Quadratic Equations in Finite Fields of Characteristic 2

Klaus Pommerening

May 2000 – english version February 2012

Quadratic equations over fields of characteristic $\neq 2$ are solved by the well known quadratic formula that up to rational operations reduces the general case to the square root function, the inverse of the square map $x \mapsto x^2$. The solvability of a quadratic equation can be decided by looking at the discriminant—essentially the argument of the square root in the formula.

The situation in characteristic 2 is somewhat different.

1 The general solution

Let K be a field of characteristic 2. We want to study the roots of a quadratic polynomial

$$f = aT^2 + bT + c \in K[T]$$
 with $a \neq 0$.

The case b = 0—the degenerate case—is very simple. We have

$$a \cdot f = (aT)^2 + ac = g(aT)$$
 with $g = T^2 + ac \in K[T]$.

The squaring map $x \mapsto x^2$ is an \mathbb{F}_2 -linear monomorphism of K, an automorphism if K is perfect, for example finite. Therefore ac has at most one square root in K, and exactly one square root in the algebraic closure \overline{K} . Let $ac = d^2$. Then g has exactly the one root d, and f has exactly the one root $\frac{d}{a}$ in \overline{K} . For an explicit determination we have to extract the square root from ac in K or in an extension field L of degree 2 of K, i. e. to invert the square map in K or L. Remember that the square map is linear over \mathbb{F}_2 . For examples see Section 3 below.

Now let $b \neq 0$. Because the derivative f' = b is constant $\neq 0$, f has two distinct (simple) roots in the algebraic closure \bar{K} . The transformation

$$\frac{a}{b^2}\cdot f=(\frac{a}{b}\,T)^2+\frac{a}{b}\,T+\frac{ac}{b^2}=g(\frac{a}{b}\,T)\quad\text{with }g=T^2+T+d,\;d=\frac{ac}{b^2}\in K,$$

reduces our task to the roots of the polynomial g. Let u be a root of g in \overline{K} . Then u + 1 is the other root by VIETA's formula, and u(u+1) = d, that is $d = u^2 + u$. Therefore the problem for the general quadratic polynomial is reduced to the ARTIN-SCHREIER polynomial $T^2 + T + d$, and thereby to inverting the ARTIN-SCHREIER map $K \longrightarrow K$, $x \mapsto x^2 + x$. Note that this map also is linear. However in general it is neither injective

nor surjective. Its kernel is the set of elements x with $x^2 = x$, that is the prime field \mathbb{F}_2 inside of K. The preimages u and u + 1 of a given element $d \in K$ may be found in K or in a quadratic extension L = K(u) of K. To get the roots of f we set $d = \frac{ac}{b^2}$ and determine a preimage u of d under the ARTIN-SCHREIER map. Then a root of f is $x = \frac{bu}{a}$; the other root is $x + \frac{b}{a}$.

2 The case of a finite field

Now we consider the case where K is finite. Then K has 2^n elements for some n, and coincides with the field \mathbb{F}_{2^n} up to isomorphism. The trace of an element $x \in K$ is given by the formula

$$\operatorname{Tr}(x) = x + x^2 + \dots + x^{2^{n-1}}$$

It is an element of the prime field \mathbb{F}_2 , i. e, 0 or 1, and $\operatorname{Tr}(x^2) = \operatorname{Tr}(x)$.

Lemma 1 Let K be a finite field with 2^n elements. Then the polynomial $g = T^2 + T + d \in K[T]$ has a root u in K, if and only if Tr(d) = 0. In this case g = h(T + u) with $h = T^2 + T$.

Proof. " \Longrightarrow ": If $u \in K$, then $\operatorname{Tr}(d) = \operatorname{Tr}(u^2) + \operatorname{Tr}(u) = 0$. " \Leftarrow ": For the converse let $\operatorname{Tr}(d) = 0$. Then

$$0 = \operatorname{Tr}(d) = d + d^{2} + \dots + d^{2^{n-1}}$$

= $(u^{2} + u) + (u^{4} + u^{2}) + \dots + (u^{2^{n}} + u^{2^{n-1}})$
= $u + u^{2^{n}}$,

hence $u^{2^n} = u$, and therefore $u \in K$.

The addendum is trivial. \diamondsuit

Remark Let L be a quadratic extension of K, and $\operatorname{Tr} : L \longrightarrow \mathbb{F}_2$ its trace function. Then $L \cong F_{2^{2n}}$ and

$$\tilde{\mathrm{Tr}}(x) = x + x^2 + \dots + x^{2^{n-1}} + x^{2^n} + \dots + x^{2^{2n-1}}.$$

For $x \in K$ we have $x^{2^n} = x$, hence $\tilde{Tr}(x) = 0$. This is consistent with the statement of the lemma that $g = T^2 + T + d \in K[T]$ has a root in L.

