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Summary

This note1 considers the output of a recursive process of depth2 1—that is we consider
a finite set, a recurrence formula, and the sequence of its output elements, see Figure 1.
Since this sequence can assume only finitely many values it eventually repeats, hence is
necessarily cyclic, see Figure 2. Whether we want to use it for the simulation of a random
process or for key generation with a stream cipher, in any case the length of the period
is of concern. The “classical” approach to pseudorandom or keystream generators aimed
at maximum period lengths [2]. This resulted in sequences that pass many statistical
tests for randomness—and therefore fit many statistical or simulation purposes—but
fail the main cryptographic requirements of being unpredictable and computationally
indistinguishable from a “true” random sequence.

This note addresses the question of the distribution of the periods of all such se-
quences. The main result gives an asymptotic formula for the ecpected value of the
period length and shows what to expect for a “random” choice of the recursive process.

1 Periods and Preperiods

Let M be a finite set with m = #M . Since the nature of the elements of M doesn’t
matter in any way we henceforth often assume without loss of generality that M is the
integer interval M = {0, 1, . . . ,m− 1}. We may think of the elements of M as “states”
and consider a map (“state transition”)3

s : M −→M.

For each element (“initial state”) x0 ∈ M we define a sequence (xi)i∈N in M by the
recurrence formula xi = s(xi−1) for i ≥ 1, see Figure 1. The map s is also called the
generating function of the sequence. Since M is finite this sequence—after a finite
preperiod—eventually becomes periodic, see Figure 2. In other words there are smallest
integers µ ≥ 0 and ν ≥ 1 such that xµ+ν = xµ: Take for µ the smallest index such that

1an expanded version of a solution for exercise 3.1.12 in [2]
2that is each member of the output sequence depends only on its immediate precursor
3In other words: we describe a simple finite dynamical system.
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Figure 1: Recursion of depth 1—at each step the output of the process is fed back as
input of the next step

the element xµ reappears somewhere in the sequence, and for µ+ ν the index where the
first repetition occurs. Then also

xi+ν = xi for i ≥ µ.

Obviously 0 ≤ µ ≤ m − 1, 1 ≤ ν ≤ m, µ + ν ≤ m. The values x0, . . . , xµ+ν−1 are all
distinct, and the values x0, . . . , xµ−1 never reappear in the sequence.

- - - - -x0 . . . xµ−1 xµ
= xµ+ν

. . . xµ+ν−1

6

︷ ︸︸ ︷Preperiod ︷ ︸︸ ︷Period

Figure 2: Period and preperiod

Definition µ is called (length of the) preperiod, ν, (length of the) period, λ = µ+ ν,
effective length of the sequence.

Examples

For examples 2 to 6 we assume that M = {0, 1, . . . ,m− 1}.

1. For s = the identity map of M we have x1 = x0, hence µ = 0, ν = 1, λ = 1.

2. For s(x) = x+ 1 mod m we have xm = x0, hence µ = 0, ν = m, λ = m.
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3. We slightly modify the previous example, setting s(m− 1) = m− 1. Then we get
µ = m− 1, ν = 1, λ = m (for x0 = 0).

4. With m = 10, s(x) = x2 mod 10, x0 = 3 we generate the sequence 3, 9, 1, 1, . . .
with µ = 2, ν = 1, λ = 3.

5. For m = 10, s(x) = 7x mod 10, x0 = 1 the sequence becomes 1, 7, 9, 3, 1, 7, 9, 3, . . .,
hence µ = 0, ν = 4, λ = 4.

6. A more general linear recurrence has the generating function s(x) = ax+ b mod m
for integers a, b ∈ N. This is the classical linear congruence generator (LCG) [2],
often used for generating pseudorandom numbers for statistical purposes, especially
when its period is about m.

7. Taking for M the finite set Fn2 of all bitvectors of length n, we define a linear
feedback shift register (LFSR) by the generating function:

s(t1, . . . , tn) = (t2, . . . , tn, a1t1 + · · ·+ antn)

where the coefficients are bits a1, . . . , an ∈ F2. The output sequence4 has similar
good statistical properties as an LCG. This kind of pseudorandom generation is of
widespread use for generating “white noise” in engineering [1], especially when its
period is 2n.

2 Formulas for the Probabilities

Let A be a finite set. We use the notation

P (B) :=
#B

#A
for B ⊆ A,

called the probability5 of B. As basic set6 in the scenario of Section 1 we consider
A = MM×M where MM denotes the set of all maps from M to M . It has #(MM ) = mm

elements. For s ∈MM and x ∈M let f(s, x) be the preperiod and g(s, x) be the period
of the sequence x0 = x, x1 = s(x0), . . . This defines two functions

f, g : MM ×M −→ N.

Remarks

1. The set of all maps s : M −→M , represented by MM , is in bijective correspondence
with the set of all m-tuples (s0, . . . , sm−1) with s0, . . . , sm−1 ∈M .

