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Consider an r-element subset T of an (additively written) abelian group
(or Z-module) M . For each of the different 2r subsets U ⊆ T we can form
the subset sum

Σ(U) :=
∑
t∈U

t,

in particular Σ(∅) = 0. We denote the set of subset sums for T ⊆M by

S(T ) = {Σ(U) | U ⊆ T} .

and may ask:

• How many different values can the subset sums Σ(U) for U ⊆ T take?
In other words, how large is ∆(T ) = #S(T )? An obvious lower bound
is r (or r + 1 if 0 6∈ T ), an obvious upper bound is 2r.

• Do the subset sums of T cover M , in other words, is S(T ) = M?

• Is 0 = Σ(U) for some nonvoid subset U ⊆ T? What about such “zero-
sum” subsets U? How many minimal ones exist? How large can they
be?

• What about T if no nontrivial subset sum Σ(U), U ⊆ T , vanishes?
How large can such a “zerofree” set T be?

1 Elementary Examples

Example 1 If M is a vector space over some field and the t ∈ T are linearly
independent, then all 2r subset sums are different.

Example 2 In the case M = Z and T = {1, . . . , r} we certainly have

0 ≤ Σ(U) ≤ Σ(T ) =

r∑
i=1

i =
r · (r + 1)

2
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for U ⊆ T , and Σ(U) is an integer. This bounds the number of different
subset sums to 1 + r(r + 1)/2.

It is easy to show that the righthand side of Example 2 provides a general
lower bound on the number of different sum values if T consists of positive
real numbers.

Theorem 1 If T is an r-element set of positive real numbers, then the
number of different values Σ(U) for U ⊆ T is at least

1 +
r · (r + 1)

2
.

Proof. Let T = {t1, . . . , tr} where 0 < t1 < . . . < tr. Then the subset sums

0, t1, . . . , tr, tr + t1, . . . , tr + tr−1,

tr + tr−1 + t1, . . . , tr + tr−1 + tr−2,

. . . , tr + · · ·+ t1

form a strictly increasing chain of 1 + r + (r − 1) + (r − 2) + · · · + 1 real
numbers. 3

Corollary 1 For T = {1, . . . , r} the set S(T ) consists exactly of the integers
1, . . . , r (r + 1)/2.

2 Zerofree Subsets

Let M be an abelian group of order m ≤ ∞ and T ⊆M−{0} a finite subset
with r := #T . We start with some examples, elementary observations, and
a definition.

Example 1, r = 2. Then T = {a, b} with b 6= a, and we distinguish two
cases:

• a + b = 0: Then there are exactly 3 subset sums of T , the sums
0, a, b.

• a + b 6= 0: Then a + b 6= 0, a, b. Therefore we have exactly 4
different subset sums.

Remark The number of different subset sums is bounded by m (relevant
only if m is finite).

Example 2, M = Z/mZ, 1 ≤ r ≤ m − 1, and T = {1, . . . , r}. From
Section 1 we know that the subset sums of T (considered as integers)
take all values in the integer interval [0 . . . R] where R = r (r + 1)/2.
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• If m ≤ R + 1, then the subset sums modm take all possible
values in 0 . . .m− 1.

• If m ≥ R + 1, then the subset sums modm take all possible
values in 0 . . . R.

Special cases

• r = 3, R = 6, m ≥ 7: The possible values modm are 0, . . . , 6,
and their number is 7 = 2r + 1.

• r = 4, R = 10, m ≥ 11: The possible values mod m are 0, . . . , 10,
and their number is 11 = 2r + 3.

Definition Call a subset T ⊆M zerofree if no subset sum Σ(U), U ⊆ T ,
U 6= ∅, is 0. (In particular then 0 6∈ T .) The integer

zf(M) = max{#T | T ⊆M zerofree}

is the zerofree bound of M .

Call diversity ∆(T ) = #S(T ) the number of different subset sums
Σ(U) where U ⊆ T (no matter whether T is zerofree or not).

Call r-diversity of M the minimum

∆M (r) = min{∆(T ) | T ⊆M zerofree with #T = r}.

(For convenience set the minimum over an empty set to ∞.)

Remark 1 For very small r we have the obvious statements:

• ∆(∅) = 1. (The set ∅ is zerofree.) Hence ∆M (0) = 1.

• If #T = 1, then T is zerofree if and only if 0 6∈ T , and then
∆(T ) = 2. Hence ∆M (1) = 2.

• By example 2, if T is zerofree and #T = 2, then ∆(T ) = 4. Hence
∆M (2) = 4.

Remark 2 Recall the obvious bounds r + 1 ≤ ∆(T ) ≤ min(2r,m) for ze-
rofree T , hence r + 1 ≤ ∆M (r) ≤ min(2r,m).

We restate the result of example 2:

Lemma 1 For M = Z/mZ:

(i) If m ≤ r (r + 1)/2, then ∆({1, . . . , r}) = m.

(ii) If m ≥ 1 + r (r + 1)/2, then ∆({1, . . . , r}) = 1 + r (r + 1)/2.

