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Following preliminary work by DE MOIVRE (1718) STIRLING in 1730 [4] stated his
famous formula that expresses the factorial in a way that leads to a very useful assessment
of its asymptotic behaviour. Here we reproduce the notably narrow bounds given by
ROBBINS [3] following a method attributed to CESARO [1] and FISHER [2].

Theorem 1 For all natural numbers n > 1 we have
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where the error term r, is bounded by
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The approximation is illustrated by the following table, where s, is the upper bound
and t,,, the lower bound from the theorem.

n |1 2 3 4 ) 6 7 8 9

sp | 1.002  2.001 6.001 24.001 120.003 720.01 5040.04 40320.2 362881.4
n! |1 2 6 24 120 720 5040 40320 362880
tp, | 0.996 1.997 5.996 23.991 119.970 719.87 5039.33 40315.9 362850.1

This suggests that the upper bound is closer to the true value then the lower bound;
and the absolute errors increase. The relative errors however decrease quite fast, see
Corollary 1 below.

Proof. We consider the sequence
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and show that it decreases monotonically; because all of its members are positive, we

then know that it converges.
Dividing two consecutive terms we get
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Lemma 2 below immediately gives
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From the left inequality we conclude a,, > an+1 as claimed.
Now let a = lim,,_, a,,. Then a > 0 and by telescoping
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To complete the proof of the theorem we have to show that a = /2.
From WALLIS’ product formula, see Lemma 3 below, and using k! = akk'““/Q/ek, we

get
2, n2n+l . 22n . e?n

an

V7= lim

n—00 €21 . qo, - (2n)20 /2. /n +1/2

vn a

=gq- lim —

nsoe 2\t 12 V2

Therefore a = /2m. &

Lemma 1l ForO0<z <1
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Proof. For |z| < 1 we have the well-known power series expansion
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For the lower bound we use
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Lemma 2 ForneN;
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Proof. In Lemma 1 we substitute z = ﬁ Then
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This gives the upper bound
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as claimed. At the lower bound we get
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The lower bound we aim at evaluates to
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which is clearly smaller for n > 1. &

Lemma 3 (Product formula of WALLIS)
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Proof. Starting with the product expansion of the sine function,
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and substituting x = 1/2, we get

(2k)* . 24 . ()4
(2k —1)2k - 2k(2k +1)  n—o0 ((20)1)2(2n + 1)’

::]8

and this immedlately gives the assertion. &

Corollary 1 If we replace n! by s, = v2mn (%)n . eﬁ, the relative error is bounded by
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Note that the1 “usual” textbook estimate gives the lower bound 1 < r,,. From this we
get the bound eT2» for the relative error that has only a linear term in the denominator
of the exponential instead of the quadratic one.

Corollary 2 For all natural numbers n > 1
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Proof. We use the inequality e > 1 + x for all real  # 0. For 0 < & < 1 we therefore

6:17
have 1 — x < e ", whence e” < ﬁ =1+ 11_1. Therefore

leh 1 1
ne < 27Tn-(1—|—) §v27rn-<1—|—).

nm 12n —1 11n

For the lower bound we have
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Corollary 3 For all natural numbers n > 1
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Proof. The lower bound is immediate from 1 — x < e™*. For the upper bound we use
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Applying the theorem to the middle binomial coefficients (2:) yields:
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Corollary 4

where the error term wy, is bounded by
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Proof. Intermediate steps:
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Let C,, = %H(%?) for n > 1 be the Catalan numbers.

Corollary 5
471
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with wy, as in Corollary 4.
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