Zero-Sum Multisets

Klaus Pommerening
Johannes-Gutenberg-Universität
Mainz, Germany
November 2017
last change: February 17, 2022

The subject of this little survey are finite sequences in a \mathbb{Z}-module (or additively written abelian group) M that sum up to 0 . Typical questions are:

- In a given sequence find a subsequence with zero sum.
- Find conditions that minimal zero sum sequences must satisfy.
- Find all minimal zero-sum sequences.
- Count the minimal zero-sum sequences.

Prominent examples are the cyclic groups $M=\mathbb{Z} / m \mathbb{Z}$ and $M=\mathbb{Z}$ where zero-sum sequences correspond to solutions of linear congruences or linear Diophantine equations.

1 Multisets

Since addition in a \mathbb{Z}-module M is commutative, the order of the elements in a sequence doesn't matter for the summation, therefore we consider finite "multisets" of elements of M. Informally spoken these are "subsets" that may contain the same elements several times.

In general a subset S of a set M is characterized by its indicator function

$$
\mu: M \longrightarrow \mathbb{N}, \quad \mu(a)= \begin{cases}1, & \text { if } a \in S \\ 0, & \text { if } a \notin S\end{cases}
$$

For a multiset we allow multiplicities other than 0 or 1 , so we think of a subset where each element may occur several times. To be precise:

Definition Let M be a set.

1. A multiset S in M is a map

$$
\mu: M \longrightarrow \mathbb{N}
$$

The subset $\operatorname{supp}(S)=\{a \in M \mid \mu(a)>0\} \subseteq M$ is called the support of S. For an element $a \in \operatorname{supp}(S)$ the value $\mu(a)$ is called the multiplicity of a in S. The size of S is

$$
\# S:=\sum_{a \in \operatorname{supp}(S)} \mu(a)
$$

(that is the number of its elements counted according to their multiplicities). The width of S is $\mathrm{w}(S)=\# \operatorname{supp}(S)$ (that is the number of different elements). The height of S is the maximum multiplicity, $\mathrm{h}(S)=\max \{\mu(a) \mid a \in \operatorname{supp}(S)\}$.
2. Let S (with multiplicity map μ) and T (with multiplicity map ν) be multisets in M. Then T is called a submultiset of S, written $T \subseteq S$, if $\nu \leq \mu$, that is, each element in the support of T occurs in S at most with the same multiplicity.
3. The multiset S is called finite if its support is finite.

Note that the size $\# S$ of a multiset is finite if and only if S is finite. We denote multisets by double braces. Thus in \mathbb{Z} the multiset $\mu(1)=2, \mu(3)=1, \mu(-2)=4, \mu(i)=0$ otherwise, is written as

$$
\{\{1,1,3,-2,-2,-2,-2\}\} .
$$

Inside the braces the elements may be listed in any order. We may interpret $\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$ as the orbit of the sequence $\left(s_{1}, \ldots, s_{n}\right) \in M^{n}$ under the symmetric group \mathcal{S}_{n}. Thus the multisets in M of size n are the members of the group-theoretic quotient M^{n} / \mathcal{S}_{n}.

2 Multiset Sums

Definition Let M be a \mathbb{Z}-module and S be a finite multiset in M. The (multiset) sum of S is

$$
\Sigma(S):=\sum_{a \in \operatorname{supp}(S)} \mu(a) a .
$$

So we sum up the elements of S according to their multiplicities. If $S=\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$, then simply

$$
\Sigma(S)=s_{1}+\cdots+s_{n}
$$

(and $\# S=n$). If $\operatorname{supp}(S)=\left\{a_{1}, \ldots, a_{m}\right\}$, and a_{i} has multiplicity x_{i}, the multiset sum is more intuitively written as

$$
\Sigma(S)=x_{1} a_{1}+\cdots+x_{m} a_{m} .
$$

Writing the sum as a linear combination with integer coefficients emphasizes the inherent algebraic (or geometric) structure of the \mathbb{Z}-module M. The vector $a=\left(a_{1}, \ldots, a_{m}\right) \in M^{m}$ defines a homomorphism

$$
\Phi_{a}: \mathbb{Z}^{m} \longrightarrow M, \quad x \mapsto \sum x_{i} a_{i}
$$

whose kernel consists of the coefficient m-tuples that make the sum zero. Zero-sum problems address questions on multiset sums such as stated on the introduction:

- Given a multiset S, for which submultisets $T \subseteq S$ is $\Sigma(T)=0$?
- What properties have minimal (nonvoid) multisets S with $\Sigma(S)=0$?
- Count or estimate their number.

