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Consider an r-element subset T' of an (additively written) abelian group
(or Z-module) M. For each of the different 2" subsets U C T we can form

the subset sum
S(U) =) ¢,
teU

in particular () = 0. We denote the set of subset sums for 7' C M by
S(T) = {Z(U) | U C T}
and may ask:

e How many different values can the subset sums 3(U) for U C T take?
In other words, how large is A(T') = #S(T")7 An obvious lower bound
isr (or r+1if 0 ¢ T), an obvious upper bound is 2".

e Do the subset sums of T' cover M, in other words, is S(T') = M?

e Is 0 = X(U) for some nonvoid subset U C T'? What about such “zero-
sum” subsets U? How many minimal ones exist? How large can they
be?

e What about 7' if no nontrivial subset sum X(U), U C T, vanishes?
How large can such a “zerofree” set T be?

1 Elementary Examples

Example 1 If M is a vector space over some field and the ¢t € T are linearly
independent, then all 2" subset sums are different.

Example 2 In the case M =7Z and T' = {1,...,r} we certainly have

r-(r+1)

OSE(U)SE(T):i:i: 5
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for U C T, and X(U) is an integer. This bounds the number of different
subset sums to 1+ r(r +1)/2.

It is easy to show that the righthand side of Example 2 provides a general
lower bound on the number of different sum values if T' consists of positive
real numbers.

Theorem 1 If T is an r-element set of positive real numbers, then the
number of different values X(U) for U C T is at least

r-(r—i—l).

1
+ 2

Proof. Let T = {t1,...,t,} where 0 < t; < ... < t,. Then the subset sums
07 ti, oo tey teF 1,0t 1o,

e+t + 11, b o1 + 2,
,tr+"'+t1

form a strictly increasing chain of 1 4+ 7+ (r — 1) + (r —2) +--- + 1 real
numbers. &

Corollary 1 ForT = {1,...,r} the set S(T') consists exactly of the integers
...,r(r+1)/2.

2 Zerofree Subsets

Let M be an abelian group of order m < oo and 7' C M — {0} a finite subset
with r := #T. We start with some examples, elementary observations, and
a definition.

Example 1, r = 2. Then T' = {a,b} with b # a, and we distinguish two
cases:

e a + b = 0: Then there are exactly 3 subset sums of T', the sums
0, a, b.

e a+b # 0: Then a +b # 0,a,b. Therefore we have exactly 4
different subset sums.

Remark The number of different subset sums is bounded by m (relevant
only if m is finite).

Example 2, M = Z/mZ, 1 < r < m—1, and T = {1,...,7}. From
Section 1 we know that the subset sums of T' (considered as integers)
take all values in the integer interval [0... R] where R =7 (r +1)/2.



o If m < R+ 1, then the subset sums modm take all possible
values in 0...m — 1.

e If m > R+ 1, then the subset sums modm take all possible
values in 0... R.

Special cases

e r =3, R =06, m > T7: The possible values modm are 0,...,6,
and their number is 7 = 2r + 1.

e r =4, R =10, m > 11: The possible values mod m are 0, ..., 10,
and their number is 11 = 2r + 3.

Definition Call a subset T'C M zerofree if no subset sum X(U), U C T,
U # 0, is 0. (In particular then 0 ¢ T.) The integer

zf(M) = max{#T7T | T C M zerofree}

is the zerofree bound of M.

Call diversity A(T) = #S(T) the number of different subset sums
Y(U) where U C T' (no matter whether T is zerofree or not).

Call r-diversity of M the minimum
Ay (r) =min{A(T) | T C M zerofree with #T = r}.
(For convenience set the minimum over an empty set to co.)

Remark 1 For very small r we have the obvious statements:

e A(D) = 1. (The set 0 is zerofree.) Hence Ay(0) = 1.

o If #T = 1, then T is zerofree if and only if 0 ¢ T, and then
A(T) = 2. Hence Ap(1) = 2.

e By example 2, if T' is zerofree and #1 = 2, then A(T") = 4. Hence
Ay (2) = 4.

Remark 2 Recall the obvious bounds r + 1 < A(T') < min(2",m) for ze-
rofree T, hence r + 1 < Aps(r) < min(2",m).

We restate the result of example 2:

Lemma 1 For M = 7Z/mZ:
(i) If m <r(r+1)/2, then A({1,...,7}) =m.

(i) If m>1+r(r+1)/2, then A{1,...,r})=1+r(r+1)/2.

