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Suppose we take a sample A of n = #A elements from the “population”
{1,..., N}. We ask for the distribution of the mean value of this sample. In other
words, we consider all n-element subsets A C {1,..., N} the sums of whose ele-
ments we denote by

a€A

The mean value of A is ¥(A)/n, and we ask for the distribution of all these “sam-

ple” mean values, in particular the variance—intuitively obvious is the expectation

of this distribution, namely identical with the mean value (N+1)/2 of {1,..., N}.
The frequency function

Fym:Z — 1,
Fynz) = #{AC{L... N} |#A=n, $(4) =z},

indirectly describes the distribution of the mean values by the formula

1
(1) Pan(t) = m Fnn(nt) forteR.
This is the fraction of all (V) subsets A C {1,..., N} with n elements that have
sum nt, or have mean value t = ¥(A)/n.

Example For N =4 and n = 2 the subsets A are

A={1,2} with 2(4)=3
A={1,3} with %(A)=14
A={1,4} with %(A)=5,
A=1{2,3} with X(4)=5
A={2,4} with 2(A)=6
A={3,4} with N(A)=7
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Hence the frequency function is

2 for xz =5,
Fio(z) =<1 forx=3,4,6,7,
0 otherwise.

There are some obvious formulas:
Lemma 1 Let N € N. Then:
(i) Fyn(z) =0 constant if n > N.
(i)
(ili) Fna(z) =1 for1 <xz <N, and Fxi(x) =0 forz <0 orxz > N+ 1.
(iv) (Symmetry) F(x) = Fy,(n(N + 1) —2) for all x € Z.
)

(v) Fno(z) = Llejfor3<m<N+1
Fno(z) = 2222 for N+1<z <2N —1,
Fya(x) = 0 otherwise.

(vi) (Recursion 1) Fnn(x) = Fn_1n(2) + Fy—1p-1(x — N) for 1 <n < N.

Fyo(z) =1 for x =0, and Fyo(x) =0 for x # 0.

(vii) (Recursion 2) Fn,(z) = Fy_1n(x —n) 4+ Fy_1p-1(x —n) for 1 <n < N.

Proof. (i) There are no subsets with n elements.
(ii) The empty set has sum 0.
(iii) For a one-element subset A we have 3(A) = z if and only if A = {x}.
(iv) Consider the bijective map

e:{1,...,N} —{1,...,N}, a— N+1—a,
that reverses the order of {1,..., N}. It induces a bijection
o:P{1,...,N}) — P({1,...,N})
on the power set via the assignment ®({ay,...,a,}) = {pa1,...,pa,}. Then
:nga:ZN—l—l—a:n-(N—i—l)—E(A).
acA acA

Hence ¥ takes the value n (N + 1) — 2 exactly as many times as the value z.

(v) By (iv) we need to consider only the case 3 < x < N+1.Let 1 <a < N—1.
The two-element sets A with min A = a contribute 1 to the frequencies of = for
x=2a+1,...,a+ N, and 0 otherwise. That is, the value x = 3(A) occurs once
for a with 2a + 1 < z, or equivalently, a < |+ ].

(vi) Let A C {1,..., N} be an n-element set. We distinguish two cases:
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Case 1. The subsets A C {1,..., N — 1} contribute Fy_1,(z) times the sum x.

Case 2. The subsets with N € A have ¥(A) = ¥(A—{N})+ N, hence contribute
Fy_1n-1(x — N) times the sum x.

(vii) Again we distinguish two cases according to whether 1 € A.

Case 1. The subsets A C {2,..., N} contribute Fx_1,(z —n) times the sum x:
consider the sets A" = {a —1|a € A} with sum X(A") = 3(A) —n.

Case 2. If 1 € A we consider the (n — 1)-element set A= {a—1|a € A,a # 1}

with ¥(A) = £(A) + (n — 1) + 1. These sets A contribute Fy_1,-1(x — n)
times the sum =z.

&

As applications of the first recursion formula we prove some sum formulas by
induction.

