Quadratic Equations in Finite Fields of Characteristic 2

Klaus Pommerening

May 2000 - english version February 2012

Quadratic equations over fields of characteristic $\neq 2$ are solved by the well known quadratic formula that up to rational operations reduces the general case to the square root function, the inverse of the square map $x \mapsto x^{2}$. The solvability of a quadratic equation can be decided by looking at the discriminant - essentially the argument of the square root in the formula.

The situation in characteristic 2 is somewhat different.

1 The general solution

Let K be a field of characteristic 2 . We want to study the roots of a quadratic polynomial

$$
f=a T^{2}+b T+c \in K[T] \quad \text { with } a \neq 0 .
$$

The case $b=0$ - the degenerate case - is very simple. We have

$$
a \cdot f=(a T)^{2}+a c=g(a T) \quad \text { with } g=T^{2}+a c \in K[T] .
$$

The squaring map $x \mapsto x^{2}$ is an \mathbb{F}_{2}-linear monomorphism of K, an automorphism if K is perfect, for example finite. Therefore $a c$ has at most one square root in K, and exactly one square root in the algebraic closure \bar{K}. Let $a c=d^{2}$. Then g has exactly the one root d, and f has exactly the one root $\frac{d}{a}$ in \bar{K}. For an explicit determination we have to extract the square root from $a c$ in K or in an extension field L of degree 2 of K, i. e. to invert the square map in K or L. Remember that the square map is linear over \mathbb{F}_{2}. For examples see Section 3 below.

Now let $b \neq 0$. Because the derivative $f^{\prime}=b$ is constant $\neq 0, f$ has two distinct (simple) roots in the algebraic closure \bar{K}. The transformation

$$
\frac{a}{b^{2}} \cdot f=\left(\frac{a}{b} T\right)^{2}+\frac{a}{b} T+\frac{a c}{b^{2}}=g\left(\frac{a}{b} T\right) \quad \text { with } g=T^{2}+T+d, d=\frac{a c}{b^{2}} \in K,
$$

reduces our task to the roots of the polynomial g. Let u be a root of g in \bar{K}. Then $u+1$ is the other root by Vieta's formula, and $u(u+1)=d$, that is $d=u^{2}+u$. Therefore the problem for the general quadratic polynomial is reduced to the Artin-Schreier polynomial $T^{2}+T+d$, and thereby to inverting the Artin-Schreier map $K \longrightarrow K$, $x \mapsto x^{2}+x$. Note that this map also is linear. However in general it is neither injective
nor surjective. Its kernel is the set of elements x with $x^{2}=x$, that is the prime field \mathbb{F}_{2} inside of K. The preimages u and $u+1$ of a given element $d \in K$ may be found in K or in a quadratic extension $L=K(u)$ of K. To get the roots of f we set $d=\frac{a c}{b^{2}}$ and determine a preimage u of d under the Artin-Schreier map. Then a root of f is $x=\frac{b u}{a}$; the other root is $x+\frac{b}{a}$.

2 The case of a finite field

Now we consider the case where K is finite. Then K has 2^{n} elements for some n, and coincides with the field $\mathbb{F}_{2^{n}}$ up to isomorphism. The trace of an element $x \in K$ is given by the formula

$$
\operatorname{Tr}(x)=x+x^{2}+\cdots+x^{2^{n-1}}
$$

It is an element of the prime field \mathbb{F}_{2}, i. e, 0 or 1 , and $\operatorname{Tr}\left(x^{2}\right)=\operatorname{Tr}(x)$.
Lemma 1 Let K be a finite field with 2^{n} elements. Then the polynomial $g=T^{2}+T+d \in K[T]$ has a root u in K, if and only if $\operatorname{Tr}(d)=0$. In this case $g=h(T+u)$ with $h=T^{2}+T$.

Proof. " \Longrightarrow ": If $u \in K$, then $\operatorname{Tr}(d)=\operatorname{Tr}\left(u^{2}\right)+\operatorname{Tr}(u)=0$.
$" \Longleftarrow ":$ For the converse let $\operatorname{Tr}(d)=0$. Then

$$
\begin{aligned}
0 & =\operatorname{Tr}(d)=d+d^{2}+\cdots+d^{2^{n-1}} \\
& =\left(u^{2}+u\right)+\left(u^{4}+u^{2}\right)+\cdots+\left(u^{2^{n}}+u^{2^{n-1}}\right) \\
& =u+u^{2^{n}}
\end{aligned}
$$

hence $u^{2^{n}}=u$, and therefore $u \in K$.
The addendum is trivial.

Remark Let L be a quadratic extension of K, and $\tilde{\operatorname{Tr}}: L \longrightarrow \mathbb{F}_{2}$ its trace function. Then $L \cong F_{2^{2 n}}$ and

$$
\tilde{\operatorname{Tr}}(x)=x+x^{2}+\cdots+x^{2^{n-1}}+x^{2^{n}}+\cdots+x^{2^{2 n-1}}
$$

For $x \in K$ we have $x^{2^{n}}=x$, hence $\operatorname{Tr}(x)=0$. This is consistent with the statement of the lemma that $g=T^{2}+T+d \in K[T]$ has a root in L.