Some immediate observations:



Lemma 2

2f(Z/mZ) > max {r

DU fw i

Proof. The inequality follws from the zerofreeness of {1,...,r}. For the
equality we use the formula for the roots of the quadratic polynomial

22+ —2m:
= 11\/2 +1
T = 5 m 1
Then (for r > 0)
1 / 1 1 / 1
70(702+)<m<:)7“2+7“<2m<:>r<{ 2m+4—2-‘<:>r§{ 2m+4—ﬂ.

&

Table 1 shows some results, calculated by the Python (or SageMath) pro-
gram in Appendix C. We see that our lower bound ¢(m) is already close to
the truth. As we’ll see in Section 6 for m prime g(m) always equals the true
value (Theorem of OLSON/BALANDRAUD).

m |2 3 4 5 6 7 8 9 10 11 12
gfm) |1 1 2 2 2 3 3 3 3 4 4
Zfm) |1 1 2 2 3 3 3 4 4 4 4

Table 1: Zerofree bound of Z/mZ where ¢ is the lower bound from Lemma 2.

Lemma 3 Let My be the subgroup of 2-torsion elements (the a € M with
2a = 0) and mg = #Ms. Let T be zerofree. Then #T < (m + ma)/2 — 1.

Proof. From each pair (a, —a) with a € Ms only one partner can be in 7.
This makes at most (m — ms)/2 elements. Moreover T" may contain the
elements of Ms except 0. &

Corollary 1 If M =Z/mZ and T C M is zerofree, then #T < m/2.

Proof. mo =1 if m is odd, and mgy = 2 if m is even. <

Corollary 2 zf(Z/mZ) < m/2.

Lemma 4 IfT is zerofree, then 3(T') # X(S) for any proper subset S C T'.
More generally ¥(U) # %(S) for two subsets S C U C T.

Proof. Otherwise X(U — S) = 0 for the nonempty subset U — S C T. &

Lemma 5 If a subset S C T is not zerofree, then T itself is not zerofree.



3 Zerofree Sets with Three Elements
Lemma 6 Let M be an abelian group and T = {t1,ta,t3} C M be zerofree.
(i) The five subset sums 0, t1, to, t3, t1 + to + t3 are different.

(ii) Assume {i,7,k} = {1,2,3}. Then the sum t; +t; equals some other
subset sum of T if and only if t; +1t; = 1.

(ili) A(T) =8 — s where s is the number of true equations in the system

o
(1) t1+ 1t =13
?
(2) t1+1t3 =19
?
(3) to +1t3 =1

(iv) A(T) > 6.

Proof. (i) is trivial.

(ii) The subset sum t; +t; is different from 0, ¢;, t;, t; + t, t; + tx, and
ti +t; +t, = X(T). The only remaining possibility is ¢; +t; = tj.

(iii) By (ii) the equations (1)—(3) describe the only way a two-element
sum might equal any of the other subset sums.

(iv) Assume A(T') < 6. Then all three equations (1)—(3) are true. Adding
(1) and (2) yields 2¢; = 0, hence t; = —t;. Then (3) yields to + t3 = —t1,
hence the contradiction ¥(7") = 0. &

Lemma 7 Lett € M have order 2, u € M have order > 2, and 2u # t. Let
T = {t,u,t +u}. Then

(i) #T = 3.
(ii) T is zerofree.
(iii) A(T) = 6.
Proof. (i) is trivial.
(ii) The eight subset sums 3(U) are
(4) 0, t, u, t+u, t+u, 2t+u=mwu, t+2u, 2t + 2u = 2u.

Except for U = () they are # 0—the only case in doubt might be
Y({u,t 4+ u}) =t + 2u whose nonvanishing is granted by the definition of
T 2u#t=—t.

(iii) The first four sums in (4) represent different elements of M.

The sum t + 2u is different from 0 (as shown in (ii)), and from ¢ 4+« and
t. It is also different from u since t + 2u = u contradicts u # t = —t.



The last sum 2u is different from 0, ¢, u, t + u, and t + 2u.
Therefore the eight sums in (4) represent exactly six different elements
of M. &

Proposition 1 Let M be an abelian group and T C M be zerofree with
#T = 3.

(i) Assume T contains no element of order 2. Then A(T) > 7.

(ii) If A(T) = 6, then T' contains an element t of order 2, an element u
of order > 2 with 2u # t, and T = {t,u,t + u}.

Proof. By Lemma 6 we have A(T) > 6, and in the case of equality exactly
two of the equations (1)—(3) must be true. Without loss of generality we
may assume that (1) and (2) are true. Then

ti +to =t3 =1ty —t;, hence2t; =0.

Under the assumption of (i) this is a contradiction, hence A(T) # 6.

