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Quadratic equations over fields of characteristic # 2 are solved by the well known
quadratic formula that up to rational operations reduces the general case to the square
root function, the inverse of the square map z — 22. The solvability of a quadratic
equation can be decided by looking at the discriminant—essentially the argument of the
square root in the formula.

The situation in characteristic 2 is somewhat different.

1 The general solution

Let K be a field of characteristic 2. We want to study the roots of a quadratic
polynomial
f=aT* +bT +cc K[T] with a # 0.

The case b = 0—the degenerate case—is very simple. We have
a-f=(aT)*+ac=g(aT) with g=T?+ ac € K[T).

The squaring map z — 2 is an Fo-linear monomorphism of K, an automorphism if K is
perfect, for example finite. Therefore ac has at most one square root in K, and exactly
one square root in the algebraic closure K. Let ac = d?. Then ¢ has exactly the one
root d, and f has exactly the one root g in K. For an explicit determination we have to
extract the square root from ac in K or in an extension field L of degree 2 of K, i. e. to
invert the square map in K or L. Remember that the square map is linear over Fo. For
examples see Section 3 below.

Now let b # 0. Because the derivative f’ = b is constant # 0, f has two distinct
(simple) roots in the algebraic closure K. The transformation

4 f= (ET)2+%T+% :g(%T) with g = T2 + T + d, d:% €K,

reduces our task to the roots of the polynomial g. Let u be a root of g in K. Then u + 1
is the other root by VIETA’s formula, and u(u 4 1) = d, that is d = u? 4 u. Therefore
the problem for the general quadratic polynomial is reduced to the ARTIN-SCHREIER
polynomial 72 + T + d, and thereby to inverting the ARTIN-SCHREIER map K — K,
x — 22 + . Note that this map also is linear. However in general it is neither injective



nor surjective. Its kernel is the set of elements x with z? = z, that is the prime field

Fs inside of K. The preimages u and u + 1 of a given element d € K may be found

in K or in a quadratic extension L = K(u) of K. To get the roots of f we set d = 5

and determine a preimage u of d under the ARTIN-SCHREIER map. Then a root of f is
b

x = 2%; the other root is x + 2.

2 The case of a finite field

Now we consider the case where K is finite. Then K has 2" elements for some n, and
coincides with the field Fon up to isomorphism. The trace of an element = € K is given
by the formula

Tr(z) = = + 2 o2

It is an element of the prime field Fa, i. e, 0 or 1, and Tr(z?) = Tr(z).

Lemma 1 Let K be a finite field with 2™ elements. Then the polynomial
g=T?*+T+de K[T] has a root u in K, if and only if Tr(d) = 0. In this case
g=h(T +u) withh=T>+T.

Proof. “==":1If u € K, then Tr(d) = Tr(u?) + Tr(u) = 0.
“<=": For the converse let Tr(d) = 0. Then

2n—1

0 = Tr(d)=d+d*+---+d
= @WHu)+ )+ W
= u+u2n,

hence u?" = u, and therefore u € K.

The addendum is trivial. &

Remark Let L be a quadratic extension of K, and Tr: L —» Fy its trace function.
Then L = Fy2n and

Tr(z) =2 +22+ - +27 +27 4+ 4z

22n—1

For z € K we have 22" = x, hence ’f‘r(x) = 0. This is consistent with the statement
of the lemma that g =72 + T + d € K[T] has a root in L.

Corollary 1 g = T? + T +d € K[T) is irreducible, if and only if Tr(d) = 1. If this is
the case, then g = h(T +r) with h = T>+T +e, where e is an arbitrarily chosen element
of K with Trace Tr(e) =1, and r € K is a solution of > +r = d + e.

Proof. g is irreducible in K[T], if and only if it has no root in K. The addendum follows
because d + e has trace 0, hence has the form r2 + r. ¢



Note 1. The lemma is a special case of HILBERT’s Theorem 90, additive form.

Note 2. The ARTIN-SCHREIER Theorem generalizes these results to arbitrary finite
base fields [, instead of o, and to polynomials 79 — T" — d. It characterizes the
cyclic field extensions of degree q.

‘We have shown:

Proposition 1 (Roots) Let K be a finite field of characteristic 2, and let
f=aT?+bT + c € K[T)] be a polynomial of degree 2. Then:

(i) f has exactly one root in K <= b=0.
(ii) f has exactly two roots in K <= b# 0 and Tr(35) = 0.
(iii) f has no root in K <= b# 0 and Tr(35) = 1.

Proposition 2 (Normal form) Let K be a finite field of characteristic 2, and f =
aT? + VT + ¢ € K[T] be a polynomial of degree 2 i. e. a # 0. Then there is a k € K*
and an affine transformation a: K — K, a(x) = re + s with r € K* and s € K, such
that

k-foa=T? T?*4+T, or T?>+T+e,

where e € K is a fived (but arbitrarily chosen) element of Trace Tr(e) = 1. In the case
of odd n = dim K we may chose e = 1.

3 Examples

As we have seen the key to solving quadratic equations in characteristic 2 is solving
systems of linear equations whose coefficient matrix is the matrix of the ARTIN-SCHREIER
map, or the square map in the degenerate case. To explicitly solve quadratic equations
over a finite field K of characteristic 2 we first have to fix a basis of K over Fy. There are
several options, and none of them is canonical. One option is to build a basis successively
along a chain of intermediate fields between Fy and K.