Some immediate observations:
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Lemma 2

zf(Z/mZ) ≥ max

{
r

∣∣∣∣ r (r + 1)

2
< m

}
=

⌈√
2m+

1

4
− 3

2

⌉
.

Proof. The inequality follws from the zerofreeness of {1, . . . , r}. For the
equality we use the formula for the roots of the quadratic polynomial
x2 + x− 2m:

x = −1

2
±
√

2m+
1

4

Then (for r > 0)

r (r + 1)

2
< m⇐⇒ r2+r < 2m⇐⇒ r <

⌈√
2m+

1

4
− 1

2

⌉
⇐⇒ r ≤

⌈√
2m+

1

4
− 3

2

⌉
.

3

Table 1 shows some results, calculated by the Python (or SageMath) pro-
gram in Appendix C. We see that our lower bound q(m) is already close to
the truth. As we’ll see in Section 6 for m prime q(m) always equals the true
value (Theorem of Olson/Balandraud).

m 2 3 4 5 6 7 8 9 10 11 12

q(m) 1 1 2 2 2 3 3 3 3 4 4
zf(m) 1 1 2 2 3 3 3 4 4 4 4

Table 1: Zerofree bound of Z/mZ where q is the lower bound from Lemma 2.

Lemma 3 Let M2 be the subgroup of 2-torsion elements (the a ∈ M with
2a = 0) and m2 = #M2. Let T be zerofree. Then #T ≤ (m+m2)/2− 1.

Proof. From each pair (a,−a) with a 6∈ M2 only one partner can be in T .
This makes at most (m − m2)/2 elements. Moreover T may contain the
elements of M2 except 0. 3

Corollary 1 If M = Z/mZ and T ⊆M is zerofree, then #T ≤ m/2.

Proof. m2 = 1 if m is odd, and m2 = 2 if m is even. 3

Corollary 2 zf(Z/mZ) ≤ m/2.

Lemma 4 If T is zerofree, then Σ(T ) 6= Σ(S) for any proper subset S ⊂ T .
More generally Σ(U) 6= Σ(S) for two subsets S ⊂ U ⊆ T .

Proof. Otherwise Σ(U − S) = 0 for the nonempty subset U − S ⊆ T . 3

Lemma 5 If a subset S ⊆ T is not zerofree, then T itself is not zerofree.
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3 Zerofree Sets with Three Elements

Lemma 6 Let M be an abelian group and T = {t1, t2, t3} ⊆M be zerofree.

(i) The five subset sums 0, t1, t2, t3, t1 + t2 + t3 are different.

(ii) Assume {i, j, k} = {1, 2, 3}. Then the sum ti + tj equals some other
subset sum of T if and only if ti + tj = tk.

(iii) ∆(T ) = 8− s where s is the number of true equations in the system

t1 + t2
?
= t3(1)

t1 + t3
?
= t2(2)

t2 + t3
?
= t1(3)

(iv) ∆(T ) ≥ 6.

Proof. (i) is trivial.
(ii) The subset sum ti + tj is different from 0, ti, tj , ti + tk, tj + tk, and

ti + tj + tk = Σ(T ). The only remaining possibility is ti + tj = tk.
(iii) By (ii) the equations (1)–(3) describe the only way a two-element

sum might equal any of the other subset sums.
(iv) Assume ∆(T ) < 6. Then all three equations (1)–(3) are true. Adding

(1) and (2) yields 2 t1 = 0, hence t1 = −t1. Then (3) yields t2 + t3 = −t1,
hence the contradiction Σ(T ) = 0. 3

Lemma 7 Let t ∈M have order 2, u ∈M have order > 2, and 2u 6= t. Let
T = {t, u, t+ u}. Then

(i) #T = 3.

(ii) T is zerofree.

(iii) ∆(T ) = 6.

Proof. (i) is trivial.
(ii) The eight subset sums Σ(U) are

(4) 0, t, u, t+ u, t+ u, 2t+ u = u, t+ 2u, 2t+ 2u = 2u.

Except for U = ∅ they are 6= 0—the only case in doubt might be
Σ({u, t+ u}) = t+ 2u whose nonvanishing is granted by the definition of
T , 2u 6= t = −t.

(iii) The first four sums in (4) represent different elements of M .
The sum t+ 2u is different from 0 (as shown in (ii)), and from t+ u and

t. It is also different from u since t+ 2u = u contradicts u 6= t = −t.

5



The last sum 2u is different from 0, t, u, t+ u, and t+ 2u.
Therefore the eight sums in (4) represent exactly six different elements

of M . 3

Proposition 1 Let M be an abelian group and T ⊆ M be zerofree with
#T = 3.

(i) Assume T contains no element of order 2. Then ∆(T ) ≥ 7.

(ii) If ∆(T ) = 6, then T contains an element t of order 2, an element u
of order > 2 with 2u 6= t, and T = {t, u, t+ u}.