(ii) If A(T) = 6, then ¢; has order 2, and T' = {t1,t2,t1 + t2}. Since (3)
is false, 2ty # 0. Finally 2t = ¢; would make the subset sum to 4 (t1 + t2)
zero, contradiction. <

In the case M = Z/mZ the exceptional sets from Lemma 7 exist only if
m is even and have the form

T(m,a) := {a, %, %—Fa} for1§a<%,a7é%.

Corollary 1 Letm > 6 and T' C Z/mZ be zerofree with #T = 3. Then the
following statements are equivalent:

(i) A(T) =6.
(ii) m is even, and T = T(m,a) for some a with 1 < a <m/2, a # 7.

Corollary 2 The number of zerofree subsets T C 7Z/mZ with #T = 3 and
A(T) =6 is

0 if m is odd or m <5,
B —2 ifmis even and m =0 (mod 4),
& —1 ifmis even and m =2 (mod 4).



4 The Moser-Scherk Theorem

As a preliminary consideration for larger subsets we ask how many differ-
ent two-element sums can be formed. A fundamental result was proved by
SCHERK as a solution to a problem posed by MOSER, see [8].

Theorem 2 Let M be an abelian group, A, B C M finite subsets with0 € A
and 0 € B. Assume that a +b =0 fora € A andb € B only ifa =b= 0.
Then
#(A+B)> #A+#B - 1.
Remarks. 1. A and B need not to be disjoint.
2. In the special case B = A we have #(A+ A) > 2-#A — 1.
3. ACA+ Bsince 0 € B, and BC A+ B since 0 € A.
Proof. Induction on n = #B. The case n = 1 ist trivial since B = {0},
A+ B=A.
Now assume that n = #B > 2. Take by € B —{0}. Since 0 &€ A+ by, but
0 € A, and #(A + bg) = A, there is an ag € A with ag + by ¢ A. Therefore
the subset
Y:={yeBlay+y ¢ A}

is nonvoid and proper (since 0 € B—Y). Let X = a9+ Y C M. Then
0 < #X =#Y < #B.
The construction of Y implies that X and A are disjoint. If we set
A'=AuUX, B :=B-Y,

then we have #A' = #A + #X, #B' = #B —#X <n—1,and 0 € 4/,
0 € B'. Claim:
(i) A+ B"CA+B.
(ii) f c+d=0for ce A" and d € B’, then ¢ =d = 0.
For the proof we take c € A’ and d € B’.
Case 1,ce A. Thenc+de A+ B,and if c+d =0, then c=d = 0.
Case 2, c € A’ — A, in particular ¢ # 0. Then ¢ € X, thus ¢ = ag + vy
with y € Y,
c+d=(ap+y)+d=(ap+d)+ye A+ B
——
€A
since d € B—Y, and ¢+ d = 0 implies that ag + d = y = 0, contradiction.
Now we may apply the induction hypothesis and get

#A+B)>H#A +B)>#A +#B' —1=#A+#B — 1.



Note There are a number of similar results in the literature, the most
prominent ones being:

e The CAUCHY-DAVENPORT theorem: Let A,B C M = Z/pZ (p
prime) with A+B # M. Then #(A+B) > #A+#B—1 (as in the
MOSER-SCHERK theorem but without its restricting assumptions
on A and B).

e KNESER’s addition theorem: Let A, B C M be finite nonempty
subsets. Then there exists a subgroup H C M with
A+ B+ H = A+ B (i.e. consisting of “periods” of A+ B) such
that #(A+ B) > #(A+ H) +#(B+ H) — #H.

e The ERDOS-HEILBRONN conjecture, proved by HAMIDOUNE and
DiAs DA SiwvA: Let M = Z/pZ, an A C M be an r-element
subset. Then #(A+A) > min{p, 2r — 3} where A+A denotes the
set of sums a + b for a,b € A with a # b.

5 The Eggleton-Erd6s Theorem

Lemma 8 Let M be an abelian group and T C M an r-element subset with
r > 2. Then
A(T) > min{Ap(r —1) +2,2r + 1}.

Proof. First assume the existence of a w € T that is not a subsum
of T,:=T—{u}. Let S = {¥(U)|U < T,}. Then u ¢ S, and
N :=#S5 > Ap(r—1). Also the full sum X(7") is not in S, for otherwise
¥(T) = ¥(U) with some U C T, contradicting Lemma 4. Since u # X(T)
we found two additional elements, hence A(T) > N + 2.

We are left with the case where each u € T' is a subset sum of T' — {u}.
Applying Theorem 2 to A = B = T U {0} with #A4 = r + 1 yields
#(A+A)>2(r+1)—1=2r+1. We want to show that each element of
A+ A is a subset sum of T. For ¢ + « with different elements ¢,u € T this is
trivial, likewise if one or two of the summands are zero. But what if we add
two identical elements of T'? For v € T" we have

U= Zstt where €, = 0 or 1, not all = 0.
t#u

Hence u + u = wu + > et, a subsum of 7. We conclude that
AT)>#(A+A) >2r+1. &

Theorem 3 Let M be an abelian group and r > 1. Then

(i) Aps(r) > 2r.