4Take the leftmost bit of each vector to avoid the duplicatios
5Since we deal with finite uniform probability spaces only, this naive definition is adequate.
6or probability space
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2. The symmetric group Sm, the group of permutations of M , acts on MM ×M by
the rule

(s, x)
σ7→ (σsσ−1, σx).

For the sequence x0, x1 = s(x0), . . . clearly σxj = σxi ⇐⇒ xj = xi. Therefore
the sequence with generating function σsσ−1 and initial value σx has the same
preperiod and period as the sequence with s and x. In other words the functions
f , g, and f + g are invariant under Sm.

3. Now we assume that M = {0, 1, . . . ,m− 1}, and let τ ∈ Sm be the shift map
i 7→ i+1 mod m. Each orbit of the cyclic subgroup H = 〈τ〉 ≤ Sm meets MM×{0}
in exactly one point and has size m. These orbits partition MM ×M into mm

subsets of size m, and

f(s, 0) = f(τsτ−1, 1) = . . . = f(τ isτ−i, i) = . . .

g(s, 0) = g(τsτ−1, 1) = . . . = g(τ isτ−i, i) = . . .

for each generating function s ∈MM .

By Remark 3 when calculating probabilities we need only consider sequences with 0 as
initial value. The probability of observing the preperiod µ and the period ν is

Pm(µ, ν) =
1

mm+1
·#{(s, x) ∈MM ×M | f(s, x) = µ, g(s, x) = ν}

=
1

mm
·#{s ∈M | f(s, 0) = µ, g(s, 0) = ν}.

The probability of observing the effective length λ is
∑

µ+ν=λ Pm(µ, ν). The probability

that µ occurs with any period, or that ν occurs with any preperiod is7

Pm(µ, ∗) =
1

mm
·#{s ∈MM | f(s, 0) = µ} =

m∑
ν=1

Pm(µ, ν) ,

Pm(∗, ν) =
1

mm
·#{s ∈MM | g(s, 0) = ν} =

m−1∑
µ=0

Pm(µ, ν) .

Here are some special examples—note that by Remark 1 we may choose the xi indepen-
dently from each other:

• Pm(0, 1) = 1
m (the probability that x1 = x0);

• Pm(0, 2) = (1− 1
m) · 1

m (the probability that x1 6= x0, x2 = x0);

• Pm(1, 1) = (1− 1
m) · 1

m (the probability that x1 6= x0, x2 = x1);

• Pm(2, 1) = (1 − 1
m)(1 − 2

m) · 1
m (the probability that x1 6= x0, x2 6= x0, x1, and

x3 = x2).

7Note that the star is not a wild-card symbol but denotes a summation.
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More generally

Pm(µ, ν) =
1

m
·
µ+ν−1∏
k=1

(1− k

m
), Pm(µ, ∗) =

m−µ∑
ν=1

1

m
·
µ+ν−1∏
k=1

(1− k

m
) .

We use the abbreviation

Rm(l) :=
l∏

k=1

(1− k

m
),

and express Pm by it:

Lemma 1 (i) Pm(µ, ν) = 1
m ·Rm(µ+ ν − 1), in particular Pm(µ, ν) depends only on

λ = µ+ ν, the effective length.

(ii) Pm(µ, ∗) = 1
m ·
∑m−ν

ν=1 Rm(µ+ ν − 1), in particular Pm(µ, ∗) is strongly decreasing
as a function of µ.

(iii) Pm(∗, ν) = 1
m ·
∑m−ν−1

µ=0 Rm(µ+ν−1), in particular Pm(∗, ν) is strongly decreasing
as a function of ν ≥ 1.

(iv) Pm(µ, ∗) = Pm(∗, µ+ 1) for µ = 1, . . . ,m− 1.

(v) Pm(µ, ν) = Pm(ν − 1, µ+ 1).

(vi) The probability of observing the effective length λ is pm(λ) = (λ/m) ·Rm(λ− 1).

(vii) Rm(0) = 1, Rm(1) = 1 − 1/m, Rm(j) = (1 − j/m)Rm(j − 1) for j ≥ 1, and
Rm(j) = 0 for j ≥ m.

Proof. (i), (ii), (iii) are direct consequences of the definitions. Formula (iv) follows from
(ii) and (ii), and (v) from (i).

For (vi), using (i), we get

pm(λ) =
∑

µ+ν=λ

Pm(µ, ν) =
1

m

∑
µ+ν=λ

Rm(µ+ ν − 1) =
1

m

∑
µ+ν=λ

Rm(λ− 1).

