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Let R be the ring Z/mZ of residue classes mod m for an integer m ≥ 2.
Then the multiplicative group R× acts by multiplication on R. A trivial
fact is that R× itself is one orbit. A standard result of elementary number
theory, see also [1], says that R× consists exactly if the residues of b ∈ Z
with gcd(m, b) = 1, in other words:

Proposition 1 For b ∈ Z with gcd(m, b) = 1 there is an a ∈ Z with

ab ≡ 1 (mod m).

More generally:

Proposition 2 Let m ∈ N, m ≥ 2, and a, b ∈ Z with gcd(b,m) = d. Then
a is divisible by b in Z/mZ, if and only if d|a. In this case there are exactly
d solutions z of zb ≡ a (mod m) with 0 ≤ z < m, and any two of them
differ by a multiple of m̄ = m/d. If d = xm + yb and a = td, then z = yt is
a solution.

Proposition 2 applies in particular for a = d and yields:

Corollary 1 Let m ∈ N, m ≥ 2, and b ∈ Z with gcd(b,m) = d. Let
c ∈ {1, . . . , m̄− 1} represent the multiplicative inverse of b̄ = b/d in Z/m̄Z.
Then the d solutions x of xb ≡ d (mod m) with 0 ≤ x < m are

(1) c + tm̄ for t = 0, . . . , d− 1.

This statement includes the triviality cb ≡ d mod m. However c is not
necessarily relatively prime with m, as the following example demonstrates.
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Example Let m = 30 and b = 20. Then d = 10, m̄ = 3, b̄ = 2, c = 2
since 2 · 2 = 4 ≡ 1 mod 3. Thus the solutions of xb ≡ d (mod m) with
0 ≤ x < m are

2, 5, 8, 11, 14, . . . ,

the first three of them having a common divisor with m. However the
fourth one, 11, is relatively prime with m.

This is not by fluke:

Theorem 1 Let m ∈ N, m ≥ 2, and b ∈ Z with gcd(b,m) = d. Then there
is an a ∈ Z, relatively prime with m, such that ab ≡ d (mod m).

Proof. Let P be the set of prime divisors of m and rp ≥ 1 be the multiplicity
of p ∈ P in m. Thus

m =
∏
p∈P

prp .

For each p ∈ P let sp ≥ 0 be the multiplicity of p in b. Then

d =
∏
p∈P

pqp with qp =

{
sp if rp > sp,

rp if rp ≤ sp,

m̄ =
∏
p∈P

prp−qp .

Now b = d · u where u is relatively prime with m̄, and c ∈ {1, . . . , m̄− 1} is
defined by cu ≡ 1 (mod m̄). In particular p 6 | c if p | m̄, that is if rp > sp. The
solutions x of xb ≡ d (mod m) with 0 ≤ x < m are given by Formula (1).
We want to find at least one among them that has no prime divisor in P .
To this end let

Q := {p ∈ P | rp ≤ sp, p 6 | c}, and t :=
∏
p∈Q

p.

Then p 6 | (c + tm̄) for all p ∈ P :

Case 1, sp < rp. Then p | m̄ and p 6 | c, hence p 6 | (c + tm̄).

Case 2, sp ≥ rp and p ∈ Q. Then p 6 | c, p 6 | m̄, and p | t. Hence p 6 | (c+ tm̄).

Case 3, sp ≥ rp and p 6∈ Q. Then p | c, p 6 | m̄, p 6 | t. Hence p 6 | (c + tm̄).

The proof of the theorem is complete. 3

Therefore the divisors of m represent all (Z/mZ)×-orbits in Z/mZ:

Corollary 2 The orbits of (Z/mZ)× in Z/mZ are the orbits of the divisors
of m.
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