Stirling's Formula

Klaus Pommerening

September 1999 - English version January 2012
last change: September 30, 2016

Following preliminary work by De Moivre (1718) Stirling in 1730 [4] stated his famous formula that expresses the factorial in a way that leads to a very useful assessment of its asymptotic behaviour. Here we reproduce the notably narrow bounds given by Robbins [3] following a method attributed to Cesìro [1] and Fisher [2].

Theorem 1 For all natural numbers $n \geq 1$ we have

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{r_{n}}
$$

where the error term r_{n} is bounded by

$$
\frac{1}{12 n+1} \leq r_{n} \leq \frac{1}{12 n}
$$

The approximation is illustrated by the following table, where s_{n} is the upper bound and t_{n}, the lower bound from the theorem.

n	1	2	3	4	5	6	7	8	9
s_{n}	1.002	2.001	6.001	24.001	120.003	720.01	5040.04	40320.2	362881.4
$n!$	1	2	6	24	120	720	5040	40320	362880
t_{n}	0.996	1.997	5.996	23.991	119.970	719.87	5039.33	40315.9	362850.1

This suggests that the upper bound is closer to the true value then the lower bound; and the absolute errors increase. The relative errors however decrease quite fast, see Corollary 1 below.

Proof. We consider the sequence

$$
a_{n}=\frac{n!}{\left(\frac{n}{e}\right)^{n} \cdot \sqrt{n}}
$$

and show that it decreases monotonically; because all of its members are positive, we then know that it converges.

Dividing two consecutive terms we get

$$
\frac{a_{n}}{a_{n+1}}=\frac{n!\left(\frac{n+1}{e}\right)^{n+1} \cdot \sqrt{n+1}}{\left(\frac{n}{e}\right)^{n} \cdot \sqrt{n} \cdot(n+1)!}=\frac{1}{e} \cdot\left(\frac{n+1}{n}\right)^{n+1 / 2},
$$

$$
\log \frac{a_{n}}{a_{n+1}}=-1+\left(n+\frac{1}{2}\right) \cdot \log \frac{n+1}{n}
$$

Lemma 2 below immediately gives

$$
0<\frac{1}{12} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)<\log \frac{a_{n}}{a_{n+1}}<\frac{1}{12} \cdot\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

From the left inequality we conclude $a_{n}>a_{n+1}$ as claimed.
Now let $a=\lim _{n \rightarrow \infty} a_{n}$. Then $a \geq 0$ and by telescoping

$$
\frac{1}{12} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+k}\right)<\log \frac{a_{n}}{a_{n+k}}<\frac{1}{12} \cdot\left(\frac{1}{n}-\frac{1}{n+k}\right)
$$

For $k \rightarrow \infty$ we get

$$
\begin{gathered}
\frac{1}{12 n+1} \leq \log \frac{a_{n}}{a} \leq \frac{1}{12 n} \\
e^{\frac{1}{12 n+1}} \leq \frac{a_{n}}{a} \leq e^{\frac{1}{12 n}}
\end{gathered}
$$

To complete the proof of the theorem we have to show that $a=\sqrt{2 \pi}$.
From Wallis' product formula, see Lemma 3 below, and using $k!=a_{k} k^{k+1 / 2} / e^{k}$, we get

$$
\begin{aligned}
\sqrt{\pi}= & \lim _{n \rightarrow \infty} \frac{a_{n}^{2} \cdot n^{2 n+1} \cdot 2^{2 n} \cdot e^{2 n}}{e^{2 n} \cdot a_{2 n} \cdot(2 n)^{2 n+1 / 2} \cdot \sqrt{n+1 / 2}} \\
& =a \cdot \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{2} \cdot \sqrt{n+1 / 2}}=\frac{a}{\sqrt{2}}
\end{aligned}
$$

Therefore $a=\sqrt{2 \pi}$.

Lemma 1 For $0<x<1$

$$
\frac{3 x}{3-x^{2}}<\frac{1}{2} \log \frac{1+x}{1-x}<x \cdot\left(1+\frac{1}{3} \cdot \frac{x^{2}}{1-x^{2}}\right)
$$

Proof. For $|x|<1$ we have the well-known power series expansion

$$
\frac{1}{2} \log \frac{1+x}{1-x}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots=\sum_{\nu=1}^{\infty} \frac{x^{2 \nu-1}}{2 \nu-1}
$$

