On Sums of Two Squares (Zagier's One-Sentence Proof)

Klaus Pommerening

April 2020

Theorem 1 (Fermat-Euler) Every prime $p \equiv 1(\bmod 4)$ is a sum of two squares.
We start with a series of lemmas that blow up the steps of Zagier's one-sentence proof.

Lemma 1 Let S be a finite set and φ be an involution of S. Then:
(i) The cardinalities of S and of the fixed point set of φ have the same parity.
(ii) If the cardinality of S is odd, then φ has a fixed point.

Proof. (i) Le $n=\# S$. The orbits of φ have lengths 1 (the fixed points) or 2. If their numbers are n_{1} and n_{2} resp., then $n=n_{1}+2 n_{2}$. Hence $n \equiv n_{1}(\bmod 2)$.
(ii) By (i) the number of fixed points cannot be zero. \diamond

Lemma 2 For $p \in \mathbb{N}$ the set

$$
S=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid x, y, z>0, x^{2}+4 y z=p\right\}
$$

is finite.
Proof. Each of the coordinates x, y, z is bounded by p. \diamond
The involution $(x, y, z) \leftrightarrow(x, z, y)$ of \mathbb{Z}^{3} maps S to itself-the defining conditions are symmetric in y and z. Each fixed point $(x, y, y) \in S$ yields a representation $p=x^{2}+4 y^{2}$ of p as a sum of two squares. So by Lemma 1 we only have to show that $\# S$ is odd.

To this end we construct another involution of S that has exactly one fixed point. We consider three (obviously disjoint) subsets of S :

$$
\begin{aligned}
& A=\{(x, y, z) \in S \mid x<y-z\}, \\
& B=\{(x, y, z) \in S \mid y-z<x<2 y\}, \\
& C=\{(x, y, z) \in S \mid x>2 y\} .
\end{aligned}
$$

Note that $y-z<2 y$.

Lemma 3 If p is prime, then these three sets form a partition: $S=A \cup B \cup C$.
Proof. We only have to show that $x \neq y-z$ and $x \neq 2 y$ for each point in S.
If $x=y-z$, then $p=x^{2}+4 y z=(y-z)^{2}+4 y z=(y+z)^{2}$, hence not a prime.
If $x=2 y$, then $p=4 y^{2}+4 y z$ is divisible by 4 , hence not a prime.
Henceforth we assume that p is prime and consider the map $\varphi: S \longrightarrow \mathbb{Z}^{3}$ defined by

$$
\varphi(x, y, z)= \begin{cases}(x+2 z, z, y-x-z) & \text { if }(x, y, z) \in A \\ (2 y-x, y, x-y+z) & \text { if }(x, y, z) \in B \\ (x-2 y, x-y+z, y) & \text { if }(x, y, z) \in C\end{cases}
$$

Lemma $4 \varphi(A) \subseteq C, \varphi(B) \subseteq B, \varphi(C) \subseteq A$, thus $\varphi(S) \subseteq S$.
Proof. Let $(x, y, z) \in S$ and $(u, v, w)=\varphi(x, y, z)$. By the defining conditions for A, B, and C all of $u, v, w>0$. For $(x, y, z) \in A$ we have

$$
u^{2}+2 v w=(x+2 z)^{2}+4 z(y-x-z)=x^{2}+4 y z, \quad u=x+2 z>2 z=2 v
$$

hence $(u, v, w) \in C$. For $(x, y, z) \in B$ we have
$u^{2}+2 v w=(2 y-x)^{2}+4 y(x-y-z)=x^{2}+4 y z, \quad u-v=y-x<2 y-x=u<2 y=v$, hence $(u, v, w) \in B$. For $(x, y, z) \in C$ we have

$$
u^{2}+2 v w=(x-2 y)^{2}+4 y(x-y-z)=x^{2}+4 y z, \quad u=x-2 y<x+z-2 y=v-w
$$

hence $(u, v, w) \in C$. \diamond

Lemma 5φ is an involution of S.
Proof. We show that φ applied twice is the identity map. Again this is a simply evaluation for each of our three cases: For $(x, y, z) \in A$ we have

$$
\begin{aligned}
(u, v, w) & =\varphi(x, y, z)=(x+2 z, z, y-x-z) \in C \\
\varphi(u, v, w) & =(u-2 v, u-v+w, v)=(x, y, z)
\end{aligned}
$$

For $(x, y, z) \in B$,

$$
\begin{aligned}
(u, v, w) & =\varphi(x, y, z)=(2 y-x, y, x-y+z) \in B \\
\varphi(u, v, w) & =(2 v-u, v, u-v+w)=(x, y, z)
\end{aligned}
$$

For $(x, y, z) \in C$,

$$
\begin{aligned}
(u, v, w) & =\varphi(x, y, z)=(x-2 y, x-y+z, y) \in A \\
\varphi(u, v, w) & =(u+2 w, w, v-u-w)=(x, y, z)
\end{aligned}
$$

Lemma 6 If p is a prime $\equiv 1(\bmod 4), p=4 k+1$, then φ has exactly one fixed point, namely $(1,1, k)$.

Proof. Any fixed point must lie in B. In particular $2 y-x=x$, hence $y=x$. From $p=x^{2}+4 y z=x \cdot(x+4 z)$ we conclude that $x=1$ and $z=k$. Clearly $(1,1, k)$ is in S, even in B, and is a fixed point of $\varphi . \diamond$

Lemma 7 The cardinality $\# S$ is odd.
Proof. Immediate from Lemmas 1 (i) and $6 \diamond$
This finishes the proof of the theorem by the remark after Lemma 2.

References

[1] D. R. Heath-Brown: Fermat's two squares theorem. Invariant 11 (1984), 3-5
[2] S. Wagon: Editor's corner. Amer. Math. Monthly 97 (1990), 125-129.
[3] D. Zagier: A one-sentence proof that every prime $p \equiv 1(\bmod 4)$ is a sum of two squares. Amer. Math. Monthly 97 (1990), 144.

