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Richardson’s Finiteness Theorem says (among other things) that the number of
conjugacy classes of nilpotent elements in the Lie algebra g of a semisimple algebraic
group G is finite, provided that the base field k is algebraically closed of good charac-
teristic, see Theorem 1.

Here we derive the Finiteness Theorem from a slightly more general statement, see
Proposition 1, that requires no assumption on the characteristic. However in applying
this to nilpotent classes we need Proposition 2 where (in prime characteristic) we cannot
remove the dependence on the classification of semisimple groups and on the character-
istic being good.

Note that in characteristic 0 Lemma 1 and Proposition 2 are obsolete—as a non-
degenerate bilinear form we may take the Killing form—and Proposition 1 can be
somewhat simplified; so in characteristic 0 Theorem 1 has a simple proof independent
from the classification.

For other applications of Proposition 1 see [3] and [5].
Recall that for the action of an affine algebraic group G on a rational G-module

the orbit map G −→ G · x for x ∈ V is separable, if gx = LieGx or, equivalently,
dimG ·x = dim g ·x [1, p. 180]. (In the present context we may take this as a definition.)
The characteristic p is good for G, if p doesn’t occur as coefficient of the expansion of the
highest root in terms of a basis of the root system. This excludes the following primes,
if G has a component of type

• Al: none,

• Bl, Cl, Dl: 2,

• G2, F4, E6 E7: 2, 3,

• E8: 2, 3, 5.

Lemma 1 For the adjoint representation of GLn all orbit maps are separable.

Proof. Identify the Lie algebra g = gln with the space of all n × n matrices over k and
the adjoint action of g ∈ GLn with the conjugation x 7→ gxg−1. Then the stabilizer of
x is {g ∈ GLn | gx = xg}, and is open in the vector subspace gx = {z ∈ g | [zx] = 0},
because it is cut out by the nonvanishing of the determinant. 3
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Proposition 1 Let H be an affine algebraic group, and V be a rational H-module. Let
G be a closed subgroup of H, and W be a G-submodule of V . Let g and h be the Lie
algebras of G and H. Assume that for some x ∈W

(i) the orbit map H −→ H · x is separable,

(ii) h · y ∩W ⊆ g · y for each y ∈W ∩H · x.

Then W ∩ H · x consists of finitely many G-orbits, and the orbit map G −→ G · x is
separable.

Proof. The separability of the orbit map H −→ H · x doesn’t change when we replace x
with any other point of the orbit H · x.

Now let X be the connected component of x in G · x, and Z be an irreducible
component ofW∩H ·x that contains x. We have to show that dim g·x = dimG·x = dimZ.
From this follows that X is open in Z, and because x may be replaced with any other
point of Z, even X = Z. Therefore the number of G-orbits in W ∩H · x equals at most
the (finite) number of irreducible components.

Now we may identify the tangent space T0(H · x− x) with the subspace h · x of V in
a canonical way. Therefore

Tx(Z) ∼= T0(Z − x) ⊆W ∩ h · x ⊆ g · x,

dimZ ≤ dimTx(Z) ≤ dim g · x = dimX ≤ dimZ.

Therefore everywhere in the last row we have equality. 3

The following result depends on the classification of semisimple algebraic groups.

Proposition 2 Let G be an almost simple algebraic group in good characteristic, and
G not of type Al, in particular char k 6= 2. Then there is a rational G-Module such that
the trace form τ(x, y) := Tr(x ◦ y) is a nondegenerate bilinear form on the Lie algebra g
of G.

Proof. For the groups of types Bl, Cl, and Dl—that is for SOn and Spn—we may take
the natural representation. For the exceptional types the adjoint representation does the
job, see [4] or [6]. 3

Theorem 1 (Richardson) Let G be a semisimple algebraic group in good character-
istic with Lie algebra g. Then the number of G-orbits of nilpotent elements in g is finite.

Proof. Without restriction we may assume G almost simple. Because the case of Al is
elementary linear algebra we may also exclude this case. Then Proposition 2 gives a
rational G-module V such that the trace form on g is nondegenerate. The trace form
is also nondegenerate on gl(V ). Therefore we have gl(V ) = g ⊕M as G-modules with
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M = g⊥. The assertion follows from Proposition 1 with H = GL(V ): Condition (i)
is fulfilled by Lemma 1; for condition (ii) we have gl(V ) · y = g · y + M · y, hence
gl(V ) · y ∩ g ⊆ g · y. 3

The restriction on the characteristic is unnecessary; however this needs a tedious
case-by-case calculation that was completed by Holt and Spaltenstein in [2].
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