The assertion follows since the sum consists of λ identical summands.
The formulas in (vii) are immediate from the definition. 3

These formulas yield fast algorithms for calculating the distributions of preperiods,
periods, and effective lengths, see Appendix A for the algorithms and Appendix B for
Python (or SageMath) code. Table 1 shows the results for m = 20, Figure 3 shows the
corresponding graphic for periods and lengths.
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i 0 1 2 3 4 5 6 7 8 9 10

µ 0.265 0.215 0.167 0.124 0.088 0.059 0.037 0.022 0.012 0.006 0.003
ν 0.0 0.265 0.215 0.167 0.124 0.088 0.059 0.037 0.022 0.012 0.006
λ 0.0 0.05 0.095 0.128 0.145 0.145 0.131 0.107 0.079 0.054 0.033

i 11 12 13 14 15 16 17 18 19 20

µ 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ν 0.003 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
λ 0.018 0.009 0.004 0.001 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: Probabilities of preperiods µ, periods ν, and effective lengths λ for m = 20

Figure 3: Distribution of periods ν, and effective lengths λ for m = 20
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3 The Expected Value of Period and Preperiod

How large is the expected value of the period, preperiod, and effective length of a re-
cursion of depth 1 when we choose the generating function s and the initial value x at
random?

In general let A be a finite set and Φ: A −→ R be a real valued function. Then the
weighted sum

E(Φ) :=
1

#A

∑
x∈A

Φ(x) =
∑
r∈R

r · P (Φ−1(r))

is called the expected value (or mean value) of Φ.
Our goal is determining the expected values of the functions f , g, and f + g from

Section 2, that is the expected values of preperiod, period, and effective length of the
recursive sequences with arbitrarily chosen generating functions s : M −→M and initial
values x ∈M . By definition we have

E(f) =
∑
µ∈N

µ · P (f−1(µ)) =

m−1∑
µ=0

µ · Pm(µ, ∗),

E(g) =
∑
ν∈N

ν · P (g−1(ν)) =
m∑
ν=1

ν · Pm(∗, ν),

E(f + g) = E(f) + E(g).

We try to calculate the expected value of g using a common summation trick, see
Figure 4:

E(g) =

m∑
ν=1

ν · Pm(∗, ν) =
1

m
·
m∑
ν=1

m−ν∑
µ=0

ν ·Rm(µ+ ν − 1)

=
1

m
·
m∑
ρ=1

ρ∑
ν=1

ν ·Rm(ρ− 1) =
1

m
·
m∑
ρ=1

ρ (ρ+ 1)

2
·Rm(ρ− 1)

=
m∑
ρ=1

ρ+ 1

2
· ρ
m
·Rm(ρ− 1)︸ ︷︷ ︸

Rm(ρ−1)−Rm(ρ)

= Rm(0) +

m∑
ρ=2

ρ+ 1

2
·Rm(ρ− 1)−

m−1∑
ρ=1

ρ+ 1

2
·Rm(ρ)− m+ 1

2
·Rm(m)︸ ︷︷ ︸
0

= 1 +
m−1∑
j=1

j + 2

2
·Rm(j)−

m−1∑
j=1

j + 1

2
·Rm(j) = 1 +

m−1∑
j=1

1

2
·Rm(j)

=
1

2
+

m−1∑
j=0

1

2
·Rm(j) =

Q(m) + 1

2
,
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with the function

(1) Q(m) :=

m−1∑
j=0

Rm(j).

Figure 4: A common summation trick

Along similar lines we also could attack the expected value of f . However a simpler
approach is to use the symmetry Pm(µ, ∗) = Pm(∗, µ+ 1) from Lemma 1 (iv), hence

E(f) =

m−1∑
µ=0

µPm(µ, ∗) =

m−1∑
µ=0

µPm(∗, µ+ 1) =

m∑
ρ=1

(ρ− 1) · Pm(∗, ρ)

=

m∑
ρ=1

ρPm(∗, ρ)−
m∑
ρ=1

Pm(∗, ρ) =
Q(m) + 1

2
− 1

=
Q(m)− 1

2
.

Finally the effective length of the sequence x0, x1, . . . is the sum of preperiod and
period. Therefore its expected value is Q(m). In summary we have proved:

Proposition 1 Let M be a finite set of m = #M elements. Then the expected value
of the periods of the recursive sequences in M is Q(m)+1

2 . The expected value of the

preperiods is Q(m)−1
2 . The expected value of the effective lengths is Q(m).

Although Proposition 1 looks mathematically elegant—it is only a minor reformula-
tion of our problem, not a satisfying solution. We want to know more about the function
Q. Fortunately already Ramanujan analyzed its asymptotic behaviour.
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4 Parenthesis: Ramanujan’s Q Function

We slightly rewrite the formulas for Rn and Q:

Rn(l) =
l∏

k=1

(1− k

n
) =

l∏
k=1

n− k
n

=
(n− 1) · · · (n− l)

nl

=
n!

(n− l − 1)! · nl+1
,

Q(n) =
n−1∑
l=0

Rn(l) =
n∑
l=1

Rn(l − 1) =
n∑
l=1

n!

(n− l)! · nl

=
n!

nn
·
n∑
l=1

nn−l

(n− l)!
=

n!

nn
·
n−1∑
k=0

nk

k!
.