(i) Ap(r) >2r+14fr > 4.

Proof. We reason by induction on 7.

(i) is true for r = 1 by Remark 1 in Section 2, and the induction step is
provided by Lemma 8.

(ii) is proved the same way if we start the induction at r = 4 and use
the following Lemma 9. &

Lemma 9 Let T C M be a zerofree subset with #1 = 4. Then A(T) > 9.

Proof. Let T' = {t1,t2,t3,t4}. If each ¢; is a subset sum of the remaining ¢;
we are in the second case of Lemma 8 and conclude that A(T) > 2r+1 = 9.
Therefore (without restriction) we may assume that t4 is not a subset sum
of T = {t1,t2,t3} and A(T) > A(T") + 2. If A(T') > 7 we are done. So we
may assume that A(7”) = 6. We have five different subset sums

07 tla t27 t3a t1 + 1o +t37
and the sixth one must be a two-element sum, say
t1 + to.

Then necessarily ¢; +t3 = t2 (no other one of the six subset sums fits here),
and likewise to + t3 = t1. Addition of these two relations yields 2¢3 = 0 or
ty = —t3.

Now considering t4 we get two additional subset sums

ty and X(T) =ty +to+t3+ 1ty
and need only one more. The sum
t1+1t2+ 1y

is certainly different from the seven sums 0, t1, to, t4, t1 + to, t1 + to + t3,
and X(T). Could it be = t37 Since t3 = —t3 this yields t; + to + t4 = —t3,
thus ¢1 + to + t3 + t4 = 0, contradiction.

Therefore A(T) > 9. &

6 Olson’s Theorem

A special case of OLSON’s results in [10] leads to the strongest known im-
provement of the EGGLETON-ERDOS bound 2r + 1.

Theorem 4 Let M be an abelian group and T C M be a finite subset,
r=#T. Then at least one of the following statements holds:



(i) For each subset S C T there is another subset U C T with U # S and
X(U) =X%(S).

(i) A(T) > 1+ 72/9.

In fact OLSON proved this (with an appropriate formulation) even for non-
abelian M [10, Theorem 3.2]. We omit the proof.

If T C M is zerofree, it violates statement (i) for the subset sum
0 = X(0). Hence T must satisfy statement (ii):

Corollary 1 Let M be an abelian group and T C M be a finite zerofree
subset, r = #T. Then A(T) > 1+1%/9 (as long as this number is < #M).

Corollary 2 Let M be an abelian group and r > 1. Then

T

suiy 214 [7]

(as long as this number is < #M).
This bound is larger than 2r + 1 if and only if » > 19.

Note 1 Call T C M antisymmetric if TN (—7") = 0.

o Let M =7Z/pZ, p a prime. Let T be an antisymmetric subset of
M of size r = #T. Then BALANDRAUD [1] improved a bound by
OLSON [9] as follows:

ATz min {p, 1+ " ED Y,

2

e Let M be a finite abelian group of order m = #M. Let T C M
antisymmetric of size r = #1' > 2. Then at least one the following
statements is true [2]:

(i) AT) > "D 43,
(ii) There is nonempty subset U C T with A(U) > #(U)/2.

. r(r+1
For odd m the first item may be replaced by A(T') > (T)

Remark If T is not antisymmetric, then it contains an element ¢t € TN(—T),
t = —s with s € T, thus s +t = 0. We distinguish the cases:

e t = 0. Then T has the zero-sum subset {0} of size 1.
e ¢ has order 2. Then s = t.
e t # 2. Then T has the zero-sum subset {s,t} of size 2.

We conclude that if T is zerofree and doesn’t contain an element of
order 2, then T is antisymmetric.
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Note 2 Let M = Z/pZ, p a prime > 3. Then M doesn’t contain an element
of order 2. Therefore for a zerofree subset T' C M of size r = #7T Note 1
yields the bound:

1
A(T) > 1+ T(T;_)
as long as this number is < p. As in Section 1 this bound is sharp.
Using Lemma 2 we conclude that

S RRUNCE |

Note 3 A strong variant of the ERDOS-HEILBRONN conjecture claims that
zf(Z/mZ) < [vV2m]. In other words, if Z/mZ has a zerofree subset
of size r, then m > r2/2. For m = p prime Note 2 implies the slightly
stronger inequality zf(Z/pZ) < /2p — 1.

