Polynomial Functions

Klaus Pommerening

April 1997 – english version March 2012

Consider an arbitrary (commutative) field K. The functions from K^n to K form a K-algebra $A := \operatorname{Map}(K^n, K)$. Let K[T] be the polynomial algebra in the n-tuple $T = (T_1, \ldots, T_n)$ of indeterminates. Then

$$\alpha \colon K[T] \longrightarrow A,$$

$$\varphi \mapsto \alpha(\varphi) \text{ with } \alpha(\varphi)(x_1, \dots, x_n) := \varphi(x_1, \dots, x_n)$$

is a K-algebra homomorphism, called the "substitution homomorphism". Its image, $\alpha(K[T]) \subseteq A$, is the algebra of polynomial functions on K^n . We distinguish two fundamentally different cases—K is infinite, or K is finite.

1 Polynomial Functions over Infinite Fields

Let K be infinite. Then α is

- injective, i. e., different polynomials define different functions—the proof is the uniqueness proof of interpolation formulas, and is given below,
- not surjective, because K[T] has the same cardinality as K, but A is strictly larger—the proof is elementary set theory.

The proof of injectivity relies on the following lemma:

Lemma 1 Let K be a field with at least d+1 elements, and let $\varphi \in K[T]$ be a polynomial of degree $\leq d$ with $\varphi(x) = 0$ for all $x \in K^n$. Then $\varphi = 0$.

Proof. We prove this by induction on the dimension n. In the case n=1 the polynomial φ has more than d roots, whence $\varphi=0$ by elementary algebra.

Now let $n \geq 2$. Split the indeterminates into $X = (T_1, \ldots, T_{n-1})$ and $Y = T_n$. Then

$$\varphi = \sum_{i=0}^{d} \psi_i(X) \cdot Y^i$$
 where $\deg \psi_i \le d - i \le d$.

Fix an arbitrary $x \in K^{n-1}$. Then $\varphi(x,y) = \sum_i \psi_i(x) \cdot y^i = 0$ for all $y \in K$. The assertion in the case n = 1 gives $\psi_0(x) = \ldots = \psi_d(x) = 0$. Since this holds for all x, induction gives $\psi_0 = \ldots = \psi_d = 0$. Hence $\varphi = 0$. \diamondsuit

From this lemma we immediately get the following theorem:

Theorem 1 Let K be an infinite field. Then the substitution homomorphism $\alpha: K[T] \longrightarrow A$ is injective.

Now let $x_1, \ldots, x_d \in K^n$ be d distinct points, $x_i = (x_{i1}, \ldots, x_{in})$. We want to construct a polynomial that takes given (not necessarily distinct) values a_1, \ldots, a_d at these points. To this end consider the polynomials

$$\psi_k := \prod_{i \in \{1, \dots, d\} \setminus \{k\}} \prod_{j \in \{1, \dots, n \mid x_{ij} \neq x_{kj}\}} (T_j - x_{ij}).$$

For $i \neq k$ at least one coordinate $x_{ij} \neq x_{kj}$, therefore $\psi_k(x_i) = 0$. On the other hand $\psi_k(x_k) \neq 0$. Hence for $\varphi_k := \psi_k/\psi_k(x_k)$ we conclude:

Lemma 2 For each k = 1, ...d there is a polynomial $\varphi_k \in K[T]$ with all partial degrees $\leq d-1$ and

$$\varphi_k(x_i) = \begin{cases} 1 & \text{for } i = k, \\ 0 & \text{for } i \text{ otherwise.} \end{cases}$$

Taking the linear combination $\varphi = \sum a_k \varphi_k$ we get:

Theorem 2 Let $x_1, \ldots, x_d \in K^n$ be d distinct points, and $a_1, \ldots, a_d \in K$. Then there is a polynomial $\varphi \in K[T_1, \ldots, T_n]$ of partial degree $\leq d-1$ in each T_i such that $\varphi(x_k) = a_k$ for $k = 1, \ldots d$.

Note that the proof was constructive but didn't care about the most efficient algorithm.

2 Polynomial Functions over Finite Fields

Let K be finite with #K = q elements. Then α is

- not injective, because K[T] is infinite, but $\#A = q^{q^n}$.
- surjective, because $F \in A$ is completely determined by the q^n pairs (x, F(x)), $x \in K^n$, that is by the graph of F; interpolation gives a polynomial $\varphi \in K[T]$ with $\varphi(x) = F(x)$ for all $x \in K^n$, i. e., $\alpha(\varphi) = F$. A proof follows directly from Theorem 2, however in the following we give an independent proof.

The polynomial

$$\varphi = \prod_{i=1}^{n} \left(-T_i^{q-1} + 1 \right) \in K[T]$$

has partial degree q-1 in each T_i .

Lemma 3 The function $\alpha(\varphi)$ is the indicator function

$$\varphi(x) = \begin{cases} 1 & \text{for } x = 0, \\ 0 & \text{for } x \in K^n \text{ otherwise.} \end{cases}$$

Proof. This is immediate from $a^{q-1} = 1$ for $a \in K^{\times}$. \diamondsuit

Corollary 1 For each $a \in K$ there is a polynomial $\varphi_a \in K[T]$ with all partial degrees q-1 and

$$\varphi_a(x) = \begin{cases} 1 & \text{for } x = a, \\ 0 & \text{for } x \in K^n \text{ otherwise.} \end{cases}$$

Proof. Take $\varphi_a = \varphi(T_1 - a_1, \dots, T_n - a_n)$. \diamondsuit

Now let $F: K^n \longrightarrow K$ be given. Then the polynomial

$$\varphi = \sum_{a \in K^n} F(a)\varphi_a \in K[T]$$

has all partial degrees $\leq q-1$, and $\varphi(x)=F(x)$ for all $x\in K^n$. This proves the following theorem:

Theorem 3 Let K be a finite field with q elements, and $n \in \mathbb{N}$. Then each function $F: K^n \longrightarrow K$ is given by a polynomial $\varphi \in K[T_1, \ldots, T_n]$ of partial degree $\leq q-1$ in each T_i .

Corollary 2 Each function $F: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ is given by a polynomial $\varphi \in \mathbb{F}_2[T_1, \dots, T_n]$ that is linear in each T_i .

Corollary 3 The kernel of the substitution homomorphism α is the ideal $\mathfrak{a} = (T_1^q - T_1, \dots, T_n^q - T_n) \subseteq K[T]$.

Proof. Clearly $\mathfrak{a} \subseteq \operatorname{Ker} \alpha$. Because $\operatorname{Dim} K[T]/\mathfrak{a} = q^n = \operatorname{Dim} A$, and α is surjective, we have $\mathfrak{a} = \operatorname{Ker} \alpha$. \diamond

Corollary 4 Let $m, n \in \mathbb{N}$. Then each map $F: K^n \longrightarrow K^m$ is given by an m-tuple $(\varphi_1, \ldots, \varphi_m)$ of polynomials $\varphi_i \in K[T_1, \ldots, T_n]$ of partial degree $\leq q-1$ in each T_i .

Corollary 5 Each map $F: V \longrightarrow W$ between finite dimensional K-vectorspaces V and W is polynomial with partial degrees each $\leq q-1$.