The Taylor formula with Cauchy’s form of the remainder for a function8 f is

f(x) =
n−1∑
k=0

f (k)(0)

k!
· xk +

1

(n− 1)!
·
∫ x

t=0
tn−1f (n)(x− t)dt.

We apply it to the exponential function f(x) = ex using f (n)(x) = ex. The remainder
becomes

ex

(n− 1)!
·
∫ x

t=0
tn−1e−tdt =

ex

(n− 1)!
· γ(n, x)

with the incomplete gamma function9 γ. Hence en decomposes as

en =
n−1∑
k=0

nk

k!
+

en

(n− 1)!
· γ(n, n) =

nn

n!
Q(n) + T (n),

where the remainder has the form

T (n) = en · γ(n, n)

Γ(n)
.

We have proved:

Proposition 2 The function Q defined by (1) satisfies

Q(n) =
n!

nn
en ·

(
1− γ(n, n)

Γ(n)

)
for n ≥ 1.

To turn Proposition 2 into a useful result forQ we need results on the gamma function
that we derive in Section 7 below after two more parentheses.

8defined around 0 and n times differentiable
9The “complete” gamma function Γ arises from γ by the limit x → ∞. It has the special values

Γ(n) = (n− 1)!.
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5 Parenthesis: The Stirling Formula

Proposition 3 For all natural numbers n ≥ 1 we have

n! =
√

2πn
(n
e

)n
· ern

where the error term rn is bounded by

1

12n+ 1
≤ rn ≤

1

12n

Proof. We consider the sequence

an =
n!

(ne )n ·
√
n

and show that it decreases monotonically; because all of its members are positive, we
then know that it converges.

Dividing two consecutive terms we get

an
an+1

=
n!(n+1

e )n+1 ·
√
n+ 1

(ne )n ·
√
n · (n+ 1)!

=
1

e
· (n+ 1

n
)n+1/2,

log
an
an+1

= −1 + (n+
1

2
) · log

n+ 1

n
.

Lemma 3 below immediately gives

0 <
1

12
· ( 1

n+ 1
12

− 1

n+ 1
12 + 1

) < log
an
an+1

<
1

12
· ( 1

n
− 1

n+ 1
).

From the left inequality we conclude an > an+1 as claimed.
Now let a = limn→∞ an. Then a ≥ 0 and by telescoping

1

12
· ( 1

n+ 1
12

− 1

n+ 1
12 + k

) < log
an
an+k

<
1

12
· ( 1

n
− 1

n+ k
).

For k →∞ we get
1

12n+ 1
≤ log

an
a
≤ 1

12n
,

e
1

12n+1 ≤ an
a
≤ e

1
12n .

To complete the proof of the theorem we have to show that a =
√

2π.
From Wallis’ product formula, see Lemma 4 below, and using k! = akk

k+1/2/ek, we
get

√
π = lim

n→∞

a2n · n2n+1 · 22n · e2n

e2n · a2n · (2n)2n+1/2 ·
√
n+ 1/2
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= a · lim
n→∞

√
n√

2 ·
√
n+ 1/2

=
a√
2
.

Therefore a =
√

2π. 3

Lemma 2 For 0 < x < 1

3x

3− x2
<

1

2
log

1 + x

1− x
< x ·

(
1 +

1

3
· x2

1− x2

)
.

Proof. For |x| < 1 we have the well-known power series expansion

1

2
log

1 + x

1− x
= x+

x3

3
+
x5

5
+ . . . =

∞∑
ν=1

x2ν−1

2ν − 1
.

For 0 < x < 1 we get the upper bound

1

2
log

1 + x

1− x
< x+

x3

3
+
x5

3
· · · = x+

∞∑
ν=2

x2ν−1

3
= x+

x3

3

(
1 + x2 + x4 + · · ·

)

= x+
x3

3
· 1

1− x2
= x ·

(
1 +

1

3
· x2

1− x2

)
.

For the lower bound we use

1

2
log

1 + x

1− x
> x+

x3

3
+
x5

9
· · · =

∞∑
ν=1

x2ν−1

3ν−1
= x ·

∞∑
ν=0

x2ν

3ν
= x · 1

1− x2

3

.

3

Lemma 3 For n ∈ N1

2 +
1

6
·

(
1

n+ 1
12

− 1

n+ 1
12 + 1

)
< (2n+ 1) · log

n+ 1

n
< 2 +

1

6
·
(

1

n
− 1

n+ 1

)

Proof. In Lemma 2 we substitute x = 1
2n+1 . Then

1 + x

1− x
=

1 + 1
2n+1

1− 1
2n+1

=
2n+ 2

2n
=
n+ 1

n
.

This yields the upper bound

1

2
· log

n+ 1

n
<

1

2n+ 1
·
(

1 +
1

3
· 1

4n2 + 4n

)
=

1

2n+ 1
·
(

1 +
1

12
· 1

n(n+ 1)

)
,
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as claimed. At the lower bound we get

1

2
· log

n+ 1

n
>

3(2n+ 1)

3(2n+ 1)2 − 1
,

whence

(2n+ 1) · log
n+ 1

n
>

6(2n+ 1)2

3(2n+ 1)2 − 1
= 2 +

2

3(2n+ 1)2 − 1
= 2 +

2

12n2 + 12n+ 2
.

