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Following preliminary work by de Moivre (1718) Stirling in 1730 [4] stated his
famous formula that expresses the factorial in a way that leads to a very useful assessment
of its asymptotic behaviour. Here we reproduce the notably narrow bounds given by
Robbins [3] following a method attributed to Cesàro [1] and Fisher [2].

Theorem 1 For all natural numbers n ≥ 1 we have

n! =
√

2πn
(n
e

)n
· ern

where the error term rn is bounded by

1

12n+ 1
≤ rn ≤

1

12n

The approximation is illustrated by the following table, where sn is the upper bound
and tn, the lower bound from the theorem.

n 1 2 3 4 5 6 7 8 9

sn 1.002 2.001 6.001 24.001 120.003 720.01 5040.04 40320.2 362881.4
n! 1 2 6 24 120 720 5040 40320 362880
tn 0.996 1.997 5.996 23.991 119.970 719.87 5039.33 40315.9 362850.1

This suggests that the upper bound is closer to the true value then the lower bound;
and the absolute errors increase. The relative errors however decrease quite fast, see
Corollary 1 below.

Proof. We consider the sequence

an =
n!

(ne )n ·
√
n

and show that it decreases monotonically; because all of its members are positive, we
then know that it converges.

Dividing two consecutive terms we get

an
an+1

=
n!(n+1

e )n+1 ·
√
n+ 1

(ne )n ·
√
n · (n+ 1)!

=
1

e
· (n+ 1

n
)n+1/2,
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log
an
an+1

= −1 + (n+
1

2
) · log

n+ 1

n
.

Lemma 2 below immediately gives

0 <
1

12
· ( 1

n+ 1
12

− 1

n+ 1
12 + 1

) < log
an
an+1

<
1

12
· ( 1

n
− 1

n+ 1
).

From the left inequality we conclude an > an+1 as claimed.
Now let a = limn→∞ an. Then a ≥ 0 and by telescoping

1

12
· ( 1

n+ 1
12

− 1

n+ 1
12 + k

) < log
an
an+k

<
1

12
· ( 1

n
− 1

n+ k
).

For k →∞ we get
1

12n+ 1
≤ log

an
a
≤ 1

12n
,

e
1

12n+1 ≤ an
a
≤ e

1
12n .

To complete the proof of the theorem we have to show that a =
√

2π.
From Wallis’ product formula, see Lemma 3 below, and using k! = akk

k+1/2/ek, we
get

√
π = lim

n→∞

a2n · n2n+1 · 22n · e2n

e2n · a2n · (2n)2n+1/2 ·
√
n+ 1/2

= a · lim
n→∞

√
n√

2 ·
√
n+ 1/2

=
a√
2
.

Therefore a =
√

2π. 3

Lemma 1 For 0 < x < 1

3x

3− x2
<

1

2
log

1 + x

1− x
< x ·

(
1 +

1

3
· x2

1− x2

)
.

Proof. For |x| < 1 we have the well-known power series expansion

1

2
log

1 + x

1− x
= x+

x3

3
+
x5

5
+ . . . =

∞∑
ν=1

x2ν−1

2ν − 1
.

For 0 < x < 1 we get the upper bound

1

2
log

1 + x

1− x
< x+

x3

3
+
x5

3
· · · = x+

∞∑
ν=2

x2ν−1

3
= x+

x3

3

(
1 + x2 + x4 + · · ·

)
= x+

x3

3
· 1

1− x2
= x ·

(
1 +

1

3
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1− x2

)
.
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For the lower bound we use

1

2
log

1 + x

1− x
> x+

x3

3
+
x5

9
· · · =

∞∑
ν=1

x2ν−1

3ν−1
= x ·

∞∑
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= x · 1
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3

.
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Lemma 2 For n ∈ N1

2 +
1

6
·

(
1

n+ 1
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− 1

n+ 1
12 + 1

)
< (2n+ 1) · log

n+ 1

n
< 2 +

1

6
·
(

1

n
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)
Proof. In Lemma 1 we substitute x = 1

2n+1 . Then

1 + x

1− x
=

1 + 1
2n+1

1− 1
2n+1

=
2n+ 2

2n
=
n+ 1

n
.