Corollary 1 $g = T^2 + T + d \in K[T]$ is irreducible, if and only if Tr(d) = 1. If this is the case, then g = h(T+r) with $h = T^2 + T + e$, where e is an arbitrarily chosen element of K with Trace Tr(e) = 1, and $r \in K$ is a solution of $r^2 + r = d + e$.

Proof. g is irreducible in K[T], if and only if it has no root in K. The addendum follows because d + e has trace 0, hence has the form $r^2 + r$.

Note 1. The lemma is a special case of HILBERT'S Theorem 90, additive form.

Note 2. The ARTIN-SCHREIER Theorem generalizes these results to arbitrary finite base fields \mathbb{F}_q instead of \mathbb{F}_2 , and to polynomials $T^q - T - d$. It characterizes the cyclic field extensions of degree q.

We have shown:

Proposition 1 (Roots) Let K be a finite field of characteristic 2, and let $f = aT^2 + bT + c \in K[T]$ be a polynomial of degree 2. Then:

- (i) f has exactly one root in $K \iff b = 0$.
- (ii) f has exactly two roots in $K \iff b \neq 0$ and $\operatorname{Tr}(\frac{ac}{b^2}) = 0$.
- (iii) f has no root in $K \iff b \neq 0$ and $\operatorname{Tr}(\frac{ac}{b^2}) = 1$.

Proposition 2 (Normal form) Let K be a finite field of characteristic 2, and $f = aT^2 + bT + c \in K[T]$ be a polynomial of degree 2 i. e. $a \neq 0$. Then there is a $k \in K^{\times}$ and an affine transformation $\alpha \colon K \longrightarrow K$, $\alpha(x) = rx + s$ with $r \in K^{\times}$ and $s \in K$, such that

$$k \cdot f \circ \alpha = T^2, \quad T^2 + T, \quad or \quad T^2 + T + e,$$

where $e \in K$ is a fixed (but arbitrarily chosen) element of Trace Tr(e) = 1. In the case of odd $n = \dim K$ we may chose e = 1.

3 Examples

As we have seen the key to solving quadratic equations in characteristic 2 is solving systems of linear equations whose coefficient matrix is the matrix of the ARTIN-SCHREIER map, or the square map in the degenerate case. To *explicitly* solve quadratic equations over a finite field K of characteristic 2 we first have to fix a basis of K over \mathbb{F}_2 . There are several options, and none of them is canonical. One option is to build a basis successively along a chain of intermediate fields between \mathbb{F}_2 and K.

For this we first consider a field extension L of K of degree 2. If K has 2^n elements, then the cardinality of L is 2^{2n} , and we may construct L from K by adjoining a root tof an irreducible degree 2 polynomial $T^2 + T + d \in K[T]$ where Tr(d) = 1, see Lemma 1. Then a basis of L over K is $\{1, t\}$, and if $\{u_1, \ldots, u_n\}$ is a basis of K over \mathbb{F}_2 , then $\{u_1, \ldots, u_n, tu_1, \ldots, tu_n\}$ is a basis of L over \mathbb{F}_2 .

Now the square map has the same effect on the u_i in L as in K, and

$$(tu_i)^2 = t^2 u_i^2 = (t+d)u_i^2 = t \cdot u_i^2 + d \cdot u_i^2$$

If we denote by Q_n resp. Q_{2n} the matrices of the square maps of K or L with respect to the chosen bases, then

$$Q_{2n} = \begin{pmatrix} Q_n & L_d Q_n \\ 0 & Q_n \end{pmatrix} \,,$$

where L_d is the matrix of the left multiplication by d in K. The Q_n in the right lower corner of the matrix comes from the fact that $t \cdot u_i^2 = t \cdot \sum q_{ij} u_j = \sum q_{ij} t u_j$ where the q_{ij} are the matrix coefficients of Q_n .

Note that for odd n we may choose d = 1, hence $L_d = \mathbf{1}_n$, the $n \times n$ unit matrix.

The matrix A_n of the ARTIN-SCHREIER map is $\mathbf{1}_n + Q_n$, this means that in Q_n we simply have to complement the diagonal entries, i. e. interchange 0 and 1.

The case n = 1

Let us first consider the simplest case $K = \mathbb{F}_2$. Its \mathbb{F}_2 -basis is $\{1\}$, and the matrices are the 1 × 1-matrices $Q_n = (1)$ and $A_n = (0)$. Solving quadratic equations is trivial.