Proof. By Lemma 6 we have ∆(T ) ≥ 6, and in the case of equality exactly
two of the equations (1)–(3) must be true. Without loss of generality we
may assume that (1) and (2) are true. Then

t1 + t2 = t3 = t2 − t1, hence 2 t1 = 0.

Under the assumption of (i) this is a contradiction, hence ∆(T ) 6= 6.
(ii) If ∆(T ) = 6, then t1 has order 2, and T = {t1, t2, t1 + t2}. Since (3)

is false, 2 t2 6= 0. Finally 2 t2 = t1 would make the subset sum t2 + (t1 + t2)
zero, contradiction. 3

In the case M = Z/mZ the exceptional sets from Lemma 7 exist only if
m is even and have the form

T (m, a) := {a, m
2
,
m

2
+ a} for 1 ≤ a < m

2
, a 6= m

4
.

Corollary 1 Let m ≥ 6 and T ⊆ Z/mZ be zerofree with #T = 3. Then the
following statements are equivalent:

(i) ∆(T ) = 6.

(ii) m is even, and T = T (m, a) for some a with 1 ≤ a < m/2, a 6= m
4 .

Corollary 2 The number of zerofree subsets T ⊆ Z/mZ with #T = 3 and
∆(T ) = 6 is 

0 if m is odd or m ≤ 5,
m
2 − 2 if m is even and m ≡ 0 (mod 4),
m
2 − 1 if m is even and m ≡ 2 (mod 4).
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4 The Moser-Scherk Theorem

As a preliminary consideration for larger subsets we ask how many differ-
ent two-element sums can be formed. A fundamental result was proved by
Scherk as a solution to a problem posed by Moser, see [8].

Theorem 2 Let M be an abelian group, A,B ⊆M finite subsets with 0 ∈ A
and 0 ∈ B. Assume that a + b = 0 for a ∈ A and b ∈ B only if a = b = 0.
Then

#(A+B) ≥ #A+ #B − 1.

Remarks. 1. A and B need not to be disjoint.

2. In the special case B = A we have #(A+A) ≥ 2 ·#A− 1.

3. A ⊆ A+B since 0 ∈ B, and B ⊆ A+B since 0 ∈ A.

Proof. Induction on n = #B. The case n = 1 ist trivial since B = {0},
A+B = A.

Now assume that n = #B ≥ 2. Take b0 ∈ B−{0}. Since 0 6∈ A+ b0, but
0 ∈ A, and #(A+ b0) = A, there is an a0 ∈ A with a0 + b0 6∈ A. Therefore
the subset

Y := {y ∈ B | a0 + y 6∈ A}
is nonvoid and proper (since 0 ∈ B − Y ). Let X = a0 + Y ⊆M . Then

0 < #X = #Y < #B.

The construction of Y implies that X and A are disjoint. If we set

A′ := A ∪X, B′ := B − Y,

then we have #A′ = #A + #X, #B′ = #B − #X ≤ n − 1, and 0 ∈ A′,
0 ∈ B′. Claim:

(i) A′ +B′ ⊆ A+B.

(ii) If c+ d = 0 for c ∈ A′ and d ∈ B′, then c = d = 0.

For the proof we take c ∈ A′ and d ∈ B′.
Case 1, c ∈ A. Then c+ d ∈ A+B, and if c+ d = 0, then c = d = 0.
Case 2, c ∈ A′ − A, in particular c 6= 0. Then c ∈ X, thus c = a0 + y

with y ∈ Y ,

c+ d = (a0 + y) + d = (a0 + d)︸ ︷︷ ︸
∈A

+y ∈ A+B

since d ∈ B − Y , and c+ d = 0 implies that a0 + d = y = 0, contradiction.
Now we may apply the induction hypothesis and get

#(A+B) ≥ #(A′ +B′) ≥ #A′ + #B′ − 1 = #A+ #B − 1.

3
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Note There are a number of similar results in the literature, the most
prominent ones being:

• The Cauchy-Davenport theorem: Let A,B ⊆ M = Z/pZ (p
prime) with A+B 6= M . Then #(A+B) ≥ #A+#B−1 (as in the
Moser-Scherk theorem but without its restricting assumptions
on A and B).

• Kneser’s addition theorem: Let A,B ⊆ M be finite nonempty
subsets. Then there exists a subgroup H ⊆ M with
A+B +H = A+B (i. e. consisting of “periods” of A+B) such
that #(A+B) ≥ #(A+H) + #(B +H)−#H.

• The Erdős-Heilbronn conjecture, proved by Hamidoune and
Dias da Silva: Let M = Z/pZ, an A ⊆ M be an r-element
subset. Then #(A+̇A) ≥ min{p, 2r− 3} where A+̇A denotes the
set of sums a+ b for a, b ∈ A with a 6= b.

5 The Eggleton-Erdős Theorem

Lemma 8 Let M be an abelian group and T ⊆M an r-element subset with
r ≥ 2. Then

∆(T ) ≥ min{∆M (r − 1) + 2, 2r + 1}.

