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Quadratic equations over fields of characteristic 6= 2 are solved by the well known
quadratic formula that up to rational operations reduces the general case to the square
root function, the inverse of the square map x 7→ x2. The solvability of a quadratic
equation can be decided by looking at the discriminant—essentially the argument of the
square root in the formula.

The situation in characteristic 2 is somewhat different.

1 The general solution

Let K be a field of characteristic 2. We want to study the roots of a quadratic
polynomial

f = aT 2 + bT + c ∈ K[T ] with a 6= 0.

The case b = 0—the degenerate case—is very simple. We have

a · f = (aT )2 + ac = g(aT ) with g = T 2 + ac ∈ K[T ].

The squaring map x 7→ x2 is an F2-linear monomorphism of K, an automorphism if K is
perfect, for example finite. Therefore ac has at most one square root in K, and exactly
one square root in the algebraic closure K̄. Let ac = d2. Then g has exactly the one
root d, and f has exactly the one root d

a in K̄. For an explicit determination we have to
extract the square root from ac in K or in an extension field L of degree 2 of K, i. e. to
invert the square map in K or L. Remember that the square map is linear over F2. For
examples see Section 3 below.

Now let b 6= 0. Because the derivative f ′ = b is constant 6= 0, f has two distinct
(simple) roots in the algebraic closure K̄. The transformation

a

b2
· f = (

a

b
T )2 +

a

b
T +

ac

b2
= g(

a

b
T ) with g = T 2 + T + d, d =

ac

b2
∈ K,

reduces our task to the roots of the polynomial g. Let u be a root of g in K̄. Then u+ 1
is the other root by Vieta’s formula, and u(u + 1) = d, that is d = u2 + u. Therefore
the problem for the general quadratic polynomial is reduced to the Artin-Schreier
polynomial T 2 + T + d, and thereby to inverting the Artin-Schreier map K −→ K,
x 7→ x2 + x. Note that this map also is linear. However in general it is neither injective
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nor surjective. Its kernel is the set of elements x with x2 = x, that is the prime field
F2 inside of K. The preimages u and u + 1 of a given element d ∈ K may be found
in K or in a quadratic extension L = K(u) of K. To get the roots of f we set d = ac

b2

and determine a preimage u of d under the Artin-Schreier map. Then a root of f is
x = bu

a ; the other root is x+ b
a .

2 The case of a finite field

Now we consider the case where K is finite. Then K has 2n elements for some n, and
coincides with the field F2n up to isomorphism. The trace of an element x ∈ K is given
by the formula

Tr(x) = x+ x2 + · · ·+ x2
n−1

.

It is an element of the prime field F2, i. e, 0 or 1, and Tr(x2) = Tr(x).

Lemma 1 Let K be a finite field with 2n elements. Then the polynomial
g = T 2 + T + d ∈ K[T ] has a root u in K, if and only if Tr(d) = 0. In this case
g = h(T + u) with h = T 2 + T .

Proof. “=⇒”: If u ∈ K, then Tr(d) = Tr(u2) + Tr(u) = 0.
“⇐=”: For the converse let Tr(d) = 0. Then

0 = Tr(d) = d+ d2 + · · ·+ d2
n−1

= (u2 + u) + (u4 + u2) + · · ·+ (u2
n

+ u2
n−1

)

= u+ u2
n
,

hence u2
n

= u, and therefore u ∈ K.
The addendum is trivial. 3

Remark Let L be a quadratic extension of K, and T̃r : L −→ F2 its trace function.
Then L ∼= F22n and

T̃r(x) = x+ x2 + · · ·+ x2
n−1

+ x2
n

+ · · ·+ x2
2n−1

.

For x ∈ K we have x2
n

= x, hence T̃r(x) = 0. This is consistent with the statement
of the lemma that g = T 2 + T + d ∈ K[T ] has a root in L.

Corollary 1 g = T 2 + T + d ∈ K[T ] is irreducible, if and only if Tr(d) = 1. If this is
the case, then g = h(T +r) with h = T 2 +T +e, where e is an arbitrarily chosen element
of K with Trace Tr(e) = 1, and r ∈ K is a solution of r2 + r = d+ e.