Examples Prominent zero-sum problems are the linear Diophantine problems that ask for the (restricted) kernel $\operatorname{ker} \Phi_{a} \cap \mathbb{N}^{n}$:

1. The linear equation $(M=\mathbb{Z})$. Given integer coefficients $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, find non-negative integer solutions $x_{1}, \ldots, x_{n} \in \mathbb{N}$ of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

2. The linear congruence ($M=\mathbb{Z} / m \mathbb{Z}$ with $m \in \mathbb{N}_{2}$). Given integer coefficients $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, find non-negative integer solutions $x_{1}, \ldots, x_{n} \in \mathbb{N}$ of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv 0 \quad(\bmod m)
$$

Note that we changed the meanings of m and n as well as the order of a_{i} and x_{i} according to the common usage for linear equations where the x_{i} are the unknowns. Note also that for the linear Diophantine problems the assumption that the coefficients a_{i} are different is unusual, and inadequate for some applications-however this is a minor technical issue.

Definition Let S be a (finite) multiset in the \mathbb{Z}-module M with support $\left\{a_{1}, \ldots, a_{m}\right\}$ and multiplicities $x_{i}=\mu\left(a_{i}\right)$, hence multiset $\operatorname{sum} \Sigma(S)=x_{1} a_{1}+\cdots+x_{m} a_{m}$.

1. S is called a zero-sum multiset if $\Sigma(S)=0$.
2. A subsum of S is a sum

$$
y_{1} a_{1}+\cdots+y_{m} a_{m} \quad \text { with } y_{1}, \ldots, y_{m} \in \mathbb{N}
$$

where $0 \leq y_{i} \leq x_{i}$ for all $i=1, \ldots, m$, in other words, a sum over a submultiset $T \subseteq S$ defined by $\nu\left(a_{i}\right)=y_{i}$.
3. The multiset S is called a minimal zero-sum multiset if it is a zero-sum multiset, its size is positive, and no proper subsum is zero (except the empty one).
4. The multiset S is called zerofree if it isn't zero-sum and no nontrivial subsum is zero (where "nontrivial" means: except the empty one, but including $\Sigma(S)$ itself).

Examples

3. Obviously any multiset with support $\{0\}$ is a zero-sum multiset. It contains a unique minimal zero-sum subset $\{\{0\}\}$, given by $\mu(a)=1$ for $a=0$, and $\mu(a)=0$ otherwise (thus $\left.\mu(a)=\delta_{a 0}\right)$.
4. If $b \in M$ has order $r>0$, then $\mu(a)=r \delta_{b 0}=r$ if $a=b$ and $=0$ otherwise, defines a zero-sum multiset $\{\{b, \ldots, b\}\}$ with support $\{b\}$, and this is a minimal one.
5. For $M=\mathbb{Z}$ a multiset S with support $\{1,-1\}$ is zero-sum if and only if $\mu(1)=\mu(-1)$. It is minimal if this multiplicity is 1 , i. e. if $S=\{\{1,-1\}\}$.
6. For the Examples 1 and 2 above the minimal zero-sum multisets with support contained in $\left\{a_{1}, \ldots, a_{n}\right\}$ correspond to the minimal nonzero (or indecomposable) solutions of the linear Diophantine equation or the linear congruence with given coefficients a_{1}, \ldots, a_{n}, see [12, 13].

Additional questions

- How large can a zerofree multiset be? Note that this questions makes sense only if M is finite, or (for $M=\mathbb{Z}$) if we require that the elements of the submultisets are of bounded size and have different signs.
- How many values can the subsums of a zerofree multiset take?

3 The Davenport Constant

Definition Let $X \subseteq M$ be a subset of a \mathbb{Z}-module (or abelian group) M. The Davenport constant of $X, \mathrm{DC}(X)$, is the supremum of the sizes of minimal zero-sum multisets with support contained in X.