Proof. First assume the existence of a u ∈ T that is not a subsum
of Tu := T − {u}. Let S := {Σ(U) | U ⊆ Tu}. Then u 6∈ S, and
N := #S ≥ ∆M (r − 1). Also the full sum Σ(T ) is not in S, for otherwise
Σ(T ) = Σ(U) with some U ⊆ Tu, contradicting Lemma 4. Since u 6= Σ(T )
we found two additional elements, hence ∆(T ) ≥ N + 2.

We are left with the case where each u ∈ T is a subset sum of T − {u}.
Applying Theorem 2 to A = B = T ∪ {0} with #A = r + 1 yields
#(A+A) ≥ 2 (r + 1)− 1 = 2r + 1. We want to show that each element of
A+A is a subset sum of T . For t+ u with different elements t, u ∈ T this is
trivial, likewise if one or two of the summands are zero. But what if we add
two identical elements of T? For u ∈ T we have

u =
∑
t6=u

εt t where εt = 0 or 1, not all = 0.

Hence u + u = u +
∑
εt t, a subsum of T . We conclude that

∆(T ) ≥ #(A+A) ≥ 2r + 1. 3

Theorem 3 Let M be an abelian group and r ≥ 1. Then

(i) ∆M (r) ≥ 2r.
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(ii) ∆M (r) ≥ 2r + 1 if r ≥ 4.

Proof. We reason by induction on r.
(i) is true for r = 1 by Remark 1 in Section 2, and the induction step is

provided by Lemma 8.
(ii) is proved the same way if we start the induction at r = 4 and use

the following Lemma 9. 3

Lemma 9 Let T ⊆M be a zerofree subset with #T = 4. Then ∆(T ) ≥ 9.

Proof. Let T = {t1, t2, t3, t4}. If each ti is a subset sum of the remaining tj
we are in the second case of Lemma 8 and conclude that ∆(T ) ≥ 2r+1 = 9.
Therefore (without restriction) we may assume that t4 is not a subset sum
of T ′ = {t1, t2, t3} and ∆(T ) ≥ ∆(T ′) + 2. If ∆(T ′) ≥ 7 we are done. So we
may assume that ∆(T ′) = 6. We have five different subset sums

0, t1, t2, t3, t1 + t2 + t3,

and the sixth one must be a two-element sum, say

t1 + t2.

Then necessarily t1 + t3 = t2 (no other one of the six subset sums fits here),
and likewise t2 + t3 = t1. Addition of these two relations yields 2 t3 = 0 or
t3 = −t3.

Now considering t4 we get two additional subset sums

t4 and Σ(T ) = t1 + t2 + t3 + t4

and need only one more. The sum

t1 + t2 + t4

is certainly different from the seven sums 0, t1, t2, t4, t1 + t2, t1 + t2 + t3,
and Σ(T ). Could it be = t3? Since t3 = −t3 this yields t1 + t2 + t4 = −t3,
thus t1 + t2 + t3 + t4 = 0, contradiction.

Therefore ∆(T ) ≥ 9. 3

6 Olson’s Theorem

A special case of Olson’s results in [10] leads to the strongest known im-
provement of the Eggleton-Erdős bound 2r + 1.

Theorem 4 Let M be an abelian group and T ⊆ M be a finite subset,
r = #T . Then at least one of the following statements holds:
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(i) For each subset S ⊆ T there is another subset U ⊆ T with U 6= S and
Σ(U) = Σ(S).

(ii) ∆(T ) ≥ 1 + r2/9.

In fact Olson proved this (with an appropriate formulation) even for non-
abelian M [10, Theorem 3.2]. We omit the proof.

If T ⊆ M is zerofree, it violates statement (i) for the subset sum
0 = Σ(∅). Hence T must satisfy statement (ii):

Corollary 1 Let M be an abelian group and T ⊆ M be a finite zerofree
subset, r = #T . Then ∆(T ) ≥ 1 + r2/9 (as long as this number is ≤ #M).

Corollary 2 Let M be an abelian group and r ≥ 1. Then

∆M (r) ≥ 1 +

⌈
r2

9

⌉
(as long as this number is ≤ #M).

This bound is larger than 2r + 1 if and only if r ≥ 19.

Note 1 Call T ⊆M antisymmetric if T ∩ (−T ) = ∅.

• Let M = Z/pZ, p a prime. Let T be an antisymmetric subset of
M of size r = #T . Then Balandraud [1] improved a bound by
Olson [9] as follows:

∆(T ) ≥ min

{
p, 1 +

r (r + 1)

2

}
.

• Let M be a finite abelian group of order m = #M . Let T ⊆ M
antisymmetric of size r = #T ≥ 2. Then at least one the following
statements is true [2]:

(i) ∆(T ) ≥ r (r−1)
2 + 3.

(ii) There is nonempty subset U ⊆ T with ∆(U) > #〈U〉/2.

For odd m the first item may be replaced by ∆(T ) ≥ r (r+1)
2 .

