The Mean Value of a Sample

Klaus Pommerening

September 2020 - last change September 17, 2020

Suppose we take a sample A of $n=\# A$ elements from the "population" $\{1, \ldots, N\}$. We ask for the distribution of the mean value of this sample. In other words, we consider all n-element subsets $A \subseteq\{1, \ldots, N\}$ the sums of whose elements we denote by

$$
\Sigma(A)=\sum_{a \in A} a .
$$

The mean value of A is $\Sigma(A) / n$, and we ask for the distribution of all these "sample" mean values, in particular the variance - intuitively obvious is the expectation of this distribution, namely identical with the mean value $(N+1) / 2$ of $\{1, \ldots, N\}$.

The frequency function

$$
\begin{aligned}
& F_{N, n}: \mathbb{Z} \longrightarrow \mathbb{Z}, \\
& F_{N, n}(x)=\#\{A \subseteq\{1, \ldots, N\} \mid \# A=n, \Sigma(A)=x\},
\end{aligned}
$$

indirectly describes the distribution of the mean values by the formula

$$
\begin{equation*}
p_{N, n}(t)=\frac{1}{\binom{N}{n}} F_{N, n}(n t) \quad \text { for } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

This is the fraction of all $\binom{N}{n}$ subsets $A \subseteq\{1, \ldots, N\}$ with n elements that have sum $n t$, or have mean value $t=\Sigma(A) / n$.

Example For $N=4$ and $n=2$ the subsets A are

$$
\begin{aligned}
& A=\{1,2\} \text { with } \Sigma(A)=3, \\
& A=\{1,3\} \text { with } \Sigma(A)=4, \\
& A=\{1,4\} \text { with } \Sigma(A)=5, \\
& A=\{2,3\} \text { with } \Sigma(A)=5, \\
& A=\{2,4\} \text { with } \Sigma(A)=6, \\
& A=\{3,4\} \text { with } \Sigma(A)=7 .
\end{aligned}
$$

Hence the frequency function is

$$
F_{4,2}(x)= \begin{cases}2 & \text { for } x=5 \\ 1 & \text { for } x=3,4,6,7 \\ 0 & \text { otherwise }\end{cases}
$$

There are some obvious formulas:
Lemma 1 Let $N \in \mathbb{N}$. Then:
(i) $F_{N, n}(x)=0$ constant if $n>N$.
(ii) $F_{N, 0}(x)=1$ for $x=0$, and $F_{N, 0}(x)=0$ for $x \neq 0$.
(iii) $F_{N, 1}(x)=1$ for $1 \leq x \leq N$, and $F_{N, 1}(x)=0$ for $x \leq 0$ or $x \geq N+1$.
(iv) (Symmetry) $F(x)=F_{N, n}(n(N+1)-x)$ for all $x \in \mathbb{Z}$.
(v) $F_{N, 2}(x)=\left\lfloor\frac{x-1}{2}\right\rfloor$ for $3 \leq x \leq N+1$,
$F_{N, 2}(x)=\left\lfloor\frac{2 N+1-x}{2}\right\rfloor$ for $N+1 \leq x \leq 2 N-1$,
$F_{N, 2}(x)=0$ otherwise.
(vi) (Recursion 1) $F_{N, n}(x)=F_{N-1, n}(x)+F_{N-1, n-1}(x-N)$ for $1 \leq n<N$.
(vii) (Recursion 2) $F_{N, n}(x)=F_{N-1, n}(x-n)+F_{N-1, n-1}(x-n)$ for $1 \leq n<N$.

Proof. (i) There are no subsets with n elements.
(ii) The empty set has sum 0 .
(iii) For a one-element subset A we have $\Sigma(A)=x$ if and only if $A=\{x\}$.
(iv) Consider the bijective map

$$
\varphi:\{1, \ldots, N\} \longrightarrow\{1, \ldots, N\}, \quad a \mapsto N+1-a
$$

that reverses the order of $\{1, \ldots, N\}$. It induces a bijection

$$
\Phi: \mathcal{P}(\{1, \ldots, N\}) \longrightarrow \mathcal{P}(\{1, \ldots, N\})
$$

on the power set via the assignment $\Phi\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\left\{\varphi a_{1}, \ldots, \varphi a_{n}\right\}$. Then

$$
\Sigma(\Phi(A))=\sum_{a \in A} \varphi a=\sum_{a \in A} N+1-a=n \cdot(N+1)-\Sigma(A) .
$$

Hence Σ takes the value $n(N+1)-x$ exactly as many times as the value x.
(v) By (iv) we need to consider only the case $3 \leq x \leq N+1$. Let $1 \leq a \leq N-1$. The two-element sets A with $\min A=a$ contribute 1 to the frequencies of x for $x=2 a+1, \ldots, a+N$, and 0 otherwise. That is, the value $x=\Sigma(A)$ occurs once for a with $2 a+1 \leq x$, or equivalently, $a \leq\left\lfloor\frac{x-1}{2}\right\rfloor$.
(vi) Let $A \subseteq\{1, \ldots, N\}$ be an n-element set. We distinguish two cases:

Case 1. The subsets $A \subseteq\{1, \ldots, N-1\}$ contribute $F_{N-1, n}(x)$ times the sum x.
Case 2. The subsets with $N \in A$ have $\Sigma(A)=\Sigma(A-\{N\})+N$, hence contribute $F_{N-1, n-1}(x-N)$ times the sum x.
(vii) Again we distinguish two cases according to whether $1 \in A$.