The lower bound we aim at evaluates to

2 +
1

6
·

(
1

n+ 1
12

− 1

n+ 1
12 + 1

)
= 2 + 2 ·

(
1

12n+ 1
− 1

12n+ 13

)

= 2+2 · 12

(12n+ 1)(12n+ 13)
= 2+2 · 12

12 · 12n2 + 14 · 12n+ 13
= 2+2 · 2

12n2 + 14n+ 13
12

which is clearly smaller for n ≥ 1. 3

Lemma 4 (Product formula of Wallis)

√
π = lim

n→∞

22n · (n!)2

(2n)! ·
√
n+ 1/2

.

Proof. Starting with the product expansion of the sine function,

sin(πx) = πx ·
∞∏
k=1

(1− x2

k2
),

and substituting x = 1/2, we get

1 =
π

2
·
∞∏
k=1

4k2 − 1

4k2
,

π

2
=
∞∏
k=1

(2k)4

(2k − 1)2k · 2k(2k + 1)
= lim

n→∞

24n · (n!)4

((2n)!)2(2n+ 1)
,

and this immediately yields the assertion. 3

Corollary 1 For all natural numbers n ≥ 1

n! en

nn
=
√

2πn · un
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where the error term un is bounded by

1 +
1

13n
< un < 1 +

1

11n
.

For10 n→∞
n! en

nn
=
√

2πn+ O

(
1√
n

)
.

Proof. We use the inequality ex > 1 + x for all real x 6= 0. For 0 < x < 1 we therefore
have 1− x ≤ e−x, whence ex ≤ 1

1−x = 1 + 1
1
x
−1 . Therefore

n! en

nn
<
√

2πn ·
(

1 +
1

12n− 1

)
≤
√

2πn ·
(

1 +
1

11n

)
.

For the lower bound we have

n! en

nn
>
√

2πn ·
(

1 +
1

12n+ 1

)
≥
√

2πn ·
(

1 +
1

13n

)
.

3

Corollary 2 For all natural numbers n ≥ 1

nn

n! en
=

1√
2πn

· vn

where the error term vn is bounded by

1− 1

12n
< vn < 1− 1

14n
,

in particular vn = 1 + εn where εn = O( 1
n) for n→∞.

Proof. The lower bound is immediate from 1 − x ≤ e−x. For the upper bound we use
e−x < 1

1+x = 1− 1
1
x
+1

, and get

nn

n! en
<

1√
2πn

·
(

1− 1

12n+ 2

)
≤ 1√

2πn
·
(

1− 1

14n

)
.

3

The narrow error bounds of the Stirling formula in Proposition 3 are due to Robbins,
see [4].

10Here is an exact algebraic interpretation of asymptotic O-statements for n→∞: Consider the ring
R of all real-valued functions N −→ R. For h ∈ R the set of all functions that “are” O(h) is closed under
addition and under multiplication by bounded functions. Interpret O(h) as this set, then it is a weak
form of an ideal. Instead of f = g + O(h) we should write f − g ∈ O(h).
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6 Parenthesis: Some Bits of Calculus

Lemma 5 (Gaussian integral) ∫ ∞
−∞

e−x
2/2 dx =

√
2π .

Proof. There are several tricks for evaluating this integral I—the most elegant of them
might be the following: Interpret the square

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−s
2/2e−t

2/2 ds dt

as an area integral and transform it to polar coordinates s = r cosϕ, t = r sinϕ. The
Jacobi matrix of this transformation is(

cosϕ −r sinϕ
sinϕ −r cosϕ

)
,

hence the Jacobi determinant is r, and thus

I2 =

∫ ∞
0

∫ 2π

0
e−r

2/2r dr dϕ = 2π ·
∫ ∞
0

e−udu = 2π.

We conclude that I =
√

2π. 3

In the following we perform the operations of taking square roots, and of reverting
and inverting power series by using indeterminate coefficients and equating coefficients11.
For future tricky integral substitutions we’ll need some auxiliary functions, see Figure 5:

Lemma 6 Let the function f : ]− 1,∞[−→ R be defined by

f(u) = u− ln(1 + u).

Then f(0) = 0, f ′(u) = u/(u+ 1), and f is strictly increasing in the interval [ 0,∞[. For
−1 < u < 1 the function f is represented by the power series

f(u) =
1

2
u2 − 1

3
u3 +

1

4
u4 ± . . . =

∞∑
i=2

(−1)i

i
ui

Proof. Elementary calculus. 3

Corollary 3 Let g = f−1 be the inverse function in the interval [ 0,∞[, in other words,

u = g(x)⇐⇒ x = f(u).

Then g satisfies the differential equation g′ = 1 + 1/g in ]0,∞[.