Remark If T is not antisymmetric, then it contains an element t ∈ T∩(−T ),
t = −s with s ∈ T , thus s+ t = 0. We distinguish the cases:

• t = 0. Then T has the zero-sum subset {0} of size 1.

• t has order 2. Then s = t.

• t 6= 2. Then T has the zero-sum subset {s, t} of size 2.

We conclude that if T is zerofree and doesn’t contain an element of
order 2, then T is antisymmetric.
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Note 2 Let M = Z/pZ, p a prime ≥ 3. Then M doesn’t contain an element
of order 2. Therefore for a zerofree subset T ⊆M of size r = #T Note 1
yields the bound:

∆(T ) ≥ 1 +
r (r + 1)

2

as long as this number is ≤ p. As in Section 1 this bound is sharp.
Using Lemma 2 we conclude that

zf(Z/pZ) = max

{
r

∣∣∣∣ r (r + 1)

2
< p

}
=

⌈√
2p+

1

4
− 3

2

⌉
.

Note 3 A strong variant of the Erdős-Heilbronn conjecture claims that
zf(Z/mZ) <

⌈√
2m
⌉
. In other words, if Z/mZ has a zerofree subset

of size r, then m > r2/2. For m = p prime Note 2 implies the slightly
stronger inequality zf(Z/pZ) <

√
2p− 1.

7 Subset Sums modm

In this section we consider the group M = Z/mZ and write ∆m in-
stead of ∆M . We freely abuse the notation by identifying the integer
a ∈ {0, . . . ,m− 1} with its residue class modm.

Example 3. For m ≤ 5 zerofree subsets T ⊆ M have r ≤ 2 elements,
hence all possible values ∆(T ) are known (and depend only on #T ,
see Table 2). We have ∆m(1) = 2 and ∆m(2) = 4.

Example 4. For m = 6 and r = 3 there are two zerofree three-element
subsets T of {1, 2, 3, 4, 5}:

T (6, 1) = {1, 3, 4} and T (6, 2) = {2, 3, 5}.

For each of them ∆(T ) = 6 = m. Thus ∆6(3) = 6.

Example 5, m = 7 and r = 3. There are six zerofree three-element subsets
T of {1, 2, 3, 4, 5, 6}:

{1, 2, 3}, {1, 3, 5}, {1, 4, 5}, {2, 3, 6}, {2, 4, 6}, {4, 5, 6}.

For each of them ∆(T ) = 7 = m. Thus ∆7(3) = 7.

Example 6, m = 8. The cases r = 0, 1, 2 are known. In the case
r = #T = 3 the picture is inhomogeneous:

• The subset T = {1, 4, 5} ⊆ {1, 2, 3, 4, 5, 6, 7} is zerofree and has
∆(T ) = 6.
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• The subset T = {1, 2, 3} is zerofree and has ∆(T ) = 7.

• The subset T = {1, 4, 6} is zerofree and has ∆(T ) = 8.

Thus each of the possible values ∆(T ) = 6, 7, 8 occurs, and ∆8(3) = 6.

Note Balandraud’s bound, see Note 2 in Section 6 yields the exact values
for prime modules m = p:

∆p(r) = 1 +
r (r + 1)

2

(as long as this value is ≤ p, that is zf(Z/pZ) ≤ r). This formula yields
for example:

• ∆p(1) = 1 + 1 · 2/2 = 2 for all p ≥ 3.

• ∆p(2) = 1 + 2 · 3/2 = 4 for all p ≥ 5.

• ∆p(3) = 1 + 3 · 4/2 = 7 for all p ≥ 7.

• ∆p(4) = 1 + 4 · 5/2 = 11 for all p ≥ 11.

• ∆p(5) = 1 + 5 · 6/2 = 16 for all p ≥ 17.

• ∆p(6) = 1 + 6 · 7/2 = 22 for all p ≥ 23.

Table 2 summarizes the known values for small modules m and extends
this knowledge with the help of a Python (or SageMath) program, listed
in Appendix B. The table exhibits some eye-catching patterns that suggest
several hypotheses:

1. For r ≥ 3 the value ∆m(T ) = 2r occurs only if m is even and r = 3.
This follows from Theorem 3 (ii) and Corollary 1 of Proposition 1.

2. For r = 3 the possible diversities are

∆(T ) =

{
6, 7, 8 if m is even,

7, 8 if m is odd.

Therefore

∆m(3) =

{
6 if m is even,

7 if m is odd.

This was proved in Section 3.