Proof. g is irreducible in K[T ], if and only if it has no root in K. The addendum follows
because d+ e has trace 0, hence has the form r2 + r. 3
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Note 1. The lemma is a special case of Hilbert’s Theorem 90, additive form.

Note 2. The Artin-Schreier Theorem generalizes these results to arbitrary finite
base fields Fq instead of F2, and to polynomials T q − T − d. It characterizes the
cyclic field extensions of degree q.

We have shown:

Proposition 1 (Roots) Let K be a finite field of characteristic 2, and let
f = aT 2 + bT + c ∈ K[T ] be a polynomial of degree 2. Then:

(i) f has exactly one root in K ⇐⇒ b = 0.

(ii) f has exactly two roots in K ⇐⇒ b 6= 0 and Tr(ac
b2

) = 0.

(iii) f has no root in K ⇐⇒ b 6= 0 and Tr(ac
b2

) = 1.

Proposition 2 (Normal form) Let K be a finite field of characteristic 2, and f =
aT 2 + bT + c ∈ K[T ] be a polynomial of degree 2 i. e. a 6= 0. Then there is a k ∈ K×
and an affine transformation α : K −→ K, α(x) = rx+ s with r ∈ K× and s ∈ K, such
that

k · f ◦ α = T 2, T 2 + T, or T 2 + T + e,

where e ∈ K is a fixed (but arbitrarily chosen) element of Trace Tr(e) = 1. In the case
of odd n = dimK we may chose e = 1.

3 Examples

As we have seen the key to solving quadratic equations in characteristic 2 is solving
systems of linear equations whose coefficient matrix is the matrix of the Artin-Schreier
map, or the square map in the degenerate case. To explicitly solve quadratic equations
over a finite field K of characteristic 2 we first have to fix a basis of K over F2. There are
several options, and none of them is canonical. One option is to build a basis successively
along a chain of intermediate fields between F2 and K.

For this we first consider a field extension L of K of degree 2. If K has 2n elements,
then the cardinality of L is 22n, and we may construct L from K by adjoining a root t
of an irreducible degree 2 polynomial T 2 +T + d ∈ K[T ] where Tr(d) = 1, see Lemma 1.
Then a basis of L over K is {1, t}, and if {u1, . . . , un} is a basis of K over F2, then
{u1, . . . , un, tu1, . . . , tun} is a basis of L over F2.

Now the square map has the same effect on the ui in L as in K, and

(tui)
2 = t2u2i = (t+ d)u2i = t · u2i + d · u2i .

If we denote by Qn resp. Q2n the matrices of the square maps of K or L with respect
to the chosen bases, then

Q2n =

(
Qn LdQn

0 Qn

)
,
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where Ld is the matrix of the left multiplication by d in K. The Qn in the right lower
corner of the matrix comes from the fact that t · u2i = t ·

∑
qijuj =

∑
qijtuj where the

qij are the matrix coefficients of Qn.
Note that for odd n we may choose d = 1, hence Ld = 1n, the n× n unit matrix.
The matrix An of the Artin-Schreier map is 1n + Qn, this means that in Qn we

simply have to complement the diagonal entries, i. e. interchange 0 and 1.

The case n = 1

Let us first consider the simplest case K = F2. Its F2-basis is {1}, and the matrices
are the 1× 1-matrices Qn = (1) and An = (0). Solving quadratic equations is trivial.

The case n = 2

The field F4 is an extension of F2 of degree 2. An F2-basis is {1, t} where t2 = t+ 1.
The general consideration above gives

Q2 =

(
1 1
0 1

)
, A2 =

(
0 1
0 0

)
.

Solving quadratic equations (in the nondegenerate case) amounts to finding a preimage
x = (x1, x2) of b = (b1, b2) in the 2-dimensional vectorspace F2

2 under A2. This gives a
system of 2 linear equations over F2:(

x2
0

)
= A2

(
x1
x2

)
=

(
b1
b2

)
.