11This leads to confusing formulas, if we strive for exact estimates. Therefore we are content with
O-statements.
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Figure 5: The auxiliary function f

Proof. For u = g(x) we conclude by the inverse function theorem and Lemma 6 that
g′(x) = (u+ 1)/u = 1 + 1/u. 3

Lemma 7 There is an analytic function h : ] − 1,∞[−→ R with h2 = 2f . It is strictly
increasing, has h′(0) = 1, and

(2) h(u) =

{√
2f(u) for u ≥ 0,

−
√

2f(u) for u ≤ 0,

see Figure 5. Its power series expansion around 0 is12

h(u) = u ·
(

1− 1

3
u+ α(u)

)
where α is a power series with terms aiu

i, i ≥ 2, ai ∈ R, in other words, α(u) is a O(u2)
for u→ 0.

Proof. If h exists, then it has a power series expansion

h(u) = a1u+ a2u
2 + a3u

3 + . . .

around 0. We compare the coefficients in

u2 − 2

3
u3 ± . . . = 2 f(u) = h(u)2 = a21 u

2 + 2 a1a2 u
3 + . . .

12Complex analysis immediately tells us that the convergence radius is 1.
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and get a unique solution beginning with a1 = 1, a2 = −1/3.
For h = this power series we have h(0) = 0 and h′(0) = a1 = 1. Thus h is positive

for small u ≥ 0, and negative for u < 0 near 0. Therefore the square roots have to be
taken such that Equation (2) holds. Finally h is strictly increasing in [ 0,∞[ because f
is, and in ]− 1, 0 ] because f is strictly decreasing in this interval. 3

Lemma 8 Let j = h−1 : R −→]− 1,∞[ be the inverse function. Then

j(w) = w ·
(

1 +
1

3
w + β(w)

)
for small w > 0,

where β is a power series with terms biw
i, i ≥ 2, bi ∈ R, in other words, β is a O(w2).

Proof. Since j is analytic, and j(0) = 0, it has a power series expansion

j(w) = b1w + b2w
2 + . . .

around 0. We compare the coefficients in

w = h(j(w)) = j(w)− 1

3
j(w)2 + . . . = b1w + (b2 −

1

3
b21)w

2 + . . .

and get b1 = 1, b2 = b21/3 = 1/3. 3

Figure 6: The auxiliary functions f , g, h, j

The diagram in Figure 6 gives some orientation with all these functions and inverse
functions.

Corollary 4 For small w > 0

1

j(w)
=

1

w
·
(

1− 1

3
w + γ(w)

)
where γ is a power series with terms ciw

i, i ≥ 2, ci ∈ R, in other words, γ is a O(w2).

Proof. Since j(w)/w is analytic, so is w/j(w), and it has a power series expansion
w/j(w) =

∑
ciw

i around 0. We compare the coefficients in

1 =
j(w)

w
· w

j(w)
=

(
1 +

1

3
w + . . .

)
· (c0 + c1w + . . .)

and get c0 = 1, c1 = −1/3. 3
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Lemma 9 For the inverse function g = f−1 in [0,∞[ there are constants c > 0 and
r > 0 such that

1 +
1

g(x)
=

1√
2x

+
2

3
+ δ(x) for 0 < x <∞,

with |δ(x)| ≤ c
√
x for 0 < x < r. In other words: δ(x) is a O(x1/2) for x→ 0.

Proof. Since f takes only values ≥ 0 in [0,∞[ we have

h ◦ g(x) =
√

2 f ◦ g(x) =
√

2x

for x ≥ 0. Applying h = g−1 yields g(x) = j(
√

2x), hence

1 +
1

g(x)
= 1 +

1

j(
√

2x)
= 1 +

1√
2x

(
1− 1

3

√
2x+ γ(2x)

)
for small x > 0. 3

7 Parenthesis: The Gamma Function

We need some simple properties of the gamma function. It is defined by

Γ(x) =

∫ ∞
0

e−ttx−1 dt for x > 0.

Proposition 4 (i) Γ(1) = 1.

(ii) Γ(x+ 1) = x · Γ(x).

(iii) Γ(n) = (n− 1)! for each natural number n ≥ 1.

(iv) Γ(12) =
√
π.

Proof. (i) immediate.
(ii) By partial integration we conclude

Γ(x+ 1) =

∫ ∞
0

e−ttx dt = x ·
∫ ∞
0

e−ttx−1 dt = x · Γ(x).

(iii) follows from (i) and (ii) by induction.
(iv) The substitution t = s2/2 leads to

Γ(
1

2
) =

∫ ∞
0

e−t√
t
dt =

√
2 ·
∫ ∞
0

e−s
2/2 ds =

1√
2
·
∫ ∞
−∞

e−s
2/2 ds,

and this integral evaluates to
√
π by Lemma 5. 3
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Proposition 5 (Ramanujan) For n→∞ we have

γ(n, n)

Γ(n)
=

1

2
+

1

3
√

2πn
+ O(

1

n
) .

