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The Symmetric Group

A permutation is a bijective map of a set M onto itself. The permutations
of M form a group S(M).

This group is (at least in discrete mathematics, including cryptologic
applications) of particular interest when the set M is finite. In most appli-
cations the nature of the elements doesn’t matter. (A more formal statement
is: “A bijection between two sets M und N induces an isomorphism of the
groups S(M) und S(N)”.) Therefore we often simply take the set {1, . . . , n}
of natural numbers as our set M and denote the group S(M) by Sn. This
group is called the symmetric group of order n.

Proposition 1 The symmetric group of order n has n! elements:

#Sn = n!.

Proof. A permutation π is uniquely determined by its values at the argu-
ments 1, . . . , n. For π(1) we have n possibilities, for π(2) then n− 1, . . . , for
π(n− 1) two and for π(n) only one. This makes a total of n!. 3

(Note that the dots “. . . ” are a sloppy version of a proof by complete induc-
tion. In the remainder of this text we write πx instead of π(x).)

Description of Permutations

Often a permutation π of the set {1, . . . , n} is represented by its value table,
written in two rows: (

1 2 . . . n
π1 π2 . . . πn

)
.
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Of course this representation my also be used with other sets M ; for M =
{A, . . . ,Z}, the alphabet of classic cryptology, a permutation is the same as
a monoalphabetic substitution σ and denoted in the form(

A . . . Z
σA . . . σZ

)
(often without parantheses); below each letter we write its image under
encryption.

Another description of a permutation π is the cycle representation.
Let’s illustrate this first with an example where n = 5: The permutation(

1 2 3 4 5
3 4 1 5 2

)
has a natural graphical representation:
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and this graph is completely characterized by the arrangement

(1 3)(2 4 5)

of numbers. This means that each parenthesis defines a “cycle”—start with
any element, write its image right of it, then the image thereof, and so on
until you get back to the start. Then take any element that’s not yet written
down (if there is one) and do as before until all elements are met. Fixed
points of the permutation yield cycles of length one. The general formula is

(a1, πa1, . . . , π
k1−1a1) · · · (ai, πai, . . . , πki−1ai) · · · ,

where ki is the smallest natural number ≥ 1 with πkiai = ai.
This consideration shows:

Proposition 2 Each permutation of a finite set has a decomposition into
disjoint cycles. This representation is unique except for the order of the
cycles and cyclic permutations of the elements inside the cycles.
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Group Theoretic Interpretation

A cycle by itself represents a permutation: permute its elements in the writ-
ten order in a cyclic way, and let all other elements of M fixed.

Example: The cycle (2 4 5) in S5 corresponds to the permutation(
1 2 3 4 5
1 4 3 5 2

)
or in cycle representation (1)(2 4 5)(3).

The cycle (i) in Sn defines the identity map, no matter which i = 1, . . . , n
we choose. If we identify cycles with the permutations they describe, we
immediately get:

Lemma 1 Disjoint cycles commute as elements of the group Sn.

If we write the cycles of the cycle decomposition of a permutation next
to each other, we just get the product of the corresponding permutations in
Sn. Therefore we may express Proposition 2 in the following way:

Corollary 1 Each permutation is a product of disjoint cycles. This repre-
sentation is unique except for the order of the factors.

Partitions

If rk is the number of cycles of length k of a permutation π ∈ Sn, then we
have

n · rn + · · ·+ 1 · r1 = n.

Call a finite sequence [s1s2 . . . sm] of natural numbers with s1 ≥ . . . ≥ sm ≥ 1
a partition of n, if n = s1 + · · · + sm. If we write down the cycle lengths
of a permutation π ∈ Sn ordered by magnitude – each length with the
multiplicity with which it occurs – then we get a partition of n. Call this
the (cycle) type of π.

Example: The cycle type of(
1 2 3 4 5
3 4 1 5 2

)
= (1 3)(2 4 5)

is
[3 2].

We often visualise partitions by Young diagrams. Given a partition
[s1s2 . . . sm] of n we build the corresponding Young diagram in the following
way: Take m rows and put si squares in row i, left aligned. The partition
[7 3 3 2 1] of 16 has the diagram
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(The defining condition of a Young diagram is that none of the rows is
longer than the row above it.)

Conjugate Permutations

Given π, ρ ∈ Sn, how are the cycle representations of π and of the conjugate
permutation ρπρ−1 connected? First we consider the case of a single cycle
π,

π = (a1 . . . ak),

hence πai = a1+(i mod k) for i = 1, . . . , k, all other elements being fixed by π.
Then, for bi = ρai, we have

ρπρ−1bi = ρπai = ρa1+(i mod k) = b1+(i mod k),

hence
ρπρ−1 = (b1 . . . bk).