2f(Z/pZ) = max {r

7 Subset Sums mod m

In this section we consider the group M = Z/mZ and write A,, in-
stead of Ajps. We freely abuse the notation by identifying the integer
a € {0,...,m — 1} with its residue class mod m.

Example 3. For m < 5 zerofree subsets T" C M have r < 2 elements,
hence all possible values A(7T') are known (and depend only on #7,
see Table 2). We have A, (1) = 2 and A,,(2) = 4.

Example 4. For m = 6 and r = 3 there are two zerofree three-element
subsets T of {1,2,3,4,5}:

T(6,1) = {1,3,4} and T(6,2) = {2,3,5}.
For each of them A(7T') =6 = m. Thus Ag(3) = 6.

Example 5, m = 7 and r = 3. There are six zerofree three-element subsets
T of {1,2,3,4,5,6}:

{1,2,3}, {1,3,5}, {1,4,5}, {2,3,6}, {2,4,6}, {4,5,6)}.
For each of them A(T) =7 = m. Thus A7(3) = 7.

Example 6, m = 8. The cases r = 0, 1, 2 are known. In the case
r = #1T = 3 the picture is inhomogeneous:

e The subset T" = {1,4,5} C {1,2,3,4,5,6,7} is zerofree and has
A(T) = 6.

11



e The subset T'= {1, 2,3} is zerofree and has A(T') = 7.
e The subset T'= {1,4,6} is zerofree and has A(T") = 8.

Thus each of the possible values A(T') = 6, 7, 8 occurs, and Ag(3) = 6.

Note BALANDRAUD’s bound, see Note 2 in Section 6 yields the exact values

for prime modules m = p:
1
Ap(r)=1+ A, (T; )

(as long as this value is < p, that is zf(Z/pZ) < r). This formula yields
for example:

e Ay(l)=1+1-2/2=2forall p> 3.
e Ay(2)=1+4+2-3/2=4forall p>5.
e Ay(3)=1+3-4/2=Tforallp>T7.
e AL(4)=1+4-5/2=11 for all p > 11.
e Ay(b)=1+5-6/2=16 for all p > 17.
e Ap(6)=1+6-7/2=22for all p > 23.

Table 2 summarizes the known values for small modules m and extends
this knowledge with the help of a Python (or SageMath) program, listed
in Appendix B. The table exhibits some eye-catching patterns that suggest
several hypotheses:

1. For r > 3 the value A,,(T") = 2r occurs only if m is even and r = 3.
This follows from Theorem 3 (ii) and Corollary 1 of Proposition 1.

2. For r = 3 the possible diversities are

A(T) = {6, 7,8 if m is even,

7,8 if m is odd.

Therefore
6 if m is even,

AL(3) =
(3) {7 if m is odd.

This was proved in Section 3.

3. For r = 4 zerofree sets exist only if m > 9, and then always
A(T)>9=2r+1, and A,,(4) > 9. The theoretical maximum diver-
sity min(m, 16) is reached. For m > 10 we see even A(T") > 10 = 2r+2,
hence A,,(4) > 10, even > 11 if m is prime, confirming the note above.

12



=#T=|0 1 2 3 4 5 6 7
m=11 - - - - - - -
211 2 - - - - - -
3/1 2 - - - - - -
411 2 4 - — - - —
511 2 4 - - - - -
6|1 2 4 6 — — - —
7|1 2 4 7 - - - -
811 2 4 6.8 — — — —
911 2 4 7.8 9 - - -
101 2 4 6.8 10 - - —
111 2 4 7.8 11 - - -
1211 2 4 6.8 10..12 - — —
131 2 4 7.8 11..13 — — —
1411 2 4 6.8 10..14 14 - -
5|1 2 4 7.8 10..15 15 - -
6|1 2 4 6.8 10..16 14..16 - -
1711 2 4 7.8 11..16 16..17 — —
1811 2 4 6.8 9.16 14, - -
16..18
191 2 4 7.8 11..16 16..19 - -
2001 2 4 6.8 10..16 14, 20 —
16..20
2111 2 4 7.8 10..16 16..21 21 —
2211 2 4 6.8 10..16 14, 20,22 -
16..22
23|11 2 4 7.8 11..16 16.23 22,23 -
2411 2 4 6.8 10..16 14, 20 -
16..24 22..24
2511 2 4 7.8 11..16 16..25 22..25 25
26|11 2 4 6.8 10..16 14, 20 26
16..26 22..26

Table 2: Possible values of A(T'), T zerofree, for small m.
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4. For r = 5 zerofree sets exist only if m > 14. The possible diversities
are
14 if m is even,

A(T)>< 15 if m =15,
16 if m is odd > 17.