Examples

1. $\mathrm{DC}(\mathbb{Z})=\infty$, since for any n the multiset $\{\{n,-1, \ldots,-1\}\}$ of size $n+1$ in \mathbb{Z} is minimal zero-sum.
2. $\mathrm{DC}(\mathbb{Z} / m \mathbb{Z})=m$, see Proposition 1 below.
3. For the integer interval $X=[-1 \ldots 1]=\{-1,0,1\} \subseteq M=\mathbb{Z}$ the Davenport constant is $\operatorname{DC}(X)=2$. (The minimal zero-sum multisets in X are given by the Examples 3 and 5 in Section 2; $\{\{0\}\}$ and $\{\{1,-1\}\}$.)
4. For the interval $X=[-q \ldots q] \subseteq M=\mathbb{Z}$ with $q \geq 2$ the result, $\mathrm{SD}(X)=2 q-1$, is non-trivial, it follows from Lambert's Theorem below, see Theorem 4 (i) and Corollary 2.

Remark 1 Assume $\mathrm{DC}(X)<\infty$. There is a zerofree multiset S in X of size $\# S=\mathrm{DC}(X)-1$.

For the proof take a minimal zero-sum multiset T in X of size $\mathrm{DC}(X)$, and remove (one instance) of an arbitrary $a \in T$. Then $S=T-\{a\}$ is a zerofree multiset in X of the required size.

Lemma 1 Assume X is a subgroup of M with $\mathrm{DC}(X)<\infty$. Then every multiset S of size $\# S \geq \mathrm{DC}(X)$ in X contains a nontrivial zero-sum submultiset.

Proof. Assume the contrary, in particular $t:=-\Sigma(S) \neq 0$, and $t \in X$. Thus $\hat{S}=S \cup\{t\}$ (multiplicity of t increased by 1) is a zerosum multiset in X of size $\# \hat{S}=\# S+1>\mathrm{DC}(X)$, and \hat{S} contains a minimal zerosum submultiset T, in particular $\# T \leq \mathrm{DC}(X)$. By our assumption $T \nsubseteq S$, hence the additional element t is in T. However $T^{\prime}=T-\{t\} \subseteq S$, and

$$
\Sigma\left(T^{\prime}\right)=\Sigma(T)-t=-t=\Sigma(S) .
$$

Hence $S-T^{\prime}$ is a zerosum submultiset of S, hence $=\emptyset$. Therefore $T^{\prime}=S$, but $\# T^{\prime}=\# T-1<\mathrm{DC}(X) \leq \# S$, contradiction. \diamond

Remark 2 Thus for a subgroup X of M with finite Davenport constant $\mathrm{DC}(X)<\infty$ the Davenport constant is the smallest integer N such that every multiset of size $\geq N$ in X contains a nontrivial zero subsum.
Often this property is taken as definition of the Davenport constant-however then the applicability of this definition is somewhat restricted.

Proposition 1 The Davenport constant of the cyclic group $M=\mathbb{Z} / m \mathbb{Z}$ is m.
Proof. By Example 4 the multiset with support $\{1\}$ and multiplicity $\mu(1)=m$ is a minimal zero-sum multiset, hence the Davenport constant is at least m. On the other hand let a_{1}, \ldots, a_{m} integers. Then by the pigeon hole principle among the $m+1$ residues

$$
0, a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{m} \bmod m
$$

at least two must coincide: $a_{1}+\cdots+a_{i} \equiv a_{1}+\cdots+a_{j}(\bmod m)$ with $0 \leq i<j \leq m$. Their difference $a_{i+1}+\cdots+a_{j} \bmod m$ yields a non-trivial subsum in with value 0 .

Corollary 1 Every zerofree multiset of $\mathbb{Z} / m \mathbb{Z}$ has size $<m$. In other words, every multiset S of size $\# S \geq m$ in $\mathbb{Z} / m \mathbb{Z}$ contains a nontrivial zero-sum submultiset.