Case 1. The subsets $A \subseteq\{2, \ldots, N\}$ contribute $F_{N-1, n}(x-n)$ times the sum x : consider the sets $A^{\prime}=\{a-1 \mid a \in A\}$ with sum $\Sigma\left(A^{\prime}\right)=\Sigma(A)-n$.

Case 2. If $1 \in A$ we consider the $(n-1)$-element set $\bar{A}=\{a-1 \mid a \in A, a \neq 1\}$ with $\Sigma(A)=\Sigma(\bar{A})+(n-1)+1$. These sets A contribute $F_{N-1, n-1}(x-n)$ times the sum x.
\diamond
As applications of the first recursion formula we prove some sum formulas by induction.

Corollary 1 For $1 \leq n \leq N$ we have

$$
\sum_{x \in \mathbb{Z}} F_{N, n}(x)=\binom{N}{n} .
$$

Proof. Start with $N=1$, hence also $n=1$. Then the lefthand side has one non-zero summand: $F_{1,1}(1)=1$. The righthand side is 1 .

Now assume that $N \geq 2$. Then by (vi) and induction

$$
\begin{aligned}
\sum_{x \in \mathbb{Z}} F_{N, n}(x) & =\sum_{x \in \mathbb{Z}} F_{N-1, n}(x)+\sum_{x \in \mathbb{Z}} F_{N-1, n-1}(x-N) \\
& =\binom{N-1}{n}+\binom{N-1}{n-1}=\binom{N}{n}
\end{aligned}
$$

\diamond
This proof serves as exercise for the evaluation of more complex sums below. From a practical point of view it is dispensable since the corollary simply states that the set $\{1, \ldots, N\}$ has exactly $\binom{N}{n}$ subsets of size n.

Corollary 2 For $1 \leq n \leq N$ we have

$$
\sum_{x \in \mathbb{Z}} x \cdot F_{N, n}(x)=\frac{n(N+1)}{2} \cdot\binom{N}{n} .
$$

Proof. Again we start with $N=1$, hence also $n=1$. Then the lefthand side has one non-zero summand: $1 \cdot F_{1,1}(1)=1$. The righthand side is $\frac{1 \cdot 2}{2} \cdot\binom{1}{1}=1$.

Now assume that $N \geq 2$. Then by (vi) and induction

$$
\begin{aligned}
\sum_{x \in \mathbb{Z}} x \cdot F_{N, n}(x)= & \sum_{x \in \mathbb{Z}} x \cdot F_{N-1, n}(x)+\sum_{x \in \mathbb{Z}}(x-N) \cdot F_{N-1, n-1}(x-N) \\
& +\sum_{x \in \mathbb{Z}} N \cdot F_{N-1, n-1}(x-N) \\
= & \frac{n N}{2} \cdot\binom{N-1}{n}+\frac{(n-1) N}{2} \cdot\binom{N-1}{n-1}+N \cdot\binom{N-1}{n-1} \\
= & \frac{n N}{2} \cdot\binom{N-1}{n}+\frac{n N}{2} \cdot\binom{N-1}{n-1}+\frac{N}{2} \cdot\binom{N-1}{n-1} \\
= & \frac{n N}{2} \cdot\binom{N}{n}+\frac{N}{2} \frac{n}{N} \cdot\binom{N}{n} \\
= & (N+1) \cdot \frac{n}{2} \cdot\binom{N}{n} .
\end{aligned}
$$

\diamond
Again this was a redundant proof: The corollary says that the "mean of the means $\Sigma(A) / n$ " of all $\binom{N}{n}$ subsets A of size n is $(N+1) / 2$. This however results directly from the symmetry of the distribution.

Corollary 3 For $1 \leq n \leq N$ we have

$$
\sum_{x \in \mathbb{Z}} x^{2} \cdot F_{N, n}(x)=\frac{n(N+1)}{12} \cdot(3 n N+N+2 n) \cdot\binom{N}{n} .
$$

Proof. Here too we start with $N=1$, hence also $n=1$. Then the lefthand side has one non-zero summand: $1^{2} \cdot F_{1,1}(1)=1$. The righthand side is $\frac{1 \cdot 2}{12} \cdot(3+1+2) \cdot\binom{1}{1}=1$.

