On Sums of Two Squares (Zagier's One-Sentence Proof)

Klaus Pommerening

April 2020

Theorem 1 (FERMAT-EULER) Every prime $p \equiv 1 \pmod{4}$ is a sum of two squares.

We start with a series of lemmas that blow up the steps of Zagier's one-sentence proof.

Lemma 1 Let S be a finite set and φ be an involution of S. Then:

(i) The cardinalities of S and of the fixed point set of φ have the same parity.

(ii) If the cardinality of S is odd, then φ has a fixed point.

Proof. (i) Le n = #S. The orbits of φ have lengths 1 (the fixed points) or 2. If their numbers are n_1 and n_2 resp., then $n = n_1 + 2n_2$. Hence $n \equiv n_1 \pmod{2}$.

(ii) By (i) the number of fixed points cannot be zero. \diamondsuit

Lemma 2 For $p \in \mathbb{N}$ the set

$$S = \{(x, y, z) \in \mathbb{Z}^3 \mid x, y, z > 0, \ x^2 + 4yz = p\}$$

 $is\ finite.$

Proof. Each of the coordinates x, y, z is bounded by p. \diamond

The involution $(x, y, z) \leftrightarrow (x, z, y)$ of \mathbb{Z}^3 maps S to itself—the defining conditions are symmetric in y and z. Each fixed point $(x, y, y) \in S$ yields a representation $p = x^2 + 4y^2$ of p as a sum of two squares. So by Lemma 1 we only have to show that #S is odd.

To this end we construct another involution of S that has exactly one fixed point. We consider three (obviously disjoint) subsets of S:

$$\begin{array}{rcl} A &=& \{(x,y,z) \in S \mid x < y - z\}, \\ B &=& \{(x,y,z) \in S \mid y - z < x < 2y\}, \\ C &=& \{(x,y,z) \in S \mid x > 2y\}. \end{array}$$

Note that y - z < 2y.

Lemma 3 If p is prime, then these three sets form a partition: $S = A \cup B \cup C$.

Proof. We only have to show that $x \neq y - z$ and $x \neq 2y$ for each point in S. If x = y - z, then $p = x^2 + 4yz = (y - z)^2 + 4yz = (y + z)^2$, hence not a prime. If x = 2y, then $p = 4y^2 + 4yz$ is divisible by 4, hence not a prime. \diamond

Henceforth we assume that p is prime and consider the map $\varphi: S \longrightarrow \mathbb{Z}^3$ defined by

$$\varphi(x, y, z) = \begin{cases} (x + 2z, z, y - x - z) & \text{if } (x, y, z) \in A, \\ (2y - x, y, x - y + z) & \text{if } (x, y, z) \in B, \\ (x - 2y, x - y + z, y) & \text{if } (x, y, z) \in C. \end{cases}$$

Lemma 4 $\varphi(A) \subseteq C, \ \varphi(B) \subseteq B, \ \varphi(C) \subseteq A, \ thus \ \varphi(S) \subseteq S.$

Proof. Let $(x, y, z) \in S$ and $(u, v, w) = \varphi(x, y, z)$. By the defining conditions for A, B, and C all of u, v, w > 0. For $(x, y, z) \in A$ we have

$$u^{2} + 2vw = (x + 2z)^{2} + 4z(y - x - z) = x^{2} + 4yz, \quad u = x + 2z > 2z = 2v,$$

hence $(u, v, w) \in C$. For $(x, y, z) \in B$ we have $x^2 + 2aw = (2u - x)^2 + 4u(x - u - z) = x^2 + 4uz - u - v = u - x < 2u - x = u < 2u - z$

$$u + 2vw = (2y - x) + 4y(x - y - z) = x + 4yz, \quad u - v = y - x < 2y - x = u < 2y = v,$$

hence $(u, v, w) \in B$. For $(x, y, z) \in C$ we have
 $u^2 + 2vw = (x - 2y)^2 + 4y(x - y - z) = x^2 + 4yz, \quad u = x - 2y < x + z - 2y = v - w,$

hence $(u, v, w) \in C$. \diamond

Lemma 5 φ is an involution of S.

Proof. We show that φ applied twice is the identity map. Again this is a simply evaluation for each of our three cases: For $(x, y, z) \in A$ we have

$$\begin{array}{lll} (u,v,w) &=& \varphi(x,y,z) = (x+2z,z,y-x-z) \in C, \\ \varphi(u,v,w) &=& (u-2v,u-v+w,v) = (x,y,z). \end{array}$$

For $(x, y, z) \in B$,

$$\begin{array}{lll} (u,v,w) &=& \varphi(x,y,z) = (2y-x,y,x-y+z) \in B, \\ \varphi(u,v,w) &=& (2v-u,v,u-v+w) = (x,y,z). \end{array}$$

For $(x, y, z) \in C$,

$$\begin{array}{lll} (u,v,w) &=& \varphi(x,y,z) = (x-2y,x-y+z,y) \in A, \\ \varphi(u,v,w) &=& (u+2w,w,v-u-w) = (x,y,z). \end{array}$$

 \diamond

Lemma 6 If p is a prime $\equiv 1 \pmod{4}$, p = 4k + 1, then φ has exactly one fixed point, namely (1, 1, k).

Proof. Any fixed point must lie in *B*. In particular 2y - x = x, hence y = x. From $p = x^2 + 4yz = x \cdot (x + 4z)$ we conclude that x = 1 and z = k. Clearly (1, 1, k) is in *S*, even in *B*, and is a fixed point of φ .

Lemma 7 The cardinality #S is odd.

Proof. Immediate from Lemmas 1 (i) and 6 \diamond

This finishes the proof of the theorem by the remark after Lemma 2.

References

- [1] D. R. Heath-Brown: Fermat's two squares theorem. Invariant 11 (1984), 3–5
- [2] S. Wagon: Editor's corner. Amer. Math. Monthly 97 (1990), 125–129.
- [3] D. Zagier: A one-sentence proof that every prime $p \equiv 1 \pmod{4}$ is a sum of two squares. Amer. Math. Monthly 97 (1990), 144.