This gives the upper bound

1

2
· log

n+ 1

n
<

1

2n+ 1
·
(

1 +
1

3
· 1

4n2 + 4n

)
=

1

2n+ 1
·
(

1 +
1

12
· 1

n(n+ 1)

)
,

as claimed. At the lower bound we get

1

2
· log

n+ 1

n
>

3(2n+ 1)

3(2n+ 1)2 − 1
,

whence

(2n+ 1) · log
n+ 1

n
>

6(2n+ 1)2

3(2n+ 1)2 − 1
= 2 +

2

3(2n+ 1)2 − 1
= 2 +

2

12n2 + 12n+ 2
.

The lower bound we aim at evaluates to

2 +
1

6
·

(
1

n+ 1
12

− 1

n+ 1
12 + 1

)
= 2 + 2 ·

(
1

12n+ 1
− 1

12n+ 13

)

= 2+2 · 12

(12n+ 1)(12n+ 13)
= 2+2 · 12

12 · 12n2 + 14 · 12n+ 13
= 2+2 · 2

12n2 + 14n+ 13
12

which is clearly smaller for n ≥ 1. 3

Lemma 3 (Product formula of Wallis)

√
π = lim

n→∞

22n · (n!)2

(2n)! ·
√
n+ 1/2

.
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Proof. Starting with the product expansion of the sine function,

sin(πx) = πx ·
∞∏
k=1

(1− x2

k2
),

and substituting x = 1/2, we get

1 =
π

2
·
∞∏
k=1

4k2 − 1

4k2
,

π

2
=
∞∏
k=1

(2k)4

(2k − 1)2k · 2k(2k + 1)
= lim

n→∞

24n · (n!)4

((2n)!)2(2n+ 1)
,

and this immediately gives the assertion. 3

Corollary 1 If we replace n! by sn =
√

2πn
(
n
e

)n · e 1
12n , the relative error is bounded by

1 ≤ sn
n!

< e
1

(12n)2 .

Proof. Let tn =
√

2πn
(
n
e

)n · e 1
12n+1 . Then

1 ≤ sn
n!
≤ sn
tn

= e
1

12n
− 1

12n+1 = e
1

12n(12n+1) < e
1

(12n)2 .

3

Note that the “usual” textbook estimate gives the lower bound 1 ≤ rn. From this we
get the bound e

1
12n for the relative error that has only a linear term in the denominator

of the exponential instead of the quadratic one.

Corollary 2 For all natural numbers n ≥ 1

n! en

nn
=
√

2πn · un

where the error term un is bounded by

1 +
1

13n
< un < 1 +

1

11n
.

For n→∞
n! en

nn
=
√

2πn+ O(
1√
n

).
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Proof. We use the inequality ex > 1 + x for all real x 6= 0. For 0 < x < 1 we therefore
have 1− x ≤ e−x, whence ex ≤ 1

1−x = 1 + 1
1
x
−1 . Therefore

n! en

nn
<
√

2πn ·
(

1 +
1

12n− 1

)
≤
√

2πn ·
(

1 +
1

11n

)
.

For the lower bound we have

n! en

nn
>
√

2πn ·
(

1 +
1

12n+ 1

)
≥
√

2πn ·
(

1 +
1

13n

)
.

3

Corollary 3 For all natural numbers n ≥ 1

nn

n! en
=

1√
2πn

· vn

where the error term vn is bounded by

1− 1

12n
< vn < 1− 1

14n
.

For n→∞
nn

n! en
=

1√
2πn

+ O(
1√
n3

).

Proof. The lower bound is immediate from 1 − x ≤ e−x. For the upper bound we use
e−x < 1

1+x = 1− 1
1
x
+1

, and get

nn

n! en
<

1√
2πn

·
(

1− 1

12n+ 2

)
≤ 1√

2πn
·
(

1− 1

14n

)
.

3

Applying the theorem to the middle binomial coefficients
(
2n
n

)
yields:

Corollary 4 (
2n

n

)
=

(2n)!

(n!)2
=

4n√
πn
· wn,

where the error term wn is bounded by

e−
1
6n < wn < 1.
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Proof. Intermediate steps:

(2n)!

(n!)2
=

√
4πn ·

(
2n
e

)2n · er2n
2πn ·

(
n
e

)2n · e2rn
and

1

30n
< r2n ≤

1

24n
<

1

12n
,

1

12n
< 2rn ≤

1

6n
,

e−
1
6n < e[−

4
30

]· 1
n = e[

1
30
− 1

6
]· 1
n < wn =

er2n

e2rn
< 1.

3

Let Cn = 1
n+1

(
2n
n

)
for n ≥ 1 be the Catalan numbers.

Corollary 5

Cn =
4n

(n+ 1)
√
πn
· wn,

with wn as in Corollary 4.
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