Therefore also ρπρ−1 is a cycle of length k.
Conjugating with ρ is an inner automorphism of the group Sn, that

means ρ(π1π2)ρ−1 = (ρπ1ρ
−1)(ρπ2ρ

−1). Therefore in the general case we
can conjugate the single cycles of π with ρ and get as a result the first part
the following theorem:

Theorem 1 (i) Let π, ρ ∈ Sn be two permutations. Then we get the cycle
decomposition of the conjugate permutation ρπρ−1 from that of π by
replacing each cycle (a1 . . . ak) of π with the cycle (ρa1 . . . ρak).

(ii) Two permutations of a finite set are conjugated if and only if they have
the same cycle type.

In other words: The conjugacy classes of the symmetric group Sn are in
a natural correspondence with the partitions of n resp. with the Young
diagrams with exactly n squares.

Proof. We only have to show the inverse direction of statement (ii). To
this end let σ, τ ∈ Sn be of the same cycle type. Write the cycle decompo-
sitions of σ and τ below each other in such a way that cycles of the same
length align; from this read off a permutation ρ with ρσρ−1 = τ : Simply
map each element to the one below it. 3
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This theorem, as simple as it is, is an essential ingredient to the crypt-
analysis of the cipher machine Enigma, and therefore sometimes was called
“the theorem that won world war II”; this is an obvious exaggeration, but
with a certain confidence we may state that it helped in shortening the war
in a significant way.

Exercise. Given σ, τ ∈ Sn, describe all solutions ρ of ρσρ−1 = τ . (For the
case τ = σ see the next section.)

Centralizers of Permutations

Theorem 1 provides an easy approach to determining the centralizer of a
permutation. First let us consider a single cycle π = (a1 a2 . . . ak) of length
2 ≤ k ≤ n. Then π acts transitively on the subset A := {a1, a2, . . . , ak} and
fixes all elements of the complement Ā = {1, . . . , n} − A. For ρ ∈ Sn the
conjugate ρπρ−1 is the cycle (ρa1 . . . ρak) by Theorem 1. By definition ρ
centralizes π if and only if ρπρ−1 = π. Therefore for ρ ∈ CSn(π), the centra-
lizer of π, we must have ρa1 = ai for some i, and then ρa2 = ai+1 and so on,
reducing the indices mod n if necessary. That is, ρ acts on A as πi, and on Ā
as an arbitrary permutation. In the reverse direction each permutation with
these properties centralizes π. Let SAn ≤ Sn be the subgroup of permutations
that fix A elementwise. It is canonically isomorphic with Sn−k. Using this
notation we may formulate the result of our considerations as:

Proposition 3 Let π = (a1 a2 . . . ak) ∈ Sn be a single cycle of length
2 ≤ k ≤ n, and A = {a1, a2, . . . , ak}. Then the centralizer CSn(π) of π in
Sn is the direct product of the subgroups < π > and SAn , and is isomorphic
with the direct product Zk × Sn−k.

Here Zk is the cyclic group of order k.
We want to apply this result to arbitrary permutations. First we observe:

Proposition 4 Let π = π1 · · ·πs be a product of disjoint cycles πi. For
k = 1, . . . , n let

Ak := {a | 1 ≤ k ≤ n, a is in a cycle of π of length k}.

Let ρ ∈ Sn centralize π. Then ρ(Ak) = Ak for all k, and ρ|Ak centralizes
π|Ak.

Proof. Let πi = (ai1 · · · aik) be a cycle of length k. Then ρπiρ
−1 =

(ρai1 · · · ρaik) is a cycle of length k, and ρπρ−1 = ρπ1ρ
−1 · · · ρπlρ−1 is the un-

ique decomposition into disjoint cycles. If ρ centralizes π, then (ρai1 · · · ρaik)
is one of cycles of π of length k. Therefore ρ(Ak) = Ak. The second assertion
follows because the actions of π and ρ on {1, . . . , n} directly decompose into
the actions on the subsets Ak. 3
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Proposition 4 reduces the task of determining the centralizer to the case
where all the cycles πi have the same length k. Let πi = (bi1 . . . bik), and
Bi := {bi1, . . . , bik}. Then {1, . . . , n} = B1∪̇ · · · ∪̇Bs (and n = ks).

Now consider the centralizer C := CSn(π), and take a ρ ∈ C. Then
ρ doesn’t necessarily respect the subsets Bi, but it permutes them: There
is a unique j = σ̄i—depending on ρ—such that ρ(Bi) = Bj . This defines
a permutation σ̄ ∈ Ss of the indices 1, . . . , s. This way we get a group
homomorphism

Φ: C −→ Ss, ρ 7→ σ̄.