For this we first consider a field extension L of K of degree 2. If K has 2" elements,
then the cardinality of L is 22", and we may construct L from K by adjoining a root t
of an irreducible degree 2 polynomial T2+ T+ d € K[T] where Tr(d) = 1, see Lemma 1.
Then a basis of L over K is {1,t}, and if {u,...,u,} is a basis of K over Fy, then
{ui, ..., un, tus, ..., tu,} is a basis of L over Fa.

Now the square map has the same effect on the u; in L as in K, and

(tui)2 = tQuZ2 =(t+ d)u? =t- u? +d- uf

If we denote by @, resp. QQ2,, the matrices of the square maps of K or L with respect

to the chosen bases, then
_ Qn LdQn
Q2TL - ( 0 Qn 9



where L, is the matrix of the left multiplication by d in K. The @, in the right lower
corner of the matrix comes from the fact that ¢ - u? =t -3 g;ju; = > gijtu; where the
g¢i; are the matrix coefficients of Q.
Note that for odd n we may choose d = 1, hence Lj; = 1, the n X n unit matrix.
The matrix A, of the ARTIN-SCHREIER map is 1, + ), this means that in Q,, we
simply have to complement the diagonal entries, i. e. interchange 0 and 1.

The case n =1
Let us first consider the simplest case K = Fo. Its Fa-basis is {1}, and the matrices
are the 1 x 1-matrices @, = (1) and A,, = (0). Solving quadratic equations is trivial.

The case n =2

The field F4 is an extension of Fy of degree 2. An Fa-basis is {1,¢} where t? = ¢ + 1.
The general consideration above gives

1 1 01
Q2:<0 1>, A2:<0 0).

Solving quadratic equations (in the nondegenerate case) amounts to finding a preimage
x = (1,72) of b = (b1, by) in the 2-dimensional vectorspace F3 under As. This gives a
system of 2 linear equations over Fa:

xI9 . I . b1
() =2(2)= ()
This is solvable if and only if bo = 0, and all (in fact two) solutions are

x1 arbitrary (i.e. 0O or 1) and x9 = b;.

For later use we note that Tr(t) = ¢+ ¢> = 1 and
01
n=(11)-

The field Fg has an Fo-basis {1, s, 52} where s +s = 1. The square map maps 1 — 1,
s — 52, 52— s> + 5. We have the matrices

The case n =3

100 000
Qs=(0 0 1], A3=1]0 1 1
01 1 010



For preimages under the ARTIN-SCHREIER map we have the system of 3 linear equations
Asx = b, or

0 by
o +x3 | = | b2
xIo b3

It has a solution if and only if b1 = 0, and then its two solutions are

x1 arbitrary, xo =bs, x3= by + b3.

The case n =4

The field Fy4 is an extension of Fy of degree 2 and has an Fa-basis {1, ¢, u, tu} where
u? +u = t. We have

_(Q2 LiQ2\
Q4—<0 ; )—

, Ay=
Qs !

o O O
SO = =
S = = O
=
S O O O
SO O -
O O = O
SO = O =

The system of 4 linear equations to solve becomes A4sx = b, or

T+ X4 by
I3 o bg
T4 b3
0 ba

It is solvable if and only if by = 0, and then its two solutions are
x1 arbitrary, xo =b1 + b3, x3=0by, x4 =bs3.

For use with Fa56 we note that Tr(tu) = 1 and

Ltu = ) LtuQ4 =

_ o O O
— -0 O
— = O
_ o O O
O~ OO
O =
e )

1
1
0
1
The case n =15

The field F3o has an Fo-basis {1,¢,t2,3,t*} with 5 = ¢? + 1. Squaring maps 1 — 1,
t=t2, 2=t 83— t3+t, t*— t3 +t2 4+ 1. Therefore

10001 00001
000710 01010
Qs=|0 100 1|, As=|0 11 0 1
00011 00001
00100 00101



The system Asx = b of 5 linear equations is

Ts5 b1

T2 + X4 b
Tot+x3+x5 | = | b3
x5 ba

T3 + T bs

It has a solution if and only if b1 = b4, and then its two solutions are
x1 arbitrary, o =b3+ b5, x3=0b1+0b5, x4 =0y+0b3+0b5, x5=01.

The case n =6

The field Fgy is an extension of Fg of degree 2. Therefore—after choosing a suitable
basis—we have

100100 000100
001001 011001
C(Q3 Q3 |01 10 11 L_loroo11
Q6_<0Q3>_000100’6_000000
000001 000011
000011 000010

The system of 6 linear equations to solve becomes Agz = b, or

Ty bl

To + x3 + X6 by
ro+w5+x6 | | b3
0 by

x5 + 6 bs
x5 be

It is solvable if and only if by = 0, and then its two solutions are
x1 arbitrary, xo =b3+0bs, x3=0by+b3+bs, x4=01, x5=0bg, xg=bs+ bg.

The case n =8

As a final example we consider Fosg, a quadratic extension of Fqg. It has a basis
{1,t,u, tu, v, tv, uv, tuv} with t and u as in F16 and v? = v + tu. By the general principle



and knowing Ly, we have

01010010

0010O0O0T11

11010010
01100011
00110111

00010111

00001001
00 00O01O01

000 0O0O0T10Q0

00 0O0O0O0OTO01

000 0O0O0O0OQ 0

Ag =

)

00011001
00001101

000O0O0OT1TT1FP@O0

00 0O0O0OO0OT1:1

000O0O0O0OTO0OT1

Qs

Solving for preimages of Ag runs as before.



