)

y[ind-1] = u

xy = x[:]

xy.extend(y)

sol = stddio(xy)

if sol:

if not(xy in solulist):

solulist.append(xy)
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yx = y[:]

yx.extend(x)

if not(yx in solulist):

solulist.append(yx)

redlist = minelts(solulist)

print(len(redlist), "indecomposable solutions:")

print(redlist)
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