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The Morozov-Jacobson theorem says that every nilpotent element of a semisimple
Lie algebra is contained in a 3-dimensional simple subalgebra, i. e. a subalgebra isomor-
phic with sl2. Morozov in [6] stated the theorem for the base field of complex numbers.
His proof however contained a gap that Jacobson filled in [4]. Jacobson more gener-
ally formulated the proof for a base field of characteristic 0. In fact the proof is valid
also if the characteristic of the base field is “large enough”, depending on the nilpotent
element under consideration, and if the Lie algebra is the Lie algebra of a semisimple
algebraic group.

The Morozov-Jacobson theorem is basic for the classification of nilpotent elements
in semisimple Lie algebras and unipotent elements in semisimple algebraic groups, see
[5], [1], and [10, III.3.29].

In this note—that is an excerpt from [7]—we remove the restriction on the char-
acteristic up to very small exceptions: The characteristic should be 6= 2 and good for
the algebraic group, that means 6= 3 if the group contains a component of exceptional
type, and 6= 5 if the group contains a component of exceptional type E8. Because the
proof uses an invariant scalar product on the Lie algebra, it depends for some small
characteristics on the classification of semisimple algebraic groups.

1 sl2-Triples

For algebraic groups we use standard notation as in [3]. Let k be an algebraically
closed field and G be a reductive algebraic group over k with Lie algebra g. A triple
(h, x, y) of elements of g is called an sl2-triple if h is semisimple, x and y are nilpotent,
and

[hx] = 2x, [hy] = −2y, [xy] = h,

i. e. h, x, y span a subalgebra isomorphic with sl2, an isomorphism being

h 7→
(

1 0
0 −1

)
, x 7→

(
0 1
0 0

)
, y 7→

(
0 0
1 0

)
.

Note that sl2 is a simple Lie algebra if and only if char k 6= 2. Also note that (in
characteristic 6= 2) (h, x, y) is an sl2-triple in g if and only if it is not the all-zero triple
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and each of its components in the direct decomposition of g corresponding to the almost
simple components of G is an sl2-triple or (0, 0, 0). Therefore we may without restriction
switch to the case of almost simple G whenever convenient.

2 One-Parameter Subgroups and Gradings

Let G be reductive and T be a maximal torus of G. A one-parameter subgroup
(OPSG) λ : Gm −→ T is characterised by integers 〈α, λ〉 for all all α ∈ ∆, a basis of the
root system Φ = Φ(T,G). These integers are given by

Adλ(c) · x = c〈α,λ〉x for all c ∈ Gm and x ∈ gα.

A OPSG of G induces a grading of the Lie algebra g of G as follows:

g =
⊕
i∈Z

gi where Adλ(c) · x = cix for all c ∈ Gm and x ∈ gi.

Note that in prime characteristic g might have gradings that are not induced by a OPSG.
Let G0 = ZG(λ(Gm))0. Then g0 is the Lie algebra of G0, and each gi is a G0-

submodule of g. If we choose a maximal torus T ⊇ λ(Gm), then gi is the sum of all root
spaces gα where 〈α, λ〉 = i.

Now let x ∈ g be nilpotent. The normalizer N := NG(kx) consists of all group
elements that map the one-dimensional subspace kx into itself, and it contains the cen-
tralizer Z := Gx = ZG(x). Because Z is the kernel of the action of N on kx, we have
dimN/Z ≤ 1. This leaves two possibilities:

• N/Z is finite. Then each nilpotent class meets kx only in finitely many points,
therefore infinitely many nilpotent classes meet kx. This could occur only if g had
infinitely many nilpotent classes. This never occurs, see [2]. But the proof is simple
only if the characteristic is good for G, see [8], or [10].

• dimN/Z = 1. Then the connected component (N/Z)0 is ∼= Gm or ∼= Ga. Since the
only 1-dimensional representation of the additive group Ga is trivial, (N/Z)0 ∼=
Gm, and therefore N contains a 1-dimensional torus that acts transitively on the
punctured line k×x.

This consideration proves:

Proposition 1 Let G be reductive, and let x ∈ g be nilpotent. Assume that the number
of nilpotent classes in g is finite. Then there is a OPSG λ : Gm −→ G and an integer
i ∈ Z− {0} such that x ∈ gi for the induced grading.

For a stronger version of Proposition 1 see [9].

Corollary 1 The image of λ may be chosen in the semisimple part (G,G).

Proof. The proof of Proposition 1 works for (G,G) as well as for G. 3
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3 Invariant Scalar Products

Now we assume that char k 6= 2 and that there is a G-invariant scalar product (•|•)
(i. e. nondegenerate symmetric bilinear form) on g. This is fulfilled if G has no component
of type Al and the characteristic is good for G ([8] or [10, III.4.1]), or if G ∼= GLn. In
particular (•|•) is associative: ([xy]|z) = (x|[yz]) for all x, y, z ∈ g.