Now assume that $N \geq 2$. Note that

$$
x^{2}=[(x-N)+N]^{2}=(x-N)^{2}+2 N(x-N)+N^{2} .
$$

Thus by (vi) and induction

$$
\begin{aligned}
\sum_{x \in \mathbb{Z}} x^{2} \cdot F_{N, n}(x)= & \sum_{x \in \mathbb{Z}} x^{2} \cdot F_{N-1, n}(x)+\sum_{x \in \mathbb{Z}}(x-N)^{2} \cdot F_{N-1, n-1}(x-N) \\
& +2 N \cdot \sum_{x \in \mathbb{Z}}(x-N) \cdot F_{N-1, n-1}(x-N)+N^{2} \cdot \sum_{x \in \mathbb{Z}} F_{N-1, n-1}(x-N) \\
= & \frac{n N}{12} \cdot\binom{N-1}{n} \cdot[3 n(N-1)+(N-1)+2 n] \\
& +\frac{(n-1) N}{12} \cdot\binom{N-1}{n-1} \cdot[3(n-1)(N-1)+(N-1)+2(n-1)] \\
& +2 N \cdot\binom{N-1}{n-1} \cdot \frac{(n-1) N}{2}+N^{2} \cdot\binom{N-1}{n-1} \\
= & \frac{n N}{12} \cdot \frac{N-n}{N} \cdot\binom{N}{n} \cdot[\underbrace{3 n N-3 n+N-1+2 n}] \\
& +\frac{(n-1) N}{12} \cdot \frac{n}{N} \cdot\binom{N}{n} \cdot[3 n N-3 n-3 N+3+N-1+2 n-2] \\
& +N \cdot \frac{n}{N} \cdot\binom{N}{n} \cdot[n N-N]+N^{2} \cdot \frac{n}{N} \cdot\binom{N}{n} \\
= & \frac{n}{12} \cdot\binom{N}{n} \cdot\left[3 n N^{2}+N^{2}-n N-N-3 n^{2} N-n N+n^{2}+n\right] \\
& +\frac{n}{12} \cdot\binom{N}{n} \cdot\left[3 n^{2} N-2 n N-n^{2}-3 n N+2 N+n\right] \\
& +\frac{n}{12} \cdot\binom{N}{n} \cdot[12 n N-12 N+12 N] \\
= & \frac{n}{12} \cdot\binom{N}{n} \cdot\left[3 n N^{2}+N^{2}+5 n N+N+2 n\right] \\
= & \frac{n}{12} \cdot\binom{N}{n} \cdot[3 n N(N+1)+N(N+1)+2 n(N+1)] .
\end{aligned}
$$

\diamond
As a first test, using Formula 1 and Corollary 1, we evaluate the (finite) sum

$$
\sum_{t \in \mathbb{R}} p_{N, n}(t)=\frac{1}{\binom{N}{n}} \sum_{t \in \mathbb{R}} F_{N, n}(n t)=\frac{1}{\binom{N}{n}} \sum_{x \in \mathbb{R}} F_{N, n}(x)=1,
$$

the expected result.
Secondly in the same way, using Corollary 2, we evaluate the formula for the
mean value

$$
\sum_{t \in \mathbb{R}} t p_{N, n}(t)=\frac{1}{\binom{N}{n}} \sum_{t \in \mathbb{R}} t F_{N, n}(n t)=\frac{1}{\binom{N}{n}} \frac{1}{n} \sum_{x \in \mathbb{R}} x F_{N, n}(x)=\frac{N+1}{2}
$$

as we knew already.
Finally as a new result we derive a closed expression for the variance of the sample mean:

$$
\begin{aligned}
\sum_{t^{2} \in \mathbb{R}} t p_{N, n}(t)-\left(\frac{N+1}{2}\right)^{2} & =\frac{1}{\binom{N}{n}} \sum_{t \in \mathbb{R}} t^{2} F_{N, n}(n t)-\left(\frac{N+1}{2}\right)^{2} \\
& =\frac{1}{\binom{N}{n}} \frac{1}{n^{2}} \underbrace{\sum_{x \in \mathbb{R}} x^{2} F_{N, n}(x)}_{\frac{n(N+1)}{12}\binom{N}{n}(3 n N+N+2 n)}-\left(\frac{N+1}{2}\right)^{2} \\
& =\frac{N+1}{12 n} \cdot(3 n N+N+2 n)-\frac{N+1}{12 n} \cdot(3 n N+3 n) \\
& =\frac{(N+1)(N-n)}{12 n}
\end{aligned}
$$

By this we have proved the main result of this article:
Proposition 1 Let $1 \leq n \leq N$. Consider the distribution $p_{N, n}$ of the mean values of samples of size n from the set $\{1, \ldots, N\}$. This distribution has the variance

$$
V\left(p_{N, n}\right)=\frac{(N+1)(N-n)}{12 n}
$$