In particular A,,(5) > 14 = 2r +4, even > 16 if m is prime. The value
15 doesn’t occur as A(T) for even m > 18 nor for odd m > 17.

5. For r = 6 zerofree sets exist only if m > 20. The possible diversities
are
20 if m is even,

A(T) > <21 if m=21,
22 if mis odd > 23.

In particular A,,(6) > 20 = 2r+8. There is no zerofree set of diversity
21 for even m, or for odd m > 21.

6. All zerofree subsets 1" C Z/mZ have size

for 6 < m <8,

for 9 < m <13,
for 14 <m < 19,
for 20 < m < 24.

< zf(Z/mZ) =

S Ot e W

Thus Table 2 suggests that the lower bound of Lemma 2 is at most one
less then zf for composite modules m, and zf seems to be monotone in m.
We know that

Ap(0)=1, An(l)=2, A,2)=4, A,3)=6, A,H4)=9,
and, from [3], that
Ap(5) =14, Ap(6) =20, Ap(7) = 25.

Further calculations suggest that A,,(8) > 34 (for m prime the value is 37).

8 Some Further Remarks
For an abelian group M and a subset 7' C M let
S(T)={2(U)|UCT, U0}

be the set of all nontrivial subset sums of 7". Note that S(M) = S*(M) = M
and S*(M — {0}) > M — {0}.
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Lemma 10 S*(M — {0}) = M if and only if #M > 3.

Proof. It #M =1, then M — {0} = 0, thus S*(M — {0}) = 0.

If #M =2, say M =Z/2Z = {0, 1}, then S*(M — {0}) = {1}.

Now let #M > 3. Then there are t1,to € M — {0} with t; # to. If
t1+t2 = 0, then 0 € S*(M—{0}), and we are done. Otherwise t1+t2 = t3 # 0.
If t3 = —t1, then {¢1,t3} sums to zero; likewise if t3 = —to. In the remaining
case {t1,t2, —t3} is a three-element subset with sum 0. &

Definition The integer
cr(M) = min{r |S*(T) = M for all T C M — {0} with #T > r},
is called the covering (or critical) constant of M.
Example 1 If #M < 2 by Lemma 10 M is never covered, thus cr(M) = oco.

Example 2 Let M = Z/3Z = {0,1,2} (where by abuse of notation we let
integers represent their own residue classes).

e For T'= {1} we have X(T') =1, S(T) = {0,1}, S*(T) = {1}. As
a consequence cr(M) > 1.

e ForT = {1,2} we have ¥(T') = 0, S(T) = S*(T') = {0, 1, 2}. Since
T is the only two-element subset of M — {0} we have cr(M) = 2.

Example 3 Let M =Z/4Z = {0, 1,2, 3}.

o Let a # 0. For T = {a} we have X(T) = a, S(T) = {0,a},
S*(T') = {a}. This implies cr(M) > 1.

e Let a,b € M — {0}, a # =+b. For T = {a,b}
we have X(T)=a+4+b#0, S(T)={0,a,b,a+b}=M,
S*(T) ={a,b,a+b} = M — {0}.

e For T' = {1,3} we have X(T) = 0, S(T) = {0,1,3},
S*(T) = {0,1,3}. Therefore S*(T') # M for all two-element sub-
sets T'C M — {0}, thus cr(M) > 2.

e For T' = {1,2,3} = M — {0} we have X(T) = 2, S(T) = M,
S*(T') = M. Therefore cr(M) = 3.

Note By [5] we have cr(Z/pZ) = |2+/p — 2]. The covering constant cr(M)
is known for all finite abelian groups M, see [7]: Let p be the smallest
prime divisor of m = #M and m # p. Then

cr(M):%+p—5

where § = 2 (in the general case) or § = 1 (in a small, explicitly known
set of exceptional cases).
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Definition We call U C M a minimal zero-sum subset if U # (), X(U) = 0,
and U is minimal under these conditions. The strong Davenport
constant SD(T") of T' C M is the maximum size of a minimal zero-
sum subset of 7', see [4].

Definition Olson’s constant OI()/) is the smallest 7 such that each sub-
set T'C M of size r contains a nontrivial zero-sum subset:

Ol(M) = min{r |0 € S*(T) for all T C M with #1T > r}.
Lemma 11 SD(M) < Ol(M) < cr(M).

Proof. For the first inequality we have to show that #7 < OI(M) for an arbi-
trary minimal zero-sum set 7. Assuming #7" > Ol(M) we take " =T — {t}
for an arbitrary ¢t € T and conclude that #7” > OI(M), hence 0 € S*(T”),
0 = X(U) for some nonempty subset U C T” C T, contradicting the mini-
mality of T'.