For $0<x<1$ we get the upper bound

$$
\begin{gathered}
\frac{1}{2} \log \frac{1+x}{1-x}<x+\frac{x^{3}}{3}+\frac{x^{5}}{3} \cdots=x+\sum_{\nu=2}^{\infty} \frac{x^{2 \nu-1}}{3}=x+\frac{x^{3}}{3}\left(1+x^{2}+x^{4}+\cdots\right) \\
=x+\frac{x^{3}}{3} \cdot \frac{1}{1-x^{2}}=x \cdot\left(1+\frac{1}{3} \cdot \frac{x^{2}}{1-x^{2}}\right)
\end{gathered}
$$

For the lower bound we use

$$
\frac{1}{2} \log \frac{1+x}{1-x}>x+\frac{x^{3}}{3}+\frac{x^{5}}{9} \cdots=\sum_{\nu=1}^{\infty} \frac{x^{2 \nu-1}}{3^{\nu-1}}=x \cdot \sum_{\nu=0}^{\infty} \frac{x^{2 \nu}}{3^{\nu}}=x \cdot \frac{1}{1-\frac{x^{2}}{3}}
$$

\diamond

Lemma 2 For $n \in \mathbb{N}_{1}$

$$
2+\frac{1}{6} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)<(2 n+1) \cdot \log \frac{n+1}{n}<2+\frac{1}{6} \cdot\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

Proof. In Lemma 1 we substitute $x=\frac{1}{2 n+1}$. Then

$$
\frac{1+x}{1-x}=\frac{1+\frac{1}{2 n+1}}{1-\frac{1}{2 n+1}}=\frac{2 n+2}{2 n}=\frac{n+1}{n}
$$

This gives the upper bound

$$
\frac{1}{2} \cdot \log \frac{n+1}{n}<\frac{1}{2 n+1} \cdot\left(1+\frac{1}{3} \cdot \frac{1}{4 n^{2}+4 n}\right)=\frac{1}{2 n+1} \cdot\left(1+\frac{1}{12} \cdot \frac{1}{n(n+1)}\right)
$$

as claimed. At the lower bound we get

$$
\frac{1}{2} \cdot \log \frac{n+1}{n}>\frac{3(2 n+1)}{3(2 n+1)^{2}-1}
$$

whence

$$
(2 n+1) \cdot \log \frac{n+1}{n}>\frac{6(2 n+1)^{2}}{3(2 n+1)^{2}-1}=2+\frac{2}{3(2 n+1)^{2}-1}=2+\frac{2}{12 n^{2}+12 n+2}
$$

The lower bound we aim at evaluates to

$$
\begin{gathered}
2+\frac{1}{6} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)=2+2 \cdot\left(\frac{1}{12 n+1}-\frac{1}{12 n+13}\right) \\
=2+2 \cdot \frac{12}{(12 n+1)(12 n+13)}=2+2 \cdot \frac{12}{12 \cdot 12 n^{2}+14 \cdot 12 n+13}=2+2 \cdot \frac{2}{12 n^{2}+14 n+\frac{13}{12}}
\end{gathered}
$$

which is clearly smaller for $n \geq 1$.

Lemma 3 (Product formula of WALLIS)

$$
\sqrt{\pi}=\lim _{n \rightarrow \infty} \frac{2^{2 n} \cdot(n!)^{2}}{(2 n)!\cdot \sqrt{n+1 / 2}}
$$

Proof. Starting with the product expansion of the sine function,

$$
\sin (\pi x)=\pi x \cdot \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2}}\right)
$$

and substituting $x=1 / 2$, we get

$$
\begin{gathered}
1=\frac{\pi}{2} \cdot \prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}} \\
\frac{\pi}{2}=\prod_{k=1}^{\infty} \frac{(2 k)^{4}}{(2 k-1) 2 k \cdot 2 k(2 k+1)}=\lim _{n \rightarrow \infty} \frac{2^{4 n} \cdot(n!)^{4}}{((2 n)!)^{2}(2 n+1)},
\end{gathered}
$$

and this immediately gives the assertion.

Corollary 1 If we replace $n!$ by $s_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{\frac{1}{12 n}}$, the relative error is bounded by

$$
1 \leq \frac{s_{n}}{n!}<e^{\frac{1}{(12 n)^{2}}}
$$

Proof. Let $t_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{\frac{1}{12 n+1}}$. Then

$$
1 \leq \frac{s_{n}}{n!} \leq \frac{s_{n}}{t_{n}}=e^{\frac{1}{12 n}-\frac{1}{12 n+1}}=e^{\frac{1}{12 n(12 n+1)}}<e^{\frac{1}{(12 n)^{2}}}
$$

\diamond

Note that the "usual" textbook estimate gives the lower bound $1 \leq r_{n}$. From this we get the bound $e^{\frac{1}{12 n}}$ for the relative error that has only a linear term in the denominator of the exponential instead of the quadratic one.