Proof. Combine Proposition 1 with Lemma 1. \diamond
We translate the setting into the algebraic language: The \mathbb{Z}-module $M=\mathbb{Z} / m \mathbb{Z}$ consists of the residue classes of $0,1, \ldots, m-1$. (By abuse of notation we often write the integers when we mean their residue classes.) A multiset in M is defined by an assignment of multiplicities $r_{i}=\mu(i)$ to each of the integers $i=0, \ldots, m-1$. If we interpret this as a vector $r=\left(r_{0}, \ldots, r_{m-1}\right) \in \mathbb{N}^{m}$, then the size of the multiset is the 1 -norm $\|r\|_{1}=\sum r_{i}$ of the vector, and Corollary 1 yields:

Corollary 2 Let $r \in \mathbb{N}^{m}$ be a vector with $\|r\|_{1}=m$. Then there is a vector $x \in \mathbb{N}^{m}$ with $0<x \leq r$ such that

$$
\sum_{i=0}^{n-1} i x_{i} \equiv 0 \quad(\bmod m)
$$

An independent version was given by Tinsley in [15] that however is a special case of NOETHER's bound for the invariants of finite groups [8]:

Corollary 3 Let $x \in \mathbb{N}^{n}$ be a minimal solution >0 of the linear congruence

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv 0 \quad(\bmod m)
$$

Then

$$
x_{1}+\cdots+x_{n} \leq m
$$

Proof. Collecting terms with coefficients a_{i} congruent mod m we may assume that the a_{i} are distinct $\bmod m$ and thus form a subset of $\{0, \ldots, m-1\}$. The minimality of x implies $\|x\|_{1} \leq m$ by Proposition 1. \diamond

The papers [4] and [12] contain a stronger version of Proposition 1 resp. Corollary 3:
Theorem 1 Let S be a minimal zero-sum multiset in $\mathbb{Z} / m \mathbb{Z}$. Then:
(i) (EGGLETON/ERDŐs) $\# S+\mathrm{w}(S) \leq m+1$.
(ii) (Pommerening) If $\# S+\mathrm{w}(S)=m+1$, then $\mathrm{w}(S) \leq 2$ except when $m=6$ and $S=\{\{1,3,4,4\}\}$ or $S=\{\{2,2,3,5\}\}$.

Proof. See [12].
A famous non-trivial result on zero-sum submultisets, in a more general version, is:
Theorem 2 (ERDős/GinZBURG/Ziv) Suppose $m \geq k \geq 2$ are integers with $k \mid m$. Let $a_{1}, a_{2}, \ldots, a_{m+k-1}$ be a sequence of integers. Then there exists a subset I of $\{1,2, \ldots, m+k-1\}$, such that $\# I=m$ and $\sum_{i \in I} a_{i} \equiv 0(\bmod k)$.

Proof. Omitted. See [2].
The theorem immediately implies the original result from [5]:
Corollary 1 Every sequence of $2 m-1$ natural numbers contains m terms whose sum is divisible by m.

And here is a geometric version:
Corollary 2 Let $r=\left(r_{0}, \ldots, r_{m-1}\right) \in \mathbb{N}^{m}$ be a vector with $\|r\|_{1}=2 m-1$. Then there is a vector $x=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbb{N}^{m}$ with $0<x \leq r$ and $\|x\|_{1}=m$ such that

$$
\sum_{i=0}^{n-1} i x_{i} \equiv 0 \quad(\bmod n)
$$

4 The Strong Davenport Constant

Definition Let $X \subseteq M$ be a subset of a \mathbb{Z}-module M. The strong Davenport constant of $X, \mathrm{SD}(X)$, is the supremum of the widths of the minimal zero-sum multisets with support contained in X, see [3].

Remarks

1. Since width \leq size, $\mathrm{SD}(X) \leq \mathrm{DC}(X)$.
2. Since $\mathrm{w}(T)=0 \Longleftrightarrow T=\emptyset$ we have $\mathrm{w}(T) \geq 1$ if T is a minimal zero-sum multiset in X. Then $w(T)=1$ if and only if $T=\{\{0\}\}$ or if T consists of a single element $a \in X-\{0\}$ of finite order n repeated n times. If X is a subgroup of M, then $\{\{a,(n-1) a\}\}$ is also a zero-sum multiset in X and it has width 2 except when $n=2$. Thus for a subgroup $X \subseteq M$:

$$
\mathrm{SD}(X)=1 \Longleftrightarrow X \text { is cyclic of order } 2 .
$$

Examples

1. $\mathrm{SD}(\mathbb{Z})=\infty$, since for any $n, N=1+\cdots+n$ the set $\{N,-1, \ldots,-n\}$ of width $=$ size $n+1$ is minimal zero-sum.
2. $\mathrm{SD}(\mathbb{Z} / m \mathbb{Z})$ is unknown in the general case, see the notes at the end of this section. Of course for small m the values are known, for example

$$
\mathrm{SD}(\mathbb{Z} / 3 \mathbb{Z})=\mathrm{SD}(\mathbb{Z} / 4 \mathbb{Z})=\mathrm{SD}(\mathbb{Z} / 5 \mathbb{Z})=2
$$

