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Theorem 1 (FERMAT-EULER) Every prime p =1 (mod 4) is a sum of two squares.

We start with a series of lemmas that blow up the steps of Zagier’s one-sentence
proof.

Lemma 1 Let S be a finite set and ¢ be an involution of S. Then:
(i) The cardinalities of S and of the fized point set of ¢ have the same parity.
(ii) If the cardinality of S is odd, then ¢ has a fized point.

Proof. (i) Le n = #S. The orbits of ¢ have lengths 1 (the fixed points) or 2. If their
numbers are n; and ng resp., then n = nj + 2ny. Hence n = n; (mod 2).
(ii) By (i) the number of fixed points cannot be zero. &

Lemma 2 For p € N the set
S={(2,y,2) €2’ | 2,y,2 > 0, 2% + 4yz = p}
1s finite.
Proof. Each of the coordinates z, y, z is bounded by p. ¢
The involution (z,y, z) <+ (x, z,y) of Z3 maps S to itself—the defining conditions are
symmetric in y and z. Each fixed point (z,y,y) € S yields a representation p = 22 + 4y?
of p as a sum of two squares. So by Lemma 1 we only have to show that #5 is odd.

To this end we construct another involution of S that has exactly one fixed point.
We consider three (obviously disjoint) subsets of S:

A = {(x,y,z)€S|x<y—z},
B = {(x,y,z)€S|y—z<:1:<2y},
C = {(y,2)€8]z>2}

Note that y — 2z < 2y.



Lemma 3 If p is prime, then these three sets form a partition: S = AU BUC.

Proof. We only have to show that x # y — z and = # 2y for each point in S.
If 2 =y — z, then p = 2% + 4yz = (y — 2)? + 4yz = (y + 2)?, hence not a prime.
If 2 = 2y, then p = 4y? + 4yz is divisible by 4, hence not a prime. ¢

Henceforth we assume that p is prime and consider the map ¢ : S — Z3 defined by

(r+2z,2z,y—ax—2) if (z,y,2) € A,
@('xayvz): (29—3772/,33—3/4‘2) if($7y72>€Ba
(:U—Qy,x—y—l—z,y) 1f($,y,2)€0

Lemma 4 ¢(A) C C, p(B) C B, ¢(C) C A, thus ¢(S) C S.

Proof. Let (z,y,z) € S and (u,v,w) = ¢(x,y, z). By the defining conditions for A, B,
and C all of u,v,w > 0. For (z,y,2) € A we have

w4 20w = (z+22)2 +dz(y —x —2) =2® +4yz, u=uzx+2z>2z=2uv,
hence (u,v,w) € C. For (z,y,z) € B we have
w4 2w = 2y—z)? +4ylzr —y—2) =2 +4yz, u—v=y—x<y-cr=u<2y=uv,
hence (u,v,w) € B. For (z,y, z) € C we have
w4 2ow = (x -2’ +dy(x —y—2) =2 +4yz, u=z—-2y<z4+z—2y=0v—w,

hence (u,v,w) € C. <

Lemma 5 ¢ is an involution of S.

Proof. We show that ¢ applied twice is the identity map. Again this is a simply evaluation
for each of our three cases: For (z,y,2) € A we have

o(u,v,w) = (u—2v,u—v+w,v)=(z,y,2).
For (z,y,2) € B,
(U,U,’w) = <P(9C7y>2):(22/—3373/,90—1/"'2)637
o(u,v,w) = (20— u,v,u —v+w) = (z,y, 2).
For (z,y,z) € C,
(u,v,w) = @(r,y,2)=(x —2y,x —y+2,y) € A,
o(u,v,w) = (u+2w,w,v—u—w)=(z,y,2).



Lemma 6 Ifp is a prime =1 (mod 4), p =4k + 1, then ¢ has exactly one fized point,
namely (1,1,k).

Proof. Any fixed point must lie in B. In particular 2y — ¢ = z, hence y = z. From

p=a2+4yz = x - (z + 42) we conclude that z = 1 and z = k. Clearly (1,1,k) is in S,
even in B, and is a fixed point of ¢. &

Lemma 7 The cardinality #S is odd.

Proof. Immediate from Lemmas 1 (i) and 6 <

This finishes the proof of the theorem by the remark after Lemma 2.
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