Orbits of the Multiplicative Group mod m

Klaus Pommerening
Fachbereich Mathematik der Johannes-Gutenberg-Universität
Saarstraße 21
D-55099 Mainz

February 13, 2018-last change February 13, 2018

Let R be the ring $\mathbb{Z} / m \mathbb{Z}$ of residue classes mod m for an integer $m \geq 2$. Then the multiplicative group R^{\times}acts by multiplication on R. A trivial fact is that R^{\times}itself is one orbit. A standard result of elementary number theory, see also [1], says that R^{\times}consists exactly if the residues of $b \in \mathbb{Z}$ with $\operatorname{gcd}(m, b)=1$, in other words:

Proposition 1 For $b \in \mathbb{Z}$ with $\operatorname{gcd}(m, b)=1$ there is an $a \in \mathbb{Z}$ with

$$
a b \equiv 1 \quad(\bmod m) .
$$

More generally:
Proposition 2 Let $m \in \mathbb{N}, m \geq 2$, and $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(b, m)=d$. Then a is divisible by b in $\mathbb{Z} / m \mathbb{Z}$, if and only if $d \mid a$. In this case there are exactly d solutions z of $z b \equiv a(\bmod m)$ with $0 \leq z<m$, and any two of them differ by a multiple of $\bar{m}=m / d$. If $d=x m+y b$ and $a=t d$, then $z=y t$ is a solution.

Proposition 2 applies in particular for $a=d$ and yields:
Corollary 1 Let $m \in \mathbb{N}, m \geq 2$, and $b \in \mathbb{Z}$ with $\operatorname{gcd}(b, m)=d$. Let $c \in\{1, \ldots, \bar{m}-1\}$ represent the multiplicative inverse of $\bar{b}=b / d$ in $\mathbb{Z} / \bar{m} \mathbb{Z}$. Then the d solutions x of $x b \equiv d(\bmod m)$ with $0 \leq x<m$ are

$$
\begin{equation*}
c+t \bar{m} \quad \text { for } t=0, \ldots, d-1 . \tag{1}
\end{equation*}
$$

This statement includes the triviality $c b \equiv d \bmod m$. However c is not necessarily relatively prime with m, as the following example demonstrates.

Example Let $m=30$ and $b=20$. Then $d=10, \bar{m}=3, \bar{b}=2, c=2$ since $2 \cdot 2=4 \equiv 1 \bmod 3$. Thus the solutions of $x b \equiv d(\bmod m)$ with $0 \leq x<m$ are

$$
2,5,8,11,14, \ldots,
$$

the first three of them having a common divisor with m. However the fourth one, 11 , is relatively prime with m.

This is not by fluke:
Theorem 1 Let $m \in \mathbb{N}, m \geq 2$, and $b \in \mathbb{Z}$ with $\operatorname{gcd}(b, m)=d$. Then there is an $a \in \mathbb{Z}$, relatively prime with m, such that $a b \equiv d(\bmod m)$.

Proof. Let P be the set of prime divisors of m and $r_{p} \geq 1$ be the multiplicity of $p \in P$ in m. Thus

$$
m=\prod_{p \in P} p^{r_{p}} .
$$

For each $p \in P$ let $s_{p} \geq 0$ be the multiplicity of p in b. Then

$$
\begin{aligned}
& d=\prod_{p \in P} p^{q_{p}} \quad \text { with } q_{p}= \begin{cases}s_{p} & \text { if } r_{p}>s_{p}, \\
r_{p} & \text { if } r_{p} \leq s_{p},\end{cases} \\
& \bar{m}=\prod_{p \in P} p^{r_{p}-q_{p}} .
\end{aligned}
$$

Now $b=d \cdot u$ where u is relatively prime with \bar{m}, and $c \in\{1, \ldots, \bar{m}-1\}$ is defined by $c u \equiv 1(\bmod \bar{m})$. In particular $p \nmid c$ if $p \mid \bar{m}$, that is if $r_{p}>s_{p}$. The solutions x of $x b \equiv d(\bmod m)$ with $0 \leq x<m$ are given by Formula (1). We want to find at least one among them that has no prime divisor in P. To this end let

$$
Q:=\left\{p \in P \mid r_{p} \leq s_{p}, p \nmid c\right\}, \quad \text { and } t:=\prod_{p \in Q} p .
$$

Then $p \nmid(c+t \bar{m})$ for all $p \in P$:
Case 1, $s_{p}<r_{p}$. Then $p \mid \bar{m}$ and $p \nmid c$, hence $p \nmid(c+t \bar{m})$.
Case 2, $s_{p} \geq r_{p}$ and $p \in Q$. Then $p \nmid c, p \nmid \bar{m}$, and $p \mid t$. Hence $p \nmid(c+t \bar{m})$.
Case 3, $s_{p} \geq r_{p}$ and $p \notin Q$. Then $p \mid c, p \nmid \bar{m}, p \nmid t$. Hence $p \nmid(c+t \bar{m})$.
The proof of the theorem is complete.
Therefore the divisors of m represent all $(\mathbb{Z} / m \mathbb{Z})^{\times}$-orbits in $\mathbb{Z} / m \mathbb{Z}$:
Corollary 2 The orbits of $(\mathbb{Z} / m \mathbb{Z})^{\times}$in $\mathbb{Z} / m \mathbb{Z}$ are the orbits of the divisors of m.

References

[1] K. Pommerening: The Euclidean Algorithm. Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/LinDio.pdf