For $m \geq 6$ we have $m-3 \geq 3$, hence $S=\{1,2, m-3\}$ is a minimal zero-sum set of width $=\operatorname{size} \mathrm{w}(S)=3$. Therefore $\mathrm{SD}(\mathbb{Z} / m \mathbb{Z}) \geq 3$.
3. For the integer interval $X=[-1 \ldots 1]=\{-1,0,1\} \subseteq M=\mathbb{Z}$ the strong Davenport constant is $\mathrm{SD}(X)=2$. (The minimal zero-sum multisets $\{\{0\}\}$ and $\{\{1,-1\}\}$ of Example 3 in Section 3 are in fact sets.)
4. For the interval $X=[-q \ldots q] \subseteq M=\mathbb{Z}$ with $q \geq 2$ the value of $\operatorname{SD}(X)$ is unknown in general.

By the next theorem if X is a subgroup it doesn't matter whether $\operatorname{SD}(X)$ is defined via multisets or via sets - in other words, the bound $\operatorname{SD}(X)$ (if finite) is attained by minimal zero-sum set $\subseteq X$. We use an elementary but useful technique of modifying multisets and start with some lemmas.

Definition Let $S=\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$ be a multiset in the \mathbb{Z}-module M. The glued multiset $S_{i j}$ for two different indices $i \neq j$ consists of S with s_{i} and s_{j} removed and their sum $s_{i}+s_{j}$ inserted (s_{i} and s_{j} are "glued" together to $s_{i}+s_{j}$).

Example For $S=\{\{1,1,3,-2,-2,-2,-2\}\}$ we have $S_{34}=\{\{1,1,1,-2,-2,-2\}\}$.

Remarks

1. $\# S_{i j}=\# S-1$, the size is decremented.
2. $\mathrm{w}\left(S_{i j}\right)$ may be $=\mathrm{w}(S)-1$ or $=\mathrm{w}(S)$ or $=\mathrm{w}(S)+1$, the width changes by at most 1.
3. $\Sigma\left(S_{i j}\right)=\Sigma(S)$, the multiset sum is unchanged. In particular $S_{i j}$ is zero-sum if S is.

Lemma 2 If S is a minimal zero-sum multiset in M, so is every glued multiset $S_{i j}$.
Proof. Let $S=\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$, and let $T \subseteq S_{i j}$ a (nonvoid) zero-sum multiset. If $s_{i}+s_{j}$ is not in T, then $T \subseteq S$, hence $T=S$, contradicting $\# T \leq \# S_{i j}=\# S-1$. Otherwise $s_{i}+s_{j}$ is in T but not in $T^{\prime}:=S_{i j}-T$ that is also a zero-sum multiset (with the natural definition of the multiset difference), hence $T^{\prime} \subseteq S$ with $\# T^{\prime}<\# S$, forcing $T^{\prime}=\emptyset$ and $T=S_{i j} \diamond$

Lemma 3 Let $2 \leq \mathrm{SD}(X)<\infty$ and T be a minimal zero-sum multiset in X of maximal width $\mathrm{w}(T)=\mathrm{SD}(X)$.
(i) If $a \in \operatorname{supp}(T)$, then $k a \neq 0$ for $1 \leq k \leq \mu(a)$.
(ii) If $a, b \in \operatorname{supp}(T), a \neq b$, and $\# T \geq 3$, then $a+b \neq 0$.

Proof. (i) Otherwise $\nu(a)=k$ defines a zero-sum submultiset $S \subseteq T$ of width 1 . The minimality of T enforces $S=T$, hence $\mathrm{w}(T)=1$, contradiction.
(ii) Otherwise $S=\{a, b\}$ is a zero-sum sub(multi)set $\subseteq T$, hence $=T$, hence $\# T=\# S=2$, contradiction. \diamond

Lemma 4 Let $2 \leq \mathrm{SD}(X)<\infty$ and T be a minimal zero-sum multiset in X of maximal width $\mathrm{w}(T)=\mathrm{SD}(X)$. Let $a \in \operatorname{supp}(T)$ have multiplicity $\mu(a) \geq 2$ in T. Then for each $b \in \operatorname{supp}(T)-\{a\}$ at least one of the following statements holds:
(i) $a+b \in \operatorname{supp}(T)$,
(ii) $\mu(b)=1$,
(iii) $a+b \notin X$.

