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The aim of this note is a very simple proof of Hilbert’s Nullstellensatz over the field
of complex numbers. In fact we use only that the base field k is algebraically closed and
uncountably infinite. This proof is of unknown origin, I learned it from H. J. Fendrich.

We denote by k[T ] the polynomial ring in n variables T = (T1, . . . , Tn). For a subset
F ⊆ k[T ] the zero set is

V (F ) = {x ∈ kn | f(x) = 0 for all f ∈ F},

i. e. the set of common zeroes (in German: Nullstellen) of all polynomials in F .

Theorem 1 (Weak Nullstellensatz) Let a ⊂ k[T ] be a proper ideal. Then V (a) 6= ∅.

For the proof we use the lemma:

Lemma 1 Let L ⊇ k an extension field that is finitely generated as a k-algebra. Then
L is algebraic over k.

Proof. Let {u1, . . . , un} be a system of generators of the k-algebra L. Then the count-
ably many monomials um1

1 · · ·umn
n span the vector space L over k. Therefore dimk L is

countable.
Now assume there is a u ∈ L that is not algebraic over k. Then (this is where our

assumption on k enters the proof) the uncountably many different elements 1
u−c with

arbitrary c ∈ k are linearly independent over k: Take a linear combination b1
u−c1 + · · ·+

bm
u−cm = 0 with bi, ci ∈ k and clear the denominators. This gives a polynomial equation
for u with coefficients in k, contradiction. Therefore dimk L is uncountably infinite –
contradiction. 3

For the proof of Theorem 1 we can replace a by a larger ideal. Therefore we may
assume that a = m is a maximal ideal. Then we have a natural ring homomorphism ϕ
from the following commutative diagram where ν is the canonical map:

1



k -ϕ

@
@
@R

⊆
�
�
��
ν

k[T ]

k[T ]/m

Because k is a field ϕ is injective. Lemma 1 yields that k[T ]/m is algebraic over ϕ(k).
Because k, and ϕ(k), is algebraically closed, ϕ(k) = k[T ]/m. Let xi = ϕ−1(ν(Ti)) for
i = 1, . . . , n. We claim x is a zero of m.

Let f =
∑

r∈Nn arT
r ∈ m. Then

f(x1, . . . , xn) =
∑
r

arx
r1
1 · · ·x

rn
n = ϕ−1(

∑
r

arν(T )r) = ϕ−1(ν(f)) = 0.

Theorem 1 is proven.

Corollary 1 Let F ⊆ k[T ] be a set of polynomials without a common zero in kn. Then
there are f1, . . . , fm ∈ F and g1, . . . , gm ∈ k[T ] such that g1f1 + · · ·+ gmfm = 1.

Proof. We have to show that 1 ∈ (F ) = a, the ideal generated by F . But because
V (a) = ∅, we have a = k[T ] 3 1. 3

Appendix 1: The strong Nullstellensatz

The strong Nullstellensatz follows from the weak one also in a quite simple way by
the classic Rabinowitsch trick. Remember that for a subset M ⊆ kn the vanishing ideal
is defined as

I(M) = {f ∈ k[T ] | f(x) = 0 for all x ∈M}.

Note that I(M) is a radical ideal: if f vanishes on M so does every power fm. In
particular for an ideal a ⊆ k[T ] we have IV (a) ⊇ rad a.

Theorem 2 (Strong Nullstellensatz) For every ideal a ⊂ k[T ] we have IV (a) = rad a.

Proof. Let f ∈ IV (a). We may assume f 6= 0. Consider the polynomial ring A =
k[T, T0] = k[T0, T1, . . . , Tn] in one more variable. Let g := 1 + T0f ∈ A, and A ⊆ A,
the ideal A = (g, a) generated by g and a. In kn+1 we have V (A) = ∅; otherwise take
a point (t0, t) ∈ V (A), t = (t1, . . . , tn), then h(t0, t) = h(t) = 0 for all h ∈ a, hence
f(t) = 0, hence 0 = g(t0, t) = 1 + t0 · f(t) = 1, contradiction. The weak Nullstellensatz
gives A = A. Because 1 ∈ A we have h, h′ ∈ A and f ′ ∈ a such that 1 = hg + h′f ′.

Now substituting T0 7→ − 1
f gives a ring homomorphism

ϕ : A = k[T0, T ] −→ k(T ).
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We have ϕ(g) = 0, 1 = ϕ(1) = ϕ(h′) · f ′ and

ϕ(h′) = h′(− 1

f
, T1, . . . , Tn) =

h̃

f r
with h̃ ∈ k[T ] and a suitable r ≥ 1.

This gives f r = h̃ · f ′ ∈ a. 3

A more elementary wording of the strong Nullstellensatz reads as follows:

Corollary 2 Let f, f1, . . . fm ∈ k[T ] be polynomials such that f vanishes on each com-
mon zero of f1, . . . , fm. Then there are h1, . . . hm ∈ k[T ] and an exponent r ≥ 1 such
that f r = h1f1 + · · ·+ hmfm.

Proof. Consider the ideal a = (f1, . . . , fm) generated by the fi’s. Then f ∈ rad a, whence
a power f r ∈ a. 3

Appendix 2: A general proof

To get a proof of the Nullstellensatz (weak or strong) without the assumption on the
cardinality of k we only need a proof of Lemma 1 in the general case. The simplest way
is using the theory of integral ring extensions, in particular:

Theorem 3 (Hilbert-Noether normalisation) Let k be a field and A = k[f1, . . . , fn], a
finitely generated k-algebra. Then there are algebraically independent g1, . . . , gr ∈ A such
that A is integral over the polynomial ring k[g1, . . . , gr].

This dates back also to [1]. For a modern proof take any textbook on algebra, for
example [2].

Now for the proof of Lemma 1 we get r = 0 in Theorem 3 because there is no room
for more algebraically independent elements. This means that L is integral over k, hence
algebraic.

Historical note

Hilbert’s original proof of the (strong) Nullstellensatz is in his famous paper [1, §3] on
invariant theory, it takes about 5 pages. Hilbert implicitly took the complex numbers as
base field, so the present short proof is completely adequate. Note however that Hilbert’s
proof works over any algebraically closed field, and that his statement of the theorem is
slightly more general. Rabinowitsch’s trick is in the 1 page (à 13 lines) paper [3].
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