3. For r = 4 zerofree sets exist only if m ≥ 9, and then always
∆(T ) ≥ 9 = 2r + 1, and ∆m(4) ≥ 9. The theoretical maximum diver-
sity min(m, 16) is reached. For m ≥ 10 we see even ∆(T ) ≥ 10 = 2r+2,
hence ∆m(4) ≥ 10, even ≥ 11 if m is prime, confirming the note above.
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r = #T = 0 1 2 3 4 5 6 7 8

m = 1 1 – – – – – – – –
2 1 2 – – – – – – –
3 1 2 – – – – – – –
4 1 2 4 – – – – – –
5 1 2 4 – – – – – –
6 1 2 4 6 – – – – –
7 1 2 4 7 – – – – –
8 1 2 4 6..8 – – – – –
9 1 2 4 7..8 9 – – – –

10 1 2 4 6..8 10 – – – –
11 1 2 4 7..8 11 – – – –
12 1 2 4 6..8 10..12 – – – –
13 1 2 4 7..8 11..13 – – – –
14 1 2 4 6..8 10..14 14 – – –
15 1 2 4 7..8 10..15 15 – – –
16 1 2 4 6..8 10..16 14..16 – – –
17 1 2 4 7..8 11..16 16..17 – – –
18 1 2 4 6..8 9..16 14, – – –

16..18
19 1 2 4 7..8 11..16 16..19 – – –
20 1 2 4 6..8 10..16 14, 20 – –

16..20
21 1 2 4 7..8 10..16 16..21 21 – –
22 1 2 4 6..8 10..16 14, 20, 22 – –

16..22
23 1 2 4 7..8 11..16 16..23 22, 23 – –
24 1 2 4 6..8 10..16 14, 20 – –

16..24 22..24
25 1 2 4 7..8 11..16 16..25 22..25 25 –
26 1 2 4 6..8 10..16 14, 20 26 –

16..26 22..26

Table 2: Possible values of ∆(T ), T zerofree, for small m.
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4. For r = 5 zerofree sets exist only if m ≥ 14. The possible diversities
are

∆(T ) ≥


14 if m is even,

15 if m = 15,

16 if m is odd ≥ 17.

In particular ∆m(5) ≥ 14 = 2r+ 4, even ≥ 16 if m is prime. The value
15 doesn’t occur as ∆(T ) for even m ≥ 18 nor for odd m ≥ 17.

5. For r = 6 zerofree sets exist only if m ≥ 20. The possible diversities
are

∆(T ) ≥


20 if m is even,

21 if m = 21,

22 if m is odd ≥ 23.

In particular ∆m(6) ≥ 20 = 2r+8. There is no zerofree set of diversity
21 for even m, or for odd m ≥ 21.

6. All zerofree subsets T ⊆ Z/mZ have size

≤ zf(Z/mZ) =


3 for 6 ≤ m ≤ 8,

4 for 9 ≤ m ≤ 13,

5 for 14 ≤ m ≤ 19,

6 for 20 ≤ m ≤ 24.

Thus Table 2 suggests that the lower bound of Lemma 2 is at most one
less then zf for composite modules m, and zf seems to be monotone in m.

We know that

∆m(0) = 1, ∆m(1) = 2, ∆m(2) = 4, ∆m(3) = 6, ∆m(4) = 9,

and, from [3], that

∆m(5) = 14, ∆m(6) = 20, ∆m(7) = 25.

Further calculations suggest that ∆m(8) ≥ 34 (for m prime the value is 37).

8 Some Further Remarks

For an abelian group M and a subset T ⊆M let

S∗(T ) = {Σ(U) | U ⊆ T, U 6= ∅}

be the set of all nontrivial subset sums of T . Note that S(M) = S∗(M) = M
and S∗(M − {0}) ⊇M − {0}.
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Lemma 10 S∗(M − {0}) = M if and only if #M ≥ 3.

Proof. If #M = 1, then M − {0} = ∅, thus S∗(M − {0}) = ∅.
If #M = 2, say M = Z/2Z = {0, 1}, then S∗(M − {0}) = {1}.
Now let #M ≥ 3. Then there are t1, t2 ∈ M − {0} with t1 6= t2. If

t1+t2 = 0, then 0 ∈ S∗(M−{0}), and we are done. Otherwise t1+t2 = t3 6= 0.
If t3 = −t1, then {t1, t3} sums to zero; likewise if t3 = −t2. In the remaining
case {t1, t2,−t3} is a three-element subset with sum 0. 3

Definition The integer

cr(M) = min{r | S∗(T ) = M for all T ⊆M − {0} with #T ≥ r},

is called the covering (or critical) constant of M .

Example 1 If #M ≤ 2 by Lemma 10 M is never covered, thus cr(M) =∞.

Example 2 Let M = Z/3Z = {0, 1, 2} (where by abuse of notation we let
integers represent their own residue classes).

• For T = {1} we have Σ(T ) = 1, S(T ) = {0, 1}, S∗(T ) = {1}. As
a consequence cr(M) > 1.

• For T = {1, 2} we have Σ(T ) = 0, S(T ) = S∗(T ) = {0, 1, 2}. Since
T is the only two-element subset of M −{0} we have cr(M) = 2.

Example 3 Let M = Z/4Z = {0, 1, 2, 3}.

• Let a 6= 0. For T = {a} we have Σ(T ) = a, S(T ) = {0, a},
S∗(T ) = {a}. This implies cr(M) > 1.