This is solvable if and only if b2 = 0, and all (in fact two) solutions are

x1 arbitrary (i. e. 0 or 1) and x2 = b1.

For later use we note that Tr(t) = t+ t2 = 1 and

Lt =

(
0 1
1 1

)
.

The case n = 3

The field F8 has an F2-basis {1, s, s2} where s3 +s = 1. The square map maps 1 7→ 1,
s 7→ s2, s2 7→ s2 + s. We have the matrices

Q3 =

1 0 0
0 0 1
0 1 1

 , A3 =

0 0 0
0 1 1
0 1 0

 .
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For preimages under the Artin-Schreier map we have the system of 3 linear equations
A3x = b, or  0

x2 + x3
x2

 =

b1b2
b3

 .

It has a solution if and only if b1 = 0, and then its two solutions are

x1 arbitrary, x2 = b3, x3 = b2 + b3.

The case n = 4

The field F16 is an extension of F4 of degree 2 and has an F2-basis {1, t, u, tu} where
u2 + u = t. We have

Q4 =

(
Q2 LtQ2

0 Q2

)
=


1 1 0 1
0 1 1 0
0 0 1 1
0 0 0 1

 , A4 =


0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0

 .

The system of 4 linear equations to solve becomes A4x = b, or
x2 + x4
x3
x4
0

 =


b1
b2
b3
b4

 .

It is solvable if and only if b4 = 0, and then its two solutions are

x1 arbitrary, x2 = b1 + b3, x3 = b2, x4 = b3.

For use with F256 we note that Tr(tu) = 1 and

Ltu =


0 0 1 1
0 0 1 0
0 1 0 1
1 1 1 1

 , LtuQ4 =


0 0 1 0
0 0 1 1
0 1 1 1
1 0 0 1

 .

The case n = 5

The field F32 has an F2-basis {1, t, t2, t3, t4} with t5 = t2 + 1. Squaring maps 1 7→ 1,
t 7→ t2, t2 7→ t4, t3 7→ t3 + t, t4 7→ t3 + t2 + 1. Therefore

Q5 =


1 0 0 0 1
0 0 0 1 0
0 1 0 0 1
0 0 0 1 1
0 0 1 0 0

 , A5 =


0 0 0 0 1
0 1 0 1 0
0 1 1 0 1
0 0 0 0 1
0 0 1 0 1

 .
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The system A5x = b of 5 linear equations is
x5

x2 + x4
x2 + x3 + x5

x5
x3 + x5

 =


b1
b2
b3
b4
b5

 .

It has a solution if and only if b1 = b4, and then its two solutions are

x1 arbitrary, x2 = b3 + b5, x3 = b1 + b5, x4 = b2 + b3 + b5, x5 = b1.

The case n = 6

The field F64 is an extension of F8 of degree 2. Therefore—after choosing a suitable
basis—we have

Q6 =

(
Q3 Q3

0 Q3

)
=



1 0 0 1 0 0
0 0 1 0 0 1
0 1 1 0 1 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

 , A6 =



0 0 0 1 0 0
0 1 1 0 0 1
0 1 0 0 1 1
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0

 .

The system of 6 linear equations to solve becomes A6x = b, or

x4
x2 + x3 + x6
x2 + x5 + x6

0
x5 + x6
x5

 =



b1
b2
b3
b4
b5
b6

 .

It is solvable if and only if b4 = 0, and then its two solutions are

x1 arbitrary, x2 = b3 + b5, x3 = b2 + b3 + b6, x4 = b1, x5 = b6, x6 = b5 + b6.

The case n = 8

As a final example we consider F256, a quadratic extension of F16. It has a basis
{1, t, u, tu, v, tv, uv, tuv} with t and u as in F16 and v2 = v+ tu. By the general principle
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and knowing Ltu we have

Q8 =



1 1 0 1 0 0 1 0
0 1 1 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


, A8 =



0 1 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


.

Solving for preimages of A8 runs as before.
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