Lift σ̄i to a permutation σ ∈ Φ−1(σ̄) ⊆ Sn by setting σbih := bσ̄i,h. Then
also σ ∈ C, and σ−1ρ is in the subgroup

C◦ := ker Φ = {τ ∈ C | τ(Bi) = Bi for i = 1, . . . , s}

of permutations that centralize π and respect the Bi. The following charac-
terization of this subgroup is immediate, because for τ ∈ C◦ the restriction
τ |Bi centralizes πi|Bi and therefore is a power of πi|Bi.

Lemma 2 The subgroup C◦ is the set of permutations with cycle decompo-
sition of the type πa11 · · ·πass , and is isomorphic with the direct product Zsk
of s cyclic groups Zk. This isomorphism defines an embedding e : Zsk −→ C.
The sequence

1 −→ Zsk
e−→ CSn(π)

Φ−→ Ss −→ 1

is exact. The centralizer CSn(π) has ks · s! elements.

This result easily generalizes to the general case. Let π = π1 · · ·πs be a
product of disjoint cycles πi, let ki be the length of πi, and let rk be the
number of cycles of length ki = k, for k = 1, . . . , n. Note that r1+· · ·+nrn =
n, and many of the rk are 0. Then we have a natural epimorphism

Φ: C −→
n∏
k=1

Srk ,

with kernel

C◦ := ker Φ =< π1 > · · · < πs >∼=
s∏
i=1

Zki

We sum this up to a Theorem.

Theorem 2 For each permutation π ∈ Sn we have a natural exact sequence

1 −→
s∏
i=1

Zki
e−→ CSn(π)

Φ−→
n∏
k=1

Srk −→ 1
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where the ki are the lengths of the cycles of π and the rk are the numbers of
cycles of π of length k.

The centralizer CSn(π) of π has

#CSn(π) =
s∏
i=1

ki ·
n∏
k=1

rk!

elements.

Example. In Sn both permutations (13)(245) and (245) = (245)(1)(3) have
a 6 element centralizer isomorphic with Z3×Z2. Its elements (in both
cases) are the three different powers of (245) times the two different
powers of (13).

Transpositions

A transposition is a cycle of length 2, that is a permutation that inter-
changes two elements and fixes all the other ones. The formula

(a1 a2 . . . ak) = (a1 ak) · · · (a1 a3)(a1 a2)

shows:

Lemma 3 Each cycle of length k can be written as a product of k − 1
transpositions.

From this and Proposition 2 we conclude:

Corollary 2 Each permutation π can be written as a product of n−r trans-
positions where r is the number of cycles with more than one element in the
cycle decomposition of π.

Note that these transpositions need not be disjoint, therefore general-
ly they don’t commute, and the decomposition into transpositions is not
unique. Even the number of transpositions is not unique; but at least we
have:

Proposition 5 If we write a permutation π ∈ Sn as a product of transpo-
sitions in different ways, then the number of transpositions either is always
even or always odd.

Proof. Let π = τ1 · · · τs where the τi are transpositions. On the other hand
let π = ζ1 · · · ζr be the decomposition into disjoint cycles (complete, that
means including all cycles of length 1). If we multiply π from the left with
a transposition τ = (a b), we can distinguish two cases:
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Case 1. a und b are in the same cycle. Because the cycles commute we
may assume that this is the first one ζ1 = (a1 . . . ak), and a = a1, b = ai.
Then τπ has the effect that

a1
π7→ a2

τ7→ a2

...

ai−1 7→ ai 7→ a1

ai 7→ ai+1 7→ ai+1

...

ak 7→ a1 7→ ai

Therefore τπ = (a1 . . . ai−1)(ai . . . ak)ζ2 · · · (all other cycles unchanged).
Case 2. a and b are in different cycles. Assume that these are the first

two ζ1 = (a1 . . . ak) and ζ2 = (b1 . . . bl), and a = a1, b = b1. Then
τπ = (a1 . . . ak b1 . . . bl)ζ3 · · · .

In any case the number of cycles grows by 1 or decreases by 1, hence
is r ± 1. If we multiply with another transposition from the left, the total
number of cycles becomes r + 2, r or r − 2. After multiplication with q
transpositions we have r + tq cycles, where tq ≡ q (mod 2). Therefore the
product τs · · · τ1π has r + ts cycles where ts ≡ s (mod 2). But this is the
identy map π−1π and therefore r + ts = n. Hence s ≡ n − r (mod 2), no
matter what was the starting decomposition into transpositions. 3

The Alternating Group

If we assign to each permutation in Sn the parity of the number of trans-
positions in an arbitrary decomposition, then, by the last section, we get a
well-defined function

sgn : Sn −→ F2,

that obviously is a group homomorphism into the additive group. We call the
kernel the alternating group of order n and denote it by An. The elements
of An, that is the permutations that decompose into an even number of
transpositions, are called even permutations, the other ones odd. An is a
normal subgroup of index 2 in Sn and therefore has n!/2 elements.