Proof. Let $T=\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$ and $a=s_{i}, b=s_{j}$. Since $\mathrm{w}(T) \geq 2$ and $\mu(a) \geq 2$ we have $\# T \geq 3$. Thus Lemma 3 (ii) implies that $a+b \neq 0$.

Moreover the conditions $a+b \notin \operatorname{supp}(T)$ and $\mu(b) \geq 2$ together would imply that $T_{i j}$ is a minimal zero-sum multiset with a, b, and $a+b$ in its support, hence $\mathrm{w}\left(T_{i j}\right)=\mathrm{SD}(X)+1$, contradiction if $a+b \in X$. Therefore T must satisfy at least one of the conditions (i), (ii), or (iii).

Theorem 3 (Chapman/Freeze/Smith) Let M be a \mathbb{Z}-module, and suppose that $2 \leq s:=\mathrm{SD}(M)<\infty$. Let T be a minimal zero-sum multiset in M that assumes the maximal width $\mathrm{w}(T)=s$, and let the size $\# T$ be minimal under this condition. Then T is a set.

Proof. We assume that $T=\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\}$ is not a set and derive a contradiction. Under this assumption T has an element $a=s_{i}$ of multiplicity $\mu(a) \geq 2$. Then $2 a \neq 0$ by Lemma 3 (i). The glued multiset $T_{i i}$ is a minimal zero-sum multiset in M with $\# T_{i i}=\# T-1$. The minimality of $\# T$ enforces $\mathrm{w}\left(T_{i i}\right)<s$. Since $T_{i i}=T-\{\{a, a\}\} \cup\{\{2 a\}\}$ this implies that

$$
\begin{equation*}
2 a \in \operatorname{supp}(T) \tag{1}
\end{equation*}
$$

and $a \notin \operatorname{supp}\left(T_{i i}\right)$, hence $\mu(a)=2$. By Lemma 4 for each $b \in \operatorname{supp}(T)-\{a\}$ the multiset T must satisfy at least one of the conditions $a+b \in \operatorname{supp}(T)$ or $\mu(b)=1$.

Case I: Assume $\mu(b) \geq 2$ for some $b=s_{j} \in \operatorname{supp}(T)-\{a\}$. Then $a+b \in \operatorname{supp}(T)$, and the support of $T_{i j}$ contains a and b, hence $\mathrm{w}\left(T_{i j}\right)=s$, but $\# T_{i j}=\# T-1$ contradicts the minimality of $\# T$.

Case II: $\mu(b)=1$ for all $b \in \operatorname{supp}(T)-\{a\}$. Then $T_{i j}$ with $\# T_{i j}=\# T-1$ has a and $a+b$ in its support, but not b. The minimality of $\# T$ enforces $\mathrm{w}\left(T_{i j}\right)=s-1$, hence $a+b \in \operatorname{supp}(T)$.

Using equation (1) and Lemma (ii) we get $3 a=a+2 a \neq 0$ and by Lemma 4 (i) even $3 a \in \operatorname{supp}(T)$. Continuing iteratively we see that all multiples $k a$ are in $\operatorname{supp}(T)$, hence

$$
\operatorname{supp}(T)=\{k a \mid 1 \leq k \leq s\}
$$

Continuing the iteration beyond s we also get $(s+1) a \in \operatorname{supp}(T)$, hence $(s+1) a=k a$ for some k with $1 \leq k \leq s$, and from this the contradiction $(s+1-k) a=0$. \diamond

By Theorem 3, for determining $\operatorname{SD}(\mathbb{Z} / m \mathbb{Z})$ we need to consider only minimal zerosum subsets of $\mathbb{Z} / m \mathbb{Z}$. Explicit values, easily determined by a simple program, see [11], are

$$
\mathrm{SD}(\mathbb{Z} / m \mathbb{Z})= \begin{cases}2 & \text { for } m=3,4,5 \\ 3 & \text { for } m=6,7 \\ 4 & \text { for } m=8,9,10 \\ 5 & \text { for } m=11, \ldots, 15 \\ 6 & \text { for } m=16, \ldots, 23\end{cases}
$$

The program uses the trivial fact that if S is a minimal zerosum subset of size s, and $t \in S$, then $S-\{t\}$ is a zerofree subset of size $s-1$. It proceeds successively by increasing size s and terminates as soon as it doesn't find any zerofree subsets of size s. This stop criterion relies on the following results:

Proposition 2 Let S be a zerofree multiset in a \mathbb{Z}-module M. Then the number $\mathbf{w}(S)$ of different elements of S is at most $\mathrm{SD}(M)$.