Corollary $1 g=T^{2}+T+d \in K[T]$ is irreducible, if and only if $\operatorname{Tr}(d)=1$. If this is the case, then $g=h(T+r)$ with $h=T^{2}+T+e$, where e is an arbitrarily chosen element of K with $\operatorname{Trace} \operatorname{Tr}(e)=1$, and $r \in K$ is a solution of $r^{2}+r=d+e$.

Proof. g is irreducible in $K[T]$, if and only if it has no root in K. The addendum follows because $d+e$ has trace 0 , hence has the form $r^{2}+r . \diamond$

Note 1. The lemma is a special case of Hilbert's Theorem 90, additive form.
Note 2. The Artin-Schreier Theorem generalizes these results to arbitrary finite base fields \mathbb{F}_{q} instead of \mathbb{F}_{2}, and to polynomials $T^{q}-T-d$. It characterizes the cyclic field extensions of degree q.

We have shown:
Proposition 1 (Roots) Let K be a finite field of characteristic 2, and let $f=a T^{2}+b T+c \in K[T]$ be a polynomial of degree 2. Then:
(i) f has exactly one root in $K \Longleftrightarrow b=0$.
(ii) f has exactly two roots in $K \Longleftrightarrow b \neq 0$ and $\operatorname{Tr}\left(\frac{a c}{b^{2}}\right)=0$.
(iii) f has no root in $K \Longleftrightarrow b \neq 0$ and $\operatorname{Tr}\left(\frac{a c}{b^{2}}\right)=1$.

Proposition 2 (Normal form) Let K be a finite field of characteristic 2, and $f=$ $a T^{2}+b T+c \in K[T]$ be a polynomial of degree 2 i. e. $a \neq 0$. Then there is $a k \in K^{\times}$ and an affine transformation $\alpha: K \longrightarrow K, \alpha(x)=r x+s$ with $r \in K^{\times}$and $s \in K$, such that

$$
k \cdot f \circ \alpha=T^{2}, \quad T^{2}+T, \quad \text { or } \quad T^{2}+T+e,
$$

where $e \in K$ is a fixed (but arbitrarily chosen) element of $\operatorname{Trace} \operatorname{Tr}(e)=1$. In the case of odd $n=\operatorname{dim} K$ we may chose $e=1$.

3 Examples

As we have seen the key to solving quadratic equations in characteristic 2 is solving systems of linear equations whose coefficient matrix is the matrix of the ARTIN-SCHREIER map, or the square map in the degenerate case. To explicitly solve quadratic equations over a finite field K of characteristic 2 we first have to fix a basis of K over \mathbb{F}_{2}. There are several options, and none of them is canonical. One option is to build a basis successively along a chain of intermediate fields between \mathbb{F}_{2} and K.

For this we first consider a field extension L of K of degree 2 . If K has 2^{n} elements, then the cardinality of L is $2^{2 n}$, and we may construct L from K by adjoining a root t of an irreducible degree 2 polynomial $T^{2}+T+d \in K[T]$ where $\operatorname{Tr}(d)=1$, see Lemma 1 . Then a basis of L over K is $\{1, t\}$, and if $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of K over \mathbb{F}_{2}, then $\left\{u_{1}, \ldots, u_{n}, t u_{1}, \ldots, t u_{n}\right\}$ is a basis of L over \mathbb{F}_{2}.

Now the square map has the same effect on the u_{i} in L as in K, and

$$
\left(t u_{i}\right)^{2}=t^{2} u_{i}^{2}=(t+d) u_{i}^{2}=t \cdot u_{i}^{2}+d \cdot u_{i}^{2} .
$$

If we denote by Q_{n} resp. $Q_{2 n}$ the matrices of the square maps of K or L with respect to the chosen bases, then

$$
Q_{2 n}=\left(\begin{array}{cc}
Q_{n} & L_{d} Q_{n} \\
0 & Q_{n}
\end{array}\right)
$$

where L_{d} is the matrix of the left multiplication by d in K. The Q_{n} in the right lower corner of the matrix comes from the fact that $t \cdot u_{i}^{2}=t \cdot \sum q_{i j} u_{j}=\sum q_{i j} t u_{j}$ where the $q_{i j}$ are the matrix coefficients of Q_{n}.

Note that for odd n we may choose $d=1$, hence $L_{d}=\mathbf{1}_{n}$, the $n \times n$ unit matrix.
The matrix A_{n} of the Artin-Schreier map is $\mathbf{1}_{n}+Q_{n}$, this means that in Q_{n} we simply have to complement the diagonal entries, i. e. interchange 0 and 1.

The case $n=1$

Let us first consider the simplest case $K=\mathbb{F}_{2}$. Its \mathbb{F}_{2}-basis is $\{1\}$, and the matrices are the 1×1-matrices $Q_{n}=(1)$ and $A_{n}=(0)$. Solving quadratic equations is trivial.