Proof. By partial integration we get

γ(n, n)

Γ(n)
=

1

(n− 1)!
·
∫ n

0
e−ttn−1 dt =

nn

n!en
+

1

n!
·
∫ n

0
e−ttn dt

=
nn

n!en
+

1

n!
·
∫ ∞
0

e−ttn dt︸ ︷︷ ︸
=1 by Prop. 4 (iii)

− 1

n!
·
∫ ∞
n

e−ttn dt︸ ︷︷ ︸
=:In

.

In the integral In we substitute t = n+ nu = n (1 + u):

In =
nn

n!en
· n ·

∫ ∞
0

e−nu(1 + u)n du︸ ︷︷ ︸
=:Jn

.

In summary we get

γ(n, n)

Γ(n)
= 1 +

nn

n!en
· (1− Jn) .

In the integral Jn we substitute x = u − ln(1 + u) = f(u) from Lemma 6—this is a
strictly increasing function of u in [0,∞[ which takes the value 0 at x = 0, and

dx

du
= 1− 1

1 + u
=

u

u+ 1
,

du

dx
= 1 +

1

u
= 1 +

1

g(x)
.

This yields

Jn = n ·
∫ ∞
0

e−n (u−ln(1+u)) du = n ·
∫ ∞
0

e−nx
(

1 +
1

g(x)

)
dx

= n ·
∫ ∞
0

e−nx
(

1√
2
x−

1
2 +

2

3
+ δ(x)

)
dx

with help of Lemma 9. Thus the evaluation of the integral Jn leads to integrals of types

n ·
∫ ∞
0

e−nxxa dx

where a > −1. Substituting t = nx, thus ndx = dt, by the definition of Γ

n ·
∫ ∞
0

e−nxxa dx =
1

na
·
∫ ∞
0

e−tta dt =
Γ(a+ 1)

na
.

In summary we have

Jn =
1√
2
· Γ(

1

2
) · n−1/2 +

2

3
+Rn =

√
π

2
·
√
n+

2

3
+Rn .
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The remainder Rn decomposes as

Rn = n ·
∫ ∞
0

e−nxδ(x) dx = n ·
∫ r

0
e−nxδ(x) dx︸ ︷︷ ︸
Rn(r)

+n ·
∫ ∞
r

e−nxδ(x) dx︸ ︷︷ ︸
Sn(r)

where the first summand is bounded by

|Rn(r)| ≤ c ·
Γ(32)

n
1
2

.

For the second summand we use that for x > 0

δ(x) = 1 +
1

g(x)
− 1√

2x
− 2

3
,

yielding a decomposition

Sn(r) = n ·
∫ ∞
r

e−nxδ(x) dx

= n ·
∫ ∞
r

e−nx
(

1 +
1

g(x)

)
dx︸ ︷︷ ︸

An(r)

−n ·
∫ ∞
r

e−nx
1√
2x

dx︸ ︷︷ ︸
Bn(r)

− 2n

3
·
∫ ∞
r

e−nx dx︸ ︷︷ ︸
Cn(r)

For An(r) we use that r ≤ x ≤ g(x) and get

0 ≤ An(r) ≤ n ·
∫ ∞
r

e−nx
(

1 +
1

r

)
dx ≤

(
1 +

1

r

)
· e−nr.

Estimating Bn(r) and Cn(r) is even simpler:

0 ≤ Bn(r) ≤ n√
2
·
∫ ∞
r

e−nx
1√
r
dx ≤ 1√

2r
· e−nr,

Cn(r) =
2n

3
·
∫ ∞
r

e−nx dx =
2

3
· e−nr.

Putting the snippets together yields

−
(

1√
2r

+
2

3

)
· e−nr ≤ Sn(r) ≤

(
1 +

1

r

)
· e−nr.

For large n (depending on r) we get |Sn(r)| ≤ 1/n. And so∣∣∣∣Jn −√π

2
·
√
n− 2

3

∣∣∣∣ = |Rn| = |Rn(r) + Sn(r)| ≤ c ·
Γ(32)
√
n

+
1

n
≤ d√

n

for large n with a constant d > 0. Using this bound and Corollary 2 of the Stirling
formula, Proposition 3, we get

γ(n, n)

Γ(n)
= 1 +

nn

n!en
· (1− Jn) = 1 +

1√
2πn

(
1 + O(

1

n
)

)
· (−

√
πn

2
+

1

3
+ O(

1√
n

))
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= 1− 1

2
+

1

3
√

2πn
+ O(

1

n
) ,

as claimed. 3

Applying Ramanujan’s asymptotic formula, Proposition 5, to the function Q as given
by Proposition 2, and using Corollary 1 of Stirling’s formula, Proposition 3, we get:

Q(n) =
n!en

nn
·
(

1− γ(n, n)

Γ(n)

)
=

(√
2πn+ O

(
1√
n

))
·
(

1

2
− 1

3
√

2πn
+ O

(
1

n

))
=

√
π

2
·
√
n− 1

3
+ O

(
1√
n

)
.