Corollary 2 For all natural numbers $n \geq 1$

$$
\frac{n!e^{n}}{n^{n}}=\sqrt{2 \pi n} \cdot u_{n}
$$

where the error term u_{n} is bounded by

$$
1+\frac{1}{13 n}<u_{n}<1+\frac{1}{11 n}
$$

For $n \rightarrow \infty$

$$
\frac{n!e^{n}}{n^{n}}=\sqrt{2 \pi n}+\mathrm{O}\left(\frac{1}{\sqrt{n}}\right)
$$

Proof. We use the inequality $e^{x}>1+x$ for all real $x \neq 0$. For $0<x<1$ we therefore have $1-x \leq e^{-x}$, whence $e^{x} \leq \frac{1}{1-x}=1+\frac{1}{\frac{1}{x}-1}$. Therefore

$$
\frac{n!e^{n}}{n^{n}}<\sqrt{2 \pi n} \cdot\left(1+\frac{1}{12 n-1}\right) \leq \sqrt{2 \pi n} \cdot\left(1+\frac{1}{11 n}\right)
$$

For the lower bound we have

$$
\frac{n!e^{n}}{n^{n}}>\sqrt{2 \pi n} \cdot\left(1+\frac{1}{12 n+1}\right) \geq \sqrt{2 \pi n} \cdot\left(1+\frac{1}{13 n}\right)
$$

\diamond

Corollary 3 For all natural numbers $n \geq 1$

$$
\frac{n^{n}}{n!e^{n}}=\frac{1}{\sqrt{2 \pi n}} \cdot v_{n}
$$

where the error term v_{n} is bounded by

$$
1-\frac{1}{12 n}<v_{n}<1-\frac{1}{14 n}
$$

For $n \rightarrow \infty$

$$
\frac{n^{n}}{n!e^{n}}=\frac{1}{\sqrt{2 \pi n}}+\mathrm{O}\left(\frac{1}{\sqrt{n^{3}}}\right)
$$

Proof. The lower bound is immediate from $1-x \leq e^{-x}$. For the upper bound we use $e^{-x}<\frac{1}{1+x}=1-\frac{1}{\frac{1}{x}+1}$, and get

$$
\frac{n^{n}}{n!e^{n}}<\frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{12 n+2}\right) \leq \frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{14 n}\right)
$$

\diamond

Applying the theorem to the middle binomial coefficients $\binom{2 n}{n}$ yields:

Corollary 4

$$
\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}=\frac{4^{n}}{\sqrt{\pi n}} \cdot w_{n}
$$

where the error term w_{n} is bounded by

$$
e^{-\frac{1}{6 n}}<w_{n}<1
$$

Proof. Intermediate steps:

$$
\frac{(2 n)!}{(n!)^{2}}=\frac{\sqrt{4 \pi n} \cdot\left(\frac{2 n}{e}\right)^{2 n} \cdot e^{r_{2 n}}}{2 \pi n \cdot\left(\frac{n}{e}\right)^{2 n} \cdot e^{2 r_{n}}}
$$

and

$$
\begin{aligned}
& \frac{1}{30 n}<r_{2 n} \leq \frac{1}{24 n}<\frac{1}{12 n}, \quad \frac{1}{12 n}<2 r_{n} \leq \frac{1}{6 n} \\
& e^{-\frac{1}{6 n}}<e^{\left[-\frac{4}{30}\right] \cdot \frac{1}{n}}=e^{\left[\frac{1}{30}-\frac{1}{6}\right] \cdot \frac{1}{n}}<w_{n}=\frac{e^{r_{2 n}}}{e^{2 r_{n}}}<1
\end{aligned}
$$

\diamond

Let $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ for $n \geq 1$ be the Catalan numbers.

Corollary 5

$$
C_{n}=\frac{4^{n}}{(n+1) \sqrt{\pi n}} \cdot w_{n}
$$

with w_{n} as in Corollary 4.

References

[1] E. Cesàro: Corso di analisi algebrica con introduzione al calcolo infinitesimale. Bocca, Torino 1894.
[2] A. Fisher: Mathematical Theory of Probabilities. Macmillan, New York 1915.
[3] H. Robbins: A remark on Stirling's formula. Amer. Math. Monthly 62 (1955), 26-29.
[4] J. Stirling: Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. G. Strahan, Londini (London) 1730.