Proof. By definition $t:=-\Sigma(S) \in M-\{0\}$, hence $T:=S \cup\{t\}$ is a zero-sum multiset, $\Sigma(T)=\Sigma(S)+t=0$. There is a minimal zero-sum multiset $U \subseteq T$. Since S is zerofree U is not contained in S, hence the multiplicity of t in U is $1+$ the multiplicity of t in S, and $U^{\prime}:=U-\{t\}$ (multiplicity of t decreased by 1) is a submultiset of S. Moreover

$$
\Sigma\left(U^{\prime}\right)=\Sigma(U)-t=-t=\Sigma(S)
$$

Therefore $S-U^{\prime}$ is a zero-sum multiset contained in S, hence $=\emptyset$, thus $U^{\prime}=S$ and $U=U^{\prime} \cup\{t\}=S \cup\{t\}=T$. Since U is minimal $\mathrm{w}(S) \leq \mathrm{w}(T)=\mathrm{w}(U) \leq \mathrm{SD}(M)$.

Corollary 1 If $S \subseteq M$ is a zerofree subset, then $\# S \leq \mathrm{SD}(M)$.
Proof. Since S is a set $\# S=\mathrm{w}(S)$.
Denote the maximum size of a zerofree subset of M by $\operatorname{zf}(M)$, called the zerofree bound of M.

Corollary 2 Assume $\mathrm{SD}(M)<\infty$. Then $\mathrm{zf}(M)=\mathrm{SD}(M)$ or $\mathrm{SD}(M)-1$.
Proof. $\mathrm{zf}(M) \leq \mathrm{SD}(M)$ by Corollary 1. To get a zerofree set of size $\mathrm{SD}(M)-1$ take a minimal zero-sum subset of size $\mathrm{SD}(M)$ and remove an arbitrary element.

Corollary 3 Assume $\mathrm{SD}(M)<\infty$ and $\mathrm{zf}(M)=\mathrm{SD}(M)-1$. Let T be a minimal zerosum multiset in M of width $\mathrm{w}(T)=\mathrm{SD}(M)$. Then T is a set.

Proof. Assume $a \in T$ has multiplicity $\mu(a) \geq 2$. Then $T^{\prime}=T-\{\{a\}\}$ is zerofree and has width $\mathrm{w}\left(T^{\prime}\right)=\mathrm{w}(T)=\mathrm{SD}(M)$, contradiction. \diamond

Example The smallest module m for which all zerofree subsets of $\mathbb{Z} / m \mathbb{Z}$ have size $\leq \mathrm{SD}(Z / m \mathbb{Z})-1$ is $m=8$ (with $\operatorname{SD}(Z / 8 \mathbb{Z})=4)$. As a consequence for $m=8$ minimal zero-sum multisets T that attain the maximum width $\mathrm{w}(T)=\mathrm{SD}(Z / 8 \mathbb{Z})$ must be sets.

Notes on the Erdős-Heilbronn conjecture (EHC):

1. A version of the EHC claims that a subset S of a finite abelian group M has a nontrivial subsum equal to 0 if $r=\# S \geq c \sqrt{m}$ with $m=\# M$ for an absolute constant c, in other words, $\mathrm{zf}(M) \leq\lceil c \sqrt{m}\rceil$. Erdős and Heilbronn proved this for the cyclic group $M=\mathbb{Z} / p \mathbb{Z}$ of prime order p with $c=3 \sqrt{6}$. Olson [9] dropped the constant to $c=2$ for prime order p, and [10] to $c=3$ for arbitrary (even non-abelian) M, and Balandraud [1] proved that $\mathrm{zf}(\mathbb{Z} / p \mathbb{Z})=\lceil\sqrt{2 p+1 / 4}-3 / 2\rceil$ for p prime ≥ 3, in particular $\mathrm{zf}(\mathbb{Z} / p \mathbb{Z})<\lceil\sqrt{2 p-1}\rceil$, or $c=\sqrt{2}$ in this case.
2. Let c be the $\mathrm{E}-\mathrm{H}$ constant valid for the finite abelian group M. Then $\mathrm{SD}(M) \leq \mathrm{zf}(M)+1 \leq\lceil c \sqrt{m}\rceil$ by Corollary 2.
3. The strong form of the EHC (by ERDŐs) drops the constant to $c=\sqrt{2}$. In this strong form the conjecture is open, the best known bound is $c=\sqrt{2 m}+\varepsilon(m)$ where $\varepsilon(m)$ is $\mathrm{O}(\sqrt[3]{m} \cdot \log (m))$ for M cyclic of order m, proved by Hamidoune and ZÉMOR [6].
Therefore we have