The second inequality is trivial if cr(M) = oo. If cr(M) < oo we have
to show that 0 € S*(T') if #T > cr(M). If 0 € T this is trivial. Otherwise
T C M—{0}, hence M = S§*(T') by the definition of cr, a forteriori 0 € S*(T').
&

Lemma 12 zf(M) = Ol(M) — 1.

Proof. We may assume that both quantities are finite.

“<”: Take a zerofree set T' of maximal size #1" = zf(M). Then obviously
#T < Ol(M).

“>7”: There is a subset T C M of size #T = OI(M) — 1 such that
0 ¢ S*(T'). Hence T is zerofree, O(M) — 1 = #T < zf(M). &

Example 1 If #M < 2 the only zero-sum subset is {0}. Thus SD(M) = 1,
and OI(M) =#M = 1 or 2. The maximal zerofree subsets are () if
M = {0}, and {1} if M = Z/2Z, hence zf(M) =0 or 1.

Example 2 Let M = Z/3Z = {0,1,2}. The 8 = 23 different subsets are
0, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.
e Zero-sum subsets: 0, {0}, {1,2}, {0,1,2}. Thus Ol(M) = 2.

e Minimal zero-sum subsets: {0}, {1,2}. Thus SD(M) = 2.
e Zerofree subsets: {1}, {2}. Thus zf(M) = 1.

Example 3 Let M = Z/4Z = {0,1,2,3}. The 16 = 2* different subsets are
0, {0}, {1}, {2}, {3}, {0,1}, {0, 2}, {0,3}, {1,2}, {1,3}, {2,3},
{0,1,2}, {0,1,3}, {0,2,3}, {1,2,3}, {0,1,2,3}.
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e Zero-sum subsets: (), {0}, {1,3}, {0,1,3}. Thus OI(M) = 3.
e Minimal zero-sum subsets: {0}, {1,3}. Thus SD(M) = 2.
e Zerofree subsets: {1}, {2}, {3}, {1,2}, {1,3}. Thus zf(M) = 2.

For the comparision of zf and SD it’s convenient to consider also multi-
sets.

Proposition 2 Let S be a zerofree multiset in a Z-module M. Then the
number w(S) of different elements of S is at most SD(M).

Proof. By definition ¢t := —X(S5) € M — {0}, hence T' := SU{t} is a zerosum
multiset, ¥(7') = X(S) +¢ = 0. There is a minimal zerosum multiset U C 7.
Since S is zerofree U is not contained in .S, hence the multiplicity of ¢ in U is
14 the multiplicity of ¢ in S, and U’ := U — {t} (multiplicity of ¢ decreased
by 1) is a submultiset of S. Moreover

S(U) = S(U) —t = —t = 5(S).

Therefore S — U’ is a zerosum multiset contained in S, hence = (), thus U’ =
S and U=U"U{t} =S U{t} =T. Since U is minimal w(S) < w(T) =
w(U) < SD(M). &

Corollary 1 If S C M is a zerofree subset, then #S < SD(M). In partic-
ular zf(M) < SD(M).

Proof. Since S is a set #S5 = w(S5). ¢

Corollary 2 Assume SD(M) < co. Then zf(M) = SD(M) or SD(M) — 1,
and SD(M) = Ol(M) or OI(M) — 1.

Proof. zf (M) < SD(M) by Corollary 1. To get a zerofree set of size SD(M)—1
take a minimal zero-sum subset of size SD(M) and remove an arbitrary
element. The second statement follows from Lemma 12. &

In summary we have
Corollary 3 Let M be an abelian group. Then

1) o))
zf(M) < SD(M) < Ol(M) =zf(M) +1 < cr(M)
where exactly one of the inequalities (1) or (2) is an equality.

Note that all these numbers are defined for arbitrary M but make sense only
for M finite.
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Note From [1] for M = Z/pZ we have

ONZ/pZ) = min{k ‘ ’“(’“2“) > p}.

By Note 2 in Section 6 zf(Z/pZ) < \/2p — 1. Hence by Corollary 3

SD(Z/pT) < ONZ/pZ) < |\/2p—1|.

Olson’s bound from [9] was ON(Z/pZ) < cr(Z/pZ) < [/4p = 3]. From
[5] we know the slighly smaller bound

cr(Z/pZ) = P VD — QJ .

Figures 1 and 2 illustrate the growth of zf and of the number of minimal
zero-sum sets as a function of the module m, generated with the program
from Appendix C.