Involutions

Call a permutation an involution, if it has order 2 as a group element
in Sn, or alternativly, if its cycle decomposition consists of transpositions
(and fixed points) only. An involution ist proper, if it has no fixed points.
Of course this is possible only, if n is even. Then a proper involution is a
product of n/2 disjoint 2-cycles (i. e. cycles of length 2).
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A task that occurs in computing the total number of keys of Enigma,
is determining the number of involutions in the symmetric group Sn that
have exactly k 2-cycles where 0 ≤ 2k ≤ n. It equals the number d(n, k)
of possibilities of choosing k pairs from n elements (where the order of the
pairs does not matter).

Choose possibilities choose possibilities

1st element: n
1st partner: n− 1 1st pair: n(n− 1)/2

2nd element: n− 2
2nd partner: n− 3 2nd pair: (n− 2)(n− 3)/2

. . . . . . . . . . . .

k-th element: n− 2(k − 1)
k-th partner: n− 2(k − 1)− 1 k-th pair: (n− 2k + 2)(n− 2k + 1)/2

Adding all together and respecting the order we get

n(n− 1) · · · (n− 2k + 2)(n− 2k + 1)

2k
=

n!

(n− 2k)! · 2k

possibilities. If we now disregard the order we have always k! identical choi-
ces. Hence we have shown:

Proposition 6 The number of involutions in the symmetric group Sn that
have exactly k 2-cycles is

d(n, k) =
n!

2kk!(n− 2k)!
for 0 ≤ 2k ≤ n.

Example: In the case of the Wehrmacht Enigma we have n = 26 and
k = 10, and the number of possible involutions is

26!

210 · 10! · 6!
= 150738274937250.

Products of Proper Involutions

The cryptanalysis of the Enigma by Rejewski involves products of two
proper involutions σ and τ . Let (a b) be a cycle of τ . If (a b) is also a cycle
of σ, then στ fixes the two elements a and b, hence has the two cycles (a)
and (b) of length 1.

In the general case starting with an arbitrary element a1 one finds a
chain a1, a2, a3, . . . , a2k such that

τ = (a1 a2)(a3 a4) · · · (a2k−1 a2k) × other 2-cycles,

σ = (a2 a3)(a4 a5) · · · (a2k a1) × other 2-cycles.
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In the product στ these become the two cycles

(a1 a3 . . . a2k−1)(a2k . . . a4 a2)

of length k. In particular all cycle lengths occur in an even number, the cycle
type is matched.

Theorem 3 [Rejewski] A permutation is the product of two proper invo-
lutions, if and only if its cycle type is matched.

Proof. In order to prove the inverse direction we take a permutation π of
matched type and give solutions σ, τ of the equation στ = π.

In the simplest case, where π only consists of two cycles of the same
length:

π = (p1 p2 . . . pk)(q1 q2 . . . qk),

an obvious solution is

τ = (p1 qk)(p2 qk−1) · · · (pk q1),

σ = (p2 qk)(p3 qk−1) · · · (p1 q1).

In the general case we analogously construct the solution for each mat-
ching pair of cycles of the same length. 3

Therefore the following procedure gives a decomposition of a partition of
matched type into two proper involutions: Write cycles of the same length
below each other, the lower one in reverse direction. Then read off the 2-
cycles of τ by pairing the elements in the same column, and the 2-cycles of
σ by pairing each element with the one diagonally to the left below it.

Example: Let π = (D)(K)(AXT)(CGY)(BLFQVEOUM)(HJPSWIZRN). Then we
write down the scheme

(D)(AXT)(BLFQVEOUM)

(K)(YGC)(NRZIWSPJH)

and read off a solution of στ = π:

τ = (DK)(AY)(XG)(TC)(BN)(LR)(FZ)(QI)(VW)(ES)(OP)(UJ)(MH),

σ = (DK)(XY)(TG)(AC)(LN)(FR)(QZ)(VI)(EW)(OS)(UP)(MJ)(BH).

It’s also easy to find all solutions: Cyclically shift the lower cycles. If
there are more then two cycles of the same length also consider all possible
pairings. The solution is uniquely determined as soon as a 2-cycle of σ or τ
is fixed for each cycle pair.

Exercise. Work out the formula for the number of solutions.
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