• Let a, b ∈ M − {0}, a 6= ±b. For T = {a, b}
we have Σ(T ) = a+ b 6= 0, S(T ) = {0, a, b, a+ b} = M ,
S∗(T ) = {a, b, a+ b} = M − {0}.
• For T = {1, 3} we have Σ(T ) = 0, S(T ) = {0, 1, 3},
S∗(T ) = {0, 1, 3}. Therefore S∗(T ) 6= M for all two-element sub-
sets T ⊆M − {0}, thus cr(M) > 2.

• For T = {1, 2, 3} = M − {0} we have Σ(T ) = 2, S(T ) = M ,
S∗(T ) = M . Therefore cr(M) = 3.

Note By [5] we have cr(Z/pZ) = b2
√
p− 2c. The covering constant cr(M)

is known for all finite abelian groups M , see [7]: Let p be the smallest
prime divisor of m = #M and m 6= p. Then

cr(M) =
m

p
+ p− δ

where δ = 2 (in the general case) or δ = 1 (in a small, explicitly known
set of exceptional cases).
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Definition We call U ⊆M a minimal zero-sum subset if U 6= ∅, Σ(U) = 0,
and U is minimal under these conditions. The strong Davenport
constant SD(T ) of T ⊆ M is the maximum size of a minimal zero-
sum subset of T , see [4].

Definition Olson’s constant Ol(M) is the smallest r such that each sub-
set T ⊆M of size r contains a nontrivial zero-sum subset:

Ol(M) = min{r | 0 ∈ S∗(T ) for all T ⊆M with #T ≥ r}.

Lemma 11 SD(M) ≤ Ol(M) ≤ cr(M).

Proof. For the first inequality we have to show that #T ≤ Ol(M) for an arbi-
trary minimal zero-sum set T . Assuming #T > Ol(M) we take T ′ = T − {t}
for an arbitrary t ∈ T and conclude that #T ′ ≥ Ol(M), hence 0 ∈ S∗(T ′),
0 = Σ(U) for some nonempty subset U ⊆ T ′ ⊂ T , contradicting the mini-
mality of T .

The second inequality is trivial if cr(M) = ∞. If cr(M) < ∞ we have
to show that 0 ∈ S∗(T ) if #T ≥ cr(M). If 0 ∈ T this is trivial. Otherwise
T ⊆M−{0}, henceM = S∗(T ) by the definition of cr, a forteriori 0 ∈ S∗(T ).
3

Lemma 12 zf(M) = Ol(M)− 1.

Proof. We may assume that both quantities are finite.
“≤”: Take a zerofree set T of maximal size #T = zf(M). Then obviously

#T < Ol(M).
“≥”: There is a subset T ⊆ M of size #T = Ol(M) − 1 such that

0 6∈ S∗(T ). Hence T is zerofree, Ol(M)− 1 = #T ≤ zf(M). 3

Example 1 If #M ≤ 2 the only zero-sum subset is {0}. Thus SD(M) = 1,
and Ol(M) = #M = 1 or 2. The maximal zerofree subsets are ∅ if
M = {0}, and {1} if M = Z/2Z, hence zf(M) = 0 or 1.

Example 2 Let M = Z/3Z = {0, 1, 2}. The 8 = 23 different subsets are

∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}.

• Zero-sum subsets: ∅, {0}, {1, 2}, {0, 1, 2}. Thus Ol(M) = 2.

• Minimal zero-sum subsets: {0}, {1, 2}. Thus SD(M) = 2.

• Zerofree subsets: {1}, {2}. Thus zf(M) = 1.

Example 3 Let M = Z/4Z = {0, 1, 2, 3}. The 16 = 24 different subsets are

∅, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}.
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• Zero-sum subsets: ∅, {0}, {1, 3}, {0, 1, 3}. Thus Ol(M) = 3.

• Minimal zero-sum subsets: {0}, {1, 3}. Thus SD(M) = 2.

• Zerofree subsets: {1}, {2}, {3}, {1, 2}, {1, 3}. Thus zf(M) = 2.

For the comparision of zf and SD it’s convenient to consider also multi-
sets.

Proposition 2 Let S be a zerofree multiset in a Z-module M . Then the
number w(S) of different elements of S is at most SD(M).

Proof. By definition t := −Σ(S) ∈M −{0}, hence T := S∪{t} is a zerosum
multiset, Σ(T ) = Σ(S)+ t = 0. There is a minimal zerosum multiset U ⊆ T .
Since S is zerofree U is not contained in S, hence the multiplicity of t in U is
1+ the multiplicity of t in S, and U ′ := U − {t} (multiplicity of t decreased
by 1) is a submultiset of S. Moreover

Σ(U ′) = Σ(U)− t = −t = Σ(S).

Therefore S−U ′ is a zerosum multiset contained in S, hence = ∅, thus U ′ =
S and U = U ′ ∪ {t} = S ∪ {t} = T . Since U is minimal w(S) ≤ w(T ) =
w(U) ≤ SD(M). 3

Corollary 1 If S ⊆ M is a zerofree subset, then #S ≤ SD(M). In partic-
ular zf(M) ≤ SD(M).