The case n = 2

The field \mathbb{F}_4 is an extension of \mathbb{F}_2 of degree 2. An \mathbb{F}_2 -basis is $\{1, t\}$ where $t^2 = t + 1$. The general consideration above gives

$$Q_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Solving quadratic equations (in the nondegenerate case) amounts to finding a preimage $x = (x_1, x_2)$ of $b = (b_1, b_2)$ in the 2-dimensional vectorspace \mathbb{F}_2^2 under A_2 . This gives a system of 2 linear equations over \mathbb{F}_2 :

$$\begin{pmatrix} x_2 \\ 0 \end{pmatrix} = A_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

This is solvable if and only if $b_2 = 0$, and all (in fact two) solutions are

 x_1 arbitrary (i. e. 0 or 1) and $x_2 = b_1$.

For later use we note that $Tr(t) = t + t^2 = 1$ and

$$L_t = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \,.$$

The case n = 3

The field \mathbb{F}_8 has an \mathbb{F}_2 -basis $\{1, s, s^2\}$ where $s^3 + s = 1$. The square map maps $1 \mapsto 1$, $s \mapsto s^2, s^2 \mapsto s^2 + s$. We have the matrices

$$Q_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

For preimages under the ARTIN-SCHREIER map we have the system of 3 linear equations $A_3x = b$, or

$$\begin{pmatrix} 0\\ x_2+x_3\\ x_2 \end{pmatrix} = \begin{pmatrix} b_1\\ b_2\\ b_3 \end{pmatrix}.$$

It has a solution if and only if $b_1 = 0$, and then its two solutions are

$$x_1$$
 arbitrary, $x_2 = b_3$, $x_3 = b_2 + b_3$.

The case n = 4

The field \mathbb{F}_{16} is an extension of \mathbb{F}_4 of degree 2 and has an \mathbb{F}_2 -basis $\{1, t, u, tu\}$ where $u^2 + u = t$. We have

$$Q_4 = \begin{pmatrix} Q_2 & L_t Q_2 \\ 0 & Q_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The system of 4 linear equations to solve becomes $A_4x = b$, or

$$\begin{pmatrix} x_2 + x_4 \\ x_3 \\ x_4 \\ 0 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} .$$

It is solvable if and only if $b_4 = 0$, and then its two solutions are

$$x_1$$
 arbitrary, $x_2 = b_1 + b_3$, $x_3 = b_2$, $x_4 = b_3$.

For use with \mathbb{F}_{256} we note that $\operatorname{Tr}(tu) = 1$ and

$$L_{tu} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad L_{tu}Q_4 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The case n = 5

The field F_{32} has an \mathbb{F}_2 -basis $\{1, t, t^2, t^3, t^4\}$ with $t^5 = t^2 + 1$. Squaring maps $1 \mapsto 1$, $t \mapsto t^2, t^2 \mapsto t^4, t^3 \mapsto t^3 + t, t^4 \mapsto t^3 + t^2 + 1$. Therefore

$$Q_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

The system $A_5x = b$ of 5 linear equations is

$$\begin{pmatrix} x_5 \\ x_2 + x_4 \\ x_2 + x_3 + x_5 \\ x_5 \\ x_3 + x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix} .$$

It has a solution if and only if $b_1 = b_4$, and then its two solutions are

$$x_1$$
 arbitrary, $x_2 = b_3 + b_5$, $x_3 = b_1 + b_5$, $x_4 = b_2 + b_3 + b_5$, $x_5 = b_1$.

The case n = 6

The field \mathbb{F}_{64} is an extension of \mathbb{F}_8 of degree 2. Therefore—after choosing a suitable basis—we have

The system of 6 linear equations to solve becomes $A_6x = b$, or

$$\begin{pmatrix} x_4 \\ x_2 + x_3 + x_6 \\ x_2 + x_5 + x_6 \\ 0 \\ x_5 + x_6 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{pmatrix} .$$

It is solvable if and only if $b_4 = 0$, and then its two solutions are

 x_1 arbitrary, $x_2 = b_3 + b_5$, $x_3 = b_2 + b_3 + b_6$, $x_4 = b_1$, $x_5 = b_6$, $x_6 = b_5 + b_6$.

The case n = 8

As a final example we consider \mathbb{F}_{256} , a quadratic extension of \mathbb{F}_{16} . It has a basis $\{1, t, u, tu, v, tv, uv, tuv\}$ with t and u as in \mathbb{F}_{16} and $v^2 = v + tu$. By the general principle

and knowing L_{tu} we have

$$Q_8 = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_8 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Solving for preimages of A_8 runs as before.