W T

Figure 1: The zerofree bound of Z/mZ
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Figure 2: The number of minimal zero-sum sets mod m

A Auxiliary Routines in Python

Calculate the list of coefficients for the representation on s in
base b

def baserep(s,b):

coefflist = []

while s != 0O:
rem =s % b
quot = s//b
coefflist.insert(0,rem)
s = quot

return coefflist
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Calculate all subsets of a set

def subsets(T):
11 = len(T)
NN = 2xx11
bitlist = []
subsetlist = []
L = 1ist(T)
for i in range(NN):
bitvector = baserep(i,2)

while len(bitvector) < 11:

bitvector.insert(0,0)
bitlist.append(bitvector)
for bitvector in bitlist:
newlst = []
for j in range(11l):
if bitvector[j] ==
newlst.append(L[j])
newset = set(newlst)
subsetlist.append(newset)
return(subsetlist)

20
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B Zerofree Subsets and Diversities in Python

m = int(sys.argv[1])
base = list(range(1,m))
print ("Module:", m)

stoplist = [] # Supersets are not zerofree.
listl = [] # List of zerofree subsets
for i in range(1l,m):

listl.append({i})

mm = 1 + m//2
for r in range(2,mm):

print("r =", r, "| Zerofree r-element sets:")
list2 = [] # Next list of zerofree subsets
divlist = [] # List of diversities
for S in listl:
tm = max(S)
for i in range(tm+1,m): # Add on element to the set S.
T = S.copy()
T.add (i)

stopcond = False
for stopset in stoplist:
if stopset <= T:
stopcond = True
if not(stopcond):
ss = sun(T) % m

if ss ==
stoplist.append(T)
else:
list2.append(T)
sublist = subsets(T) # Now calculate all subset sums of T
sumlist = []

for U in sublist:
sumlist.append(sum(U) % m)
sumset = set(sumlist)
Delta = len(sumset)
divlist.append(Delta)
listl = list2.copy() # Save list for use in next round.
if len(divset) > O:

print("r =", r, "| Diversities:", divset)
else:
print("r =", r, "| No zerofree sets")
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C Strong Davenport Constant and Number of
Minimal Zero-sum Sets

mm = int(sys.argv[1])
zslist [J # list of minimal zerosum subsets, to be built successively
zflist [1] # list of zerofree subsets of actual size,

# to be replaced in each step

for t in range(l,mm):
zflist.append({t})

zf =1 # zerofree bound

SD =1 # strong Davenport constant

s =1 # actual size

while len(zflist) > O: # stop condition not yet reached
s +=1 # next size
oldlist = zflist.copy() # zerofree sets of previous size
zflist = [] # zerofree sets of actual size
for oldset in oldlist: # expand each zerofree set

for t in range(1,mm): # Dby one element t

discard = False
newset = oldset.copy()
newset.add(t)
if len(newset) < s or newset in zflist:

discard = True # discard if t already in oldset

# or newset not really new

else:

for zsset in zslist: # or if newset contains a zerosum set

if zsset <= newset:
discard = True

if not(discard):

if sum(newset) % mm == O: # test zerosum property
zslist.append(newset) # new minimal zerosum subset detected
SD = s # update value for strong Davenport constant
else:
zflist.append(newset) # new zerofree subset detected
zf = s
print("m:", mm, "| zf = ", zf, "| SD =", SD, "| zs = ", len(zslist))

22



References

1]

2]

E. Balandraud: An addition theorem and maximal zero-sum free sets
in Z/pZ. Israel J. Math. 188 (2012), 405-429, 1009-1010.

E. Balandraud, B. Girard, S. Griffiths, Y. o. Hamidoune: Subset sums
in abelian groups. arXiv:1112.1929v1

G. Bhowmik, I. Halupczok, J.-C. Schlage-Puchta: Zero-sum free sets
with small sum-set. Math. of Comp. 80 (2011), 2253-2258.

S.T. Chapman, M. Freeze, W. W. Smith: Minimal zero sequences and
the strong Davenport constant. Discr. Math. 203 (1999), 271-277.

J.A. Dias da Silva, Y.o. Hamidoune: Cyclic spaces for Grassmann
derivatives and additive theory. Bull. London Math. Soc. 26 (1994),
140-146.

R. B. Eggleton, P. Erdés: Two combinatorial problems in group theory.
Acta Arithmetica 21 (1972), 111-116.

M. Freeze, W. Gao, A. Geroldinger: The critical number of finite
abelian groups. J. Number Theory 129 (2009), 2766-2777.

L. Moser, P. Scherk: Distinct elements in a set of sums. Amer. Math.
Monthly 62 (1955), 46-47.

J. E. Olson: An addition theorem modulo p. J. Combin. Theory 5
(1968), 45-52.

J. E. Olson: Sums of sets of group elements. Acta Arithm. 28 (1975),
147-156.

23



