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Theorem 1 (Fermat-Euler) Every prime p ≡ 1 (mod 4) is a sum of two squares.

We start with a series of lemmas that blow up the steps of Zagier’s one-sentence
proof.

Lemma 1 Let S be a finite set and ϕ be an involution of S. Then:

(i) The cardinalities of S and of the fixed point set of ϕ have the same parity.

(ii) If the cardinality of S is odd, then ϕ has a fixed point.

Proof. (i) Le n = #S. The orbits of ϕ have lengths 1 (the fixed points) or 2. If their
numbers are n1 and n2 resp., then n = n1 + 2n2. Hence n ≡ n1 (mod 2).

(ii) By (i) the number of fixed points cannot be zero. 3

Lemma 2 For p ∈ N the set

S = {(x, y, z) ∈ Z3 | x, y, z > 0, x2 + 4yz = p}

is finite.

Proof. Each of the coordinates x, y, z is bounded by p. 3

The involution (x, y, z)↔ (x, z, y) of Z3 maps S to itself—the defining conditions are
symmetric in y and z. Each fixed point (x, y, y) ∈ S yields a representation p = x2 + 4y2

of p as a sum of two squares. So by Lemma 1 we only have to show that #S is odd.
To this end we construct another involution of S that has exactly one fixed point.

We consider three (obviously disjoint) subsets of S:

A = {(x, y, z) ∈ S | x < y − z},
B = {(x, y, z) ∈ S | y − z < x < 2y},
C = {(x, y, z) ∈ S | x > 2y}.

Note that y − z < 2y.
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Lemma 3 If p is prime, then these three sets form a partition: S = A ∪B ∪ C.

Proof. We only have to show that x 6= y − z and x 6= 2y for each point in S.
If x = y − z, then p = x2 + 4yz = (y − z)2 + 4yz = (y + z)2, hence not a prime.
If x = 2y, then p = 4y2 + 4yz is divisible by 4, hence not a prime. 3

Henceforth we assume that p is prime and consider the map ϕ : S −→ Z3 defined by

ϕ(x, y, z) =


(x + 2z, z, y − x− z) if (x, y, z) ∈ A,

(2y − x, y, x− y + z) if (x, y, z) ∈ B,

(x− 2y, x− y + z, y) if (x, y, z) ∈ C.

Lemma 4 ϕ(A) ⊆ C, ϕ(B) ⊆ B, ϕ(C) ⊆ A, thus ϕ(S) ⊆ S.

Proof. Let (x, y, z) ∈ S and (u, v, w) = ϕ(x, y, z). By the defining conditions for A, B,
and C all of u, v, w > 0. For (x, y, z) ∈ A we have

u2 + 2vw = (x + 2z)2 + 4z(y − x− z) = x2 + 4yz, u = x + 2z > 2z = 2v,

hence (u, v, w) ∈ C. For (x, y, z) ∈ B we have

u2 + 2vw = (2y−x)2 + 4y(x− y− z) = x2 + 4yz, u− v = y−x < 2y−x = u < 2y = v,

hence (u, v, w) ∈ B. For (x, y, z) ∈ C we have

u2 + 2vw = (x− 2y)2 + 4y(x− y − z) = x2 + 4yz, u = x− 2y < x + z − 2y = v − w,

hence (u, v, w) ∈ C. 3

Lemma 5 ϕ is an involution of S.

Proof. We show that ϕ applied twice is the identity map. Again this is a simply evaluation
for each of our three cases: For (x, y, z) ∈ A we have

(u, v, w) = ϕ(x, y, z) = (x + 2z, z, y − x− z) ∈ C,

ϕ(u, v, w) = (u− 2v, u− v + w, v) = (x, y, z).

For (x, y, z) ∈ B,

(u, v, w) = ϕ(x, y, z) = (2y − x, y, x− y + z) ∈ B,

ϕ(u, v, w) = (2v − u, v, u− v + w) = (x, y, z).

For (x, y, z) ∈ C,

(u, v, w) = ϕ(x, y, z) = (x− 2y, x− y + z, y) ∈ A,

ϕ(u, v, w) = (u + 2w,w, v − u− w) = (x, y, z).
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Lemma 6 If p is a prime ≡ 1 (mod 4), p = 4k + 1, then ϕ has exactly one fixed point,
namely (1, 1, k).

Proof. Any fixed point must lie in B. In particular 2y − x = x, hence y = x. From
p = x2 + 4yz = x · (x + 4z) we conclude that x = 1 and z = k. Clearly (1, 1, k) is in S,
even in B, and is a fixed point of ϕ. 3

Lemma 7 The cardinality #S is odd.

Proof. Immediate from Lemmas 1 (i) and 6 3

This finishes the proof of the theorem by the remark after Lemma 2.
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