Corollary 1 For 1 <n < N we have

D Fya(z) = (ZZ ) .

Proof. Start with N = 1, hence also n = 1. Then the lefthand side has one non-zero
summand: F} 1(1) = 1. The righthand side is 1.
Now assume that N > 2. Then by (vi) and induction

Z Fyn(z) = Z Fy_1n(z) + ZFN—Ln—1(!E —N)

&

This proof serves as exercise for the evaluation of more complex sums below.
From a practical point of view it is dispensable since the corollary simply states
that the set {1,..., N} has exactly (J:) subsets of size n.

Corollary 2 For1 <n < N we have

Zm-FN,n(x):w-<Z).



Proof. Again we start with N = 1, hence also n = 1. Then the lefthand side has
one non-zero summand: 1 - Fy;(1) = 1. The righthand side is £2 - (}) = 1.
Now assume that N > 2. Then by (vi) and induction

Y - Fyulx) = Y o Fyon(@)+ Y (2= N) - Fy_yo-i(z — N)

TEZ TEZL €L
+D N Fyoiuea(e = N)
T€Z

() (4 (3

=2 () G (G0
- ”2”' (if)% )

&

Again this was a redundant proof: The corollary says that the “mean of the
means %(A)/n” of all (]:l]) subsets A of size n is (N 4 1)/2. This however results
directly from the symmetry of the distribution.

Corollary 3 For1 <n < N we have

Zx?FN’n(:c) = w -(3nN + N +2n) - (]7\1])

TEZ

Proof. Here too we start with N = 1, hence also n = 1. Then the lefthand side has
one non-zero summand: 12-F; (1) = 1. The righthand side is 2+ (3+1+2)-(;) = 1.
Now assume that N > 2. Note that

2> =[(x — N)+ N> = (z — N)> 4+ 2N (z — N) + N2

Thus by (vi) and induction



Y 2% Fyalz) = Y a® Fy_in(@)+ Y (x—N)*- Fy_ina(z — N)

€L TEZL TEZL
+2N~Z(w—N)'FN,l,n,l(a:—N)+N2~ZFN71,n—1(l’—N)
x€Z TEZL
nN (N-—1
= T (n )-[3n(N—1)—I—(N—1)+2n]
-1)N (N
(n-1N (n—l) 3(n—1)(N—-1)+(N—-1)+2(n—1)]
N — —1) N -1
+2N< ) M N2-< )
n — n—1
N N
_ e n ( ) [3nN — 3n+N—1+2n]
3nN+N n—1

n

—1)N N
—l—u- n( )-[gnN—Sn—3N+3+N—1+2n—%]

~-
3nN—2N—n

+N-%-<f)-[nN—N]+N2-%-(JZ>

= ( ) 3nN2+N2—nN—N—BnQN—nN+n2+n]
N 2
3n N —2nN —n? —3nN—1—2N+n}
n
) [12nN — 12N + 12N]

- [3nN? 4+ N? + 50N + N + 2n]

)
n<N
i

_on N
12
As a first test, using Formula 1 and Corollary 1, we evaluate the (finite) sum

Zme(t): ZFN% nt ZFNn = ,

teR n teR n z€eR

BaN(N+1)+N(N+1)+2n(N+1)].
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the expected result.
Secondly in the same way, using Corollary 2, we evaluate the formula for the



mean value

S tpwalt) = % St Fy(nt) = i% S 0 Fy ) = %

teR n

as we knew already.
Finally as a new result we derive a closed expression for the variance of the

sample mean:

S (2 = b T (32

t2eR n/ teR
1 1 ) N+1)?
Sy oo ()
n zeR
n D (M) (3nN+N+2n)
N+1 N+1
o (3nN + N + 2n) o (3nN + 3n)
B (N+1)(N —n)
B 12n '

By this we have proved the main result of this article:

Proposition 1 Let 1 <n < N. Consider the distribution py ., of the mean values

of samples of size n from the set {1,..., N}. This distribution has the variance
_ (N+1)(N —n)
Vipna) = 12n