Corollary 5 For n→∞ we have

Q(n) =

√
π

2
·
√
n− 1

3
+ O

(
1√
n

)
.

For a single concrete n such a O-statement has no meaning. Nevertheless numerical
experiments show that the approximation is quite exact: From n = 4 on the first decimal
place is correct, from n = 950 on even the second. And the error term decreases in
absolute value for n→∞.

8 The Main Result

Let us apply this result to the recursive sequences of Proposition 1:

Theorem 1 Let M be a finite set of m = #M elements. Up to a summand of type
O(1/

√
m) the expected value for the periods of the recursive sequences in M is√

π

8
·
√
m+

1

3
,

the expected value for the preperiods is√
π

8
·
√
m− 2

3
,

ans the expected value for the number of different elements is√
π

2
·
√
m− 1

3
.
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The expected values for preperiod and period are about
√
π/8 ·

√
m ≈ 0.63 ·

√
m,

and the expected number of different elements is about
√
π/2 ·

√
m ≈ 1.25 ·

√
m.

As a consequence we might informally conclude: For the “classical” pseudorandom
generators that aim at the maximum possible period length (about m) a modification
will probably lead to a much shorter period length and significantly fewer different
output elements—but maybe to better cryptographic strength, and so also to better
pseudorandom properties, at the cost of squaring the size of the base set M , or doubling
the bitsize of the objects under consideration.

By the way the subject of this note may be interpreted as “random mappings of
finite sets”. For a comprehensive treatment see the book [3].

A Explicit Determination of the Distributions

The formulas in Lemma 1 yield an efficient algorithm for calculating the distributions of
the preperiods, periods, and effective lengths of recursive sequences of recursion depth
1. In this appendix we specify this explicitly. However for explicit calculations we prefer
integers as far as possible. Therefore we deal with frequencies instead of probabilities (=
relative frequencies). Thus we consider

Fm(µ, ν) = #{(s, x) | f(s, x) = µ, g(s, x) = ν} = mm+1 Pm(µ, ν) = mmRm(µ+ ν − 1).

The corresponding integer version of Rm is

R̂m(l) =
l∏

k=1

(m− k) = mlRm(l).

Using this the frequencies are given by

Fm(µ, ν) = mm ·Rm(µ+ ν − 1) = mm+1−µ−ν · R̂m(µ+ ν − 1),(3)

Fm(µ, ∗) =

m−µ∑
ν=1

Fm(µ, ν) =

m−µ∑
ν=1

mm+1−µ−ν · R̂m(µ+ ν − 1),(4)

Fm(∗, ν) =

m−ν∑
µ=0

Fm(µ, ν) =

m−ν∑
µ=0

mm+1−µ−ν · R̂m(µ+ ν − 1),(5)

ϕm(λ) =
∑

µ+ν=λ

Fm(µ, ν) = mm+1−λ · λ R̂m(λ− 1),(6)

where ϕm(λ) denotes the number of all sequences of effective length λ, compare Lemma 1
(vi).

For the algorithmic determination of these frequencies we first calculate the value
table of R̂m by the recurrence

R̂m(0) := 1, R̂m(l) = (m− l) · R̂m(l − 1) for l = 1, . . . ,m.
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Note that R̂m(l) := 0 for l ≥ m.
Then we calculate the frequencies Fm(µ, ∗) of the preperiods µ by Formula (4), the

frequencies Fm(∗, ν) of the periods ν by Formula (5), and the frequencies ϕm(λ) of the
lengths λ by Formula (6).

B Python Code

import sys

m = int(sys.argv[1])

mm = m**(m+1)

### Part 0: The auxiliary function Rhat -

### calculate the list [Rhat[0], ..., Rhat[m]].

Rhat = [1]

for l in range(1,m):

Rhat.append((m-l)*Rhat[l-1])

### Part 1: The frequency and probability of preperiod mu.

Fmu = [] # list of frequencies

for mu in range(0,m+1):

sum = 0

for nu in range(1,m+1-mu):

sum += m**(m+1-mu-nu) * Rhat[mu+nu-1]

Fmu.append(sum)

pmu = [] # list of probabilities

for mu in range(0,m+1):

pmu.append(round(Fmu[mu]/mm,3))

print(pmu)

### Part 2: The frequency and probability of period nu.

Fnu = [0] # list of frequencies

for nu in range(1,m+1):

Fnu.append(Fmu[nu-1])

pnu = [] # list of probabilities

for nu in range(0,m+1):

pnu.append(round(Fnu[nu]/mm,3))

print(pnu)
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### Part 3: The frequency and probability of effective length lambda.

Lm = [0] # list of frequencies

for l in range(1,m+1):

Lm.append(m**(m+1-l) * l * Rhat[l-1])

plm = [] # list of probabilities

for l in range(0,m+1):

plm.append(round(Lm[l]/mm,3))

print(plm)
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