Lemma 1 gx = [xg]⊥ for all x ∈ g.

Proof. We have gx = {z ∈ g | [zx] = 0} and z ∈ [xg]⊥ ⇐⇒ (z|[xy]) = 0 for all y ∈ g⇐⇒
([zx]|y) = 0 for all y ∈ g⇐⇒ [zx] = 0. 3

Let T be a maximal torus of G, t ⊆ g its Lie algebra, Φ the corresponding root
system, and

g = t⊕
⊕
α∈Φ

gα

the root space decomposition. Then t is a nondegenerate subspace and

t⊥ =
⊕
α∈Φ

gα.

Furthermore gα ⊥ gβ except for β = −α, and g−α is the dual subspace of gα (i. e.
gα ⊕ g−α is a nondegenerate subspace).

Now let g =
⊕

gi ba a grading given by a OPSG λ : Gm −→ T . Because the gi are
sums of root spaces we immediately conclude that g0 is a nondegenerated subspace and
g−i is the dual space of gi. Let s be the Lie algebra of S := λ(Gm).

Lemma 2 For x ∈ gi:

(i) g⊥x ∩ g0 = [xg−i].

(ii) g⊥0x ∩ g0 = g⊥x ∩ g0.

(iii) If g0x ⊥ s, then s ⊆ [xg−i].

Proof. (i) By Lemma 1 we have g⊥x = [xg]. Since g =
⊕

j gj and x is homogeneous, we

have [xg] =
⊕

j [xgj ], and [xgj ] ⊆ gi+j . Therefore g⊥x ∩ g0 = [xg] ∩ g0 = [xg−i].

(ii) g⊥0x ⊇ g⊥x because g0x ⊆ gx. For y ∈ g⊥0x ∩ g0 and z ∈ gx we have (y|z) =∑
(y|zj) = (y|z0) = 0, where zj is the gj-component of z. Therefore g⊥0x ∩ g0 ⊆ g⊥x .
(iii) If s ⊆ g⊥0x, then s ⊆ g⊥0x ∩ g0 = [xg−i] by (ii) and (i). 3

Proposition 2 For x ∈ gi with g0x ⊥ s there is an sl2-triple (h, x, y) with h ∈ s and
y ∈ g−i.
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Proof. s acts on gi by multiplication with scalars, and the action is non-trivial. Therefore
there is an h ∈ s with [hx] = 2x. From Lemma 2 (iii) we get a y ∈ g−i such that [xy] = h.
Then [hy] = ty with some t ∈ k. The chain th = t[xy] = [x[hy]] = [h[xy]] + [y[hx]] =
[hh] + 2[yx] = −2h shows that t = −2. 3

4 Distinguished Nilpotent Elements

For the moment we drop the assumption on char k. A nilpotent element x ∈ g is called
distinguished if a maximal torus of Gx is contained in the center of G; for semisimple
G this means that G0

x is a unipotent subgroup of G. A Levi-type subgroup of G is the
centralizer of a subtorus of G or, in other words, a Levi factor of a parabolic subgroup.

Proposition 3 Let G be reductive. Let x ∈ g be nilpotent. Then there is a Levi-type
subgroup H of G such that x is a distinguished nilpotent element of h = Lie(H).

Proof. Let S be a maximal torus of Gx. Then H := ZG(S)0 is a Levi-type subgroup
with Lie algebra h = zg(S). Therefore x ∈ h. By definition of H the nilpotent element x
is distinguished in h. 3

Proposition 4 Let G be reductive in good characteristic 6= 2. Let g be graded by a
OPSG λ : Gm −→ (G,G). Let h ∈ s := Lie(λ(Gm)) be the element that acts on gi by
multiplication with 2. Let x ∈ gi be distinguished nilpotent. Then there is a y ∈ g−i such
that (h, x, y) is an sl2-triple.

Proof. If G has no normal subgroup of type Al, this follows from Proposition 2: Since
g0x ⊆ z(g) ⊕ u, where u is the Lie algebra of a maximal unipotent subgroup of G0, we
have g0x ⊥ s.

For the general case we yet have to consider the case G of type Al, where we may
replace G by GLn and again apply Proposition 2. 3

Theorem 1 (Morozov-Jacobson) Let G be semisimple in good characteristic 6= 2,
and let x ∈ g be nilpotent. Then there are h, y ∈ g such that (h, x, y) is an sl2-triple.

Proof. By Proposition 3 we find a reductive subgroup H of G such that x is distinguished
in the Lie algebra h of H. By Proposition 1 we find a OPSG of H such that x is
homogenous for the corresponding grading. By Proposition 4 we find an sl2-triple (h, x, y)
in h, a forteriori in g. 3
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