Proof. Since S is a set #S = w(S). 3

Corollary 2 Assume SD(M) < ∞. Then zf(M) = SD(M) or SD(M) − 1,
and SD(M) = Ol(M) or Ol(M)− 1.

Proof. zf(M) ≤ SD(M) by Corollary 1. To get a zerofree set of size SD(M)−1
take a minimal zero-sum subset of size SD(M) and remove an arbitrary
element. The second statement follows from Lemma 12. 3

In summary we have

Corollary 3 Let M be an abelian group. Then

zf(M)
(1)

≤ SD(M)
(1)

≤ Ol(M) = zf(M) + 1 ≤ cr(M)

where exactly one of the inequalities (1) or (2) is an equality.

Note that all these numbers are defined for arbitrary M but make sense only
for M finite.
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Note From [1] for M = Z/pZ we have

Ol(Z/pZ) = min

{
k

∣∣∣∣ k (k + 1)

2
≥ p
}
.

By Note 2 in Section 6 zf(Z/pZ) <
√

2p− 1. Hence by Corollary 3

SD(Z/pZ) ≤ Ol(Z/pZ) ≤
⌈√

2p− 1
⌉
.

Olson’s bound from [9] was Ol(Z/pZ) ≤ cr(Z/pZ) ≤
⌈√

4p− 3
⌉
. From

[5] we know the slighly smaller bound

cr(Z/pZ) =
⌊
2
√
p− 2

⌋
.

Figures 1 and 2 illustrate the growth of zf and of the number of minimal
zero-sum sets as a function of the module m, generated with the program
from Appendix C.

Figure 1: The zerofree bound of Z/mZ
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Figure 2: The number of minimal zero-sum sets modm

A Auxiliary Routines in Python

Calculate the list of coefficients for the representation on s in
base b

def baserep(s,b):

coefflist = []

while s != 0:

rem = s % b

quot = s//b

coefflist.insert(0,rem)

s = quot

return coefflist
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Calculate all subsets of a set

def subsets(T):

ll = len(T)

NN = 2**ll

bitlist = []

subsetlist = []

L = list(T)

for i in range(NN): # build selection scheme for elements

bitvector = baserep(i,2)

while len(bitvector) < ll:

bitvector.insert(0,0)

bitlist.append(bitvector)

for bitvector in bitlist: # construct corresponding subset

newlst = []

for j in range(ll):

if bitvector[j] == 1:

newlst.append(L[j])

newset = set(newlst)

subsetlist.append(newset)

return(subsetlist)
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B Zerofree Subsets and Diversities in Python

m = int(sys.argv[1])

base = list(range(1,m))

print("Module:", m)

stoplist = [] # Supersets are not zerofree.

list1 = [] # List of zerofree subsets

for i in range(1,m):

list1.append({i})

mm = 1 + m//2

for r in range(2,mm):

print("r =", r, "| Zerofree r-element sets:")

list2 = [] # Next list of zerofree subsets

divlist = [] # List of diversities

for S in list1:

tm = max(S)

for i in range(tm+1,m): # Add on element to the set S.

T = S.copy()

T.add(i)

stopcond = False

for stopset in stoplist:

if stopset <= T:

stopcond = True

if not(stopcond):

ss = sum(T) % m

if ss == 0:

stoplist.append(T)

else:

list2.append(T)

sublist = subsets(T) # Now calculate all subset sums of T

sumlist = []

for U in sublist:

sumlist.append(sum(U) % m)

sumset = set(sumlist)

Delta = len(sumset)

divlist.append(Delta)

list1 = list2.copy() # Save list for use in next round.

if len(divset) > 0:

print("r =", r, "| Diversities:", divset)

else:

print("r =", r, "| No zerofree sets")
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C Strong Davenport Constant and Number of
Minimal Zero-sum Sets

mm = int(sys.argv[1])

zslist = [] # list of minimal zerosum subsets, to be built successively

zflist = [] # list of zerofree subsets of actual size,

# to be replaced in each step

for t in range(1,mm):

zflist.append({t})

zf = 1 # zerofree bound

SD = 1 # strong Davenport constant

s = 1 # actual size

while len(zflist) > 0: # stop condition not yet reached

s += 1 # next size

oldlist = zflist.copy() # zerofree sets of previous size

zflist = [] # zerofree sets of actual size

for oldset in oldlist: # expand each zerofree set

for t in range(1,mm): # by one element t

discard = False

newset = oldset.copy()

newset.add(t)

if len(newset) < s or newset in zflist:

discard = True # discard if t already in oldset

# or newset not really new

else:

for zsset in zslist: # or if newset contains a zerosum set

if zsset <= newset:

discard = True

if not(discard):

if sum(newset) % mm == 0: # test zerosum property

zslist.append(newset) # new minimal zerosum subset detected

SD = s # update value for strong Davenport constant

else:

zflist.append(newset) # new zerofree subset detected

zf = s

print("m:", mm, "| zf = ", zf, "| SD = ", SD, "| zs = ", len(zslist))
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