The case $n=2$

The field \mathbb{F}_{4} is an extension of \mathbb{F}_{2} of degree 2 . An \mathbb{F}_{2}-basis is $\{1, t\}$ where $t^{2}=t+1$. The general consideration above gives

$$
Q_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Solving quadratic equations (in the nondegenerate case) amounts to finding a preimage $x=\left(x_{1}, x_{2}\right)$ of $b=\left(b_{1}, b_{2}\right)$ in the 2-dimensional vectorspace \mathbb{F}_{2}^{2} under A_{2}. This gives a system of 2 linear equations over \mathbb{F}_{2} :

$$
\binom{x_{2}}{0}=A_{2}\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}}
$$

This is solvable if and only if $b_{2}=0$, and all (in fact two) solutions are

$$
x_{1} \text { arbitrary (i. e. } 0 \text { or } 1 \text {) and } x_{2}=b_{1} .
$$

For later use we note that $\operatorname{Tr}(t)=t+t^{2}=1$ and

$$
L_{t}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

The case $n=3$
The field \mathbb{F}_{8} has an \mathbb{F}_{2}-basis $\left\{1, s, s^{2}\right\}$ where $s^{3}+s=1$. The square map maps $1 \mapsto 1$, $s \mapsto s^{2}, s^{2} \mapsto s^{2}+s$. We have the matrices

$$
Q_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

For preimages under the Artin-Schreier map we have the system of 3 linear equations $A_{3} x=b$, or

$$
\left(\begin{array}{c}
0 \\
x_{2}+x_{3} \\
x_{2}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

It has a solution if and only if $b_{1}=0$, and then its two solutions are

$$
x_{1} \text { arbitrary, } \quad x_{2}=b_{3}, \quad x_{3}=b_{2}+b_{3}
$$

The case $n=4$

The field \mathbb{F}_{16} is an extension of \mathbb{F}_{4} of degree 2 and has an \mathbb{F}_{2}-basis $\{1, t, u, t u\}$ where $u^{2}+u=t$. We have

$$
Q_{4}=\left(\begin{array}{cc}
Q_{2} & L_{t} Q_{2} \\
0 & Q_{2}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad A_{4}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The system of 4 linear equations to solve becomes $A_{4} x=b$, or

$$
\left(\begin{array}{c}
x_{2}+x_{4} \\
x_{3} \\
x_{4} \\
0
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

It is solvable if and only if $b_{4}=0$, and then its two solutions are

$$
x_{1} \text { arbitrary, } \quad x_{2}=b_{1}+b_{3}, \quad x_{3}=b_{2}, \quad x_{4}=b_{3} .
$$

For use with \mathbb{F}_{256} we note that $\operatorname{Tr}(t u)=1$ and

$$
L_{t u}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), \quad L_{t u} Q_{4}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

The case $n=5$
The field F_{32} has an \mathbb{F}_{2}-basis $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ with $t^{5}=t^{2}+1$. Squaring maps $1 \mapsto 1$, $t \mapsto t^{2}, t^{2} \mapsto t^{4}, t^{3} \mapsto t^{3}+t, t^{4} \mapsto t^{3}+t^{2}+1$. Therefore

$$
Q_{5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \quad A_{5}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

The system $A_{5} x=b$ of 5 linear equations is

$$
\left(\begin{array}{c}
x_{5} \\
x_{2}+x_{4} \\
x_{2}+x_{3}+x_{5} \\
x_{5} \\
x_{3}+x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right)
$$

It has a solution if and only if $b_{1}=b_{4}$, and then its two solutions are

$$
x_{1} \text { arbitrary, } \quad x_{2}=b_{3}+b_{5}, \quad x_{3}=b_{1}+b_{5}, \quad x_{4}=b_{2}+b_{3}+b_{5}, \quad x_{5}=b_{1}
$$

The case $n=6$
The field \mathbb{F}_{64} is an extension of \mathbb{F}_{8} of degree 2 . Therefore - after choosing a suitable basis-we have

$$
Q_{6}=\left(\begin{array}{cc}
Q_{3} & Q_{3} \\
0 & Q_{3}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \quad A_{6}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

The system of 6 linear equations to solve becomes $A_{6} x=b$, or

$$
\left(\begin{array}{c}
x_{4} \\
x_{2}+x_{3}+x_{6} \\
x_{2}+x_{5}+x_{6} \\
0 \\
x_{5}+x_{6} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6}
\end{array}\right)
$$

It is solvable if and only if $b_{4}=0$, and then its two solutions are

$$
x_{1} \text { arbitrary, } \quad x_{2}=b_{3}+b_{5}, \quad x_{3}=b_{2}+b_{3}+b_{6}, \quad x_{4}=b_{1}, \quad x_{5}=b_{6}, \quad x_{6}=b_{5}+b_{6}
$$

The case $n=8$
As a final example we consider \mathbb{F}_{256}, a quadratic extension of \mathbb{F}_{16}. It has a basis $\{1, t, u, t u, v, t v, u v, t u v\}$ with t and u as in \mathbb{F}_{16} and $v^{2}=v+t u$. By the general principle
and knowing $L_{t u}$ we have

$$
Q_{8}=\left(\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad A_{8}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Solving for preimages of A_{8} runs as before.