- $\mathrm{SD}(\mathbb{Z} / m \mathbb{Z}) \leq\lceil 3 \sqrt{m}\rceil$ (proved by OlSon), and
- $\mathrm{SD}(\mathbb{Z} / m \mathbb{Z}) \leq\lceil\sqrt{2 m}\rceil$ (conjectured by Erdős).

The explicit values above show that the bound $\lceil\sqrt{2 m}\rceil$ is sharp for many values of m.

5 The Infinite Cyclic Group

Here we give a stronger version of Lambert's Theorem [7] combined with Sissokho's bound [14]. The proof is given in [13] in terms of linear Diophantine equations. Here we rephrase it in terms of multiset sums. For a multiset S in \mathbb{Z} let S^{+}, S^{-}be the subsets of S consisting of the positive resp. negative elements with multiplicities inherited from S. Clearly S is zero-sum if and only if $\Sigma\left(S^{+}\right)=-\Sigma\left(S^{-}\right)$.

Example For the multiset $S=\{\{1,1,3,-2,-2,-2,-2\}\}$ we have $S^{+}=\{\{1,1,3\}\}$, $S^{-}=\{\{-2,-2,-2,-2\}\}$, and S is not zero-sum.

Theorem 4 Let S be a (finite) minimal zero-sum multiset in \mathbb{Z}. Suppose that S contains positive and negative integers, in particular $\# S \geq 2$. Let $A:=\max \left(S^{+}\right)$be the largest, and $B:=-\min \left(S^{-}\right)$be the additive inverse of the smallest element of S. Then
(i) $($ LAMBERT $) \# S^{+} \leq B$ and $\# S^{-} \leq A$.
(ii) (Pommerening) If $\# S^{+}=B$, then $\operatorname{supp}\left(S^{-}\right)=\{-B\}$, in particular $\mathrm{w}\left(S^{-}\right)=1$. If $\# S^{-}=A$, then $\operatorname{supp}\left(S^{+}\right)=\{A\}$, in particular $\mathrm{w}\left(S^{+}\right)=1$.
(iii) $\left(\right.$ Sissokho $\# S^{+} \cdot \# S^{-} \leq \Sigma\left(S^{+}\right)$.

Proof. Let $\operatorname{supp}\left(S^{+}\right)=\left\{a_{1}, \ldots, a_{p}\right\}$ with $1 \leq a_{1}<\ldots<a_{p}$, and $\operatorname{supp}\left(S^{-}\right)=$ $\left\{-b_{1}, \ldots,-b_{r}\right\}$ with $1 \leq b_{1}<\ldots<b_{r}$. Thus $m=p+r$, and $m=\mathrm{w}(S)$ since S, due to its minimality, doesn't contain 0 . Furthermore $A=a_{p}$ and $B=b_{r}$.

We prove all three statements (i), (ii), and (iii) together by induction on $\# S$.
If $\# S=2$, then necessarily $\# S^{+}=\# S^{-}=1, S^{+}=\left\{\left\{a_{1}\right\}\right\}, S^{-}=\left\{\left\{-b_{1}\right\}\right\}$, $\Sigma\left(S^{+}\right)=a_{1}$, and $b_{1}=a_{1}$. Thus (i) and (iii) hold true. The precondition $\# S^{+}=B$ in (ii) implies $b_{1}=1$, so $S^{-}=\{\{-1\}\}$ and $\operatorname{supp}\left(S^{-}\right)=\{-1\}$. The same reasoning works if $\# S^{-}=A$. Thus also (ii) is true.

Now we assume that $\# S \geq 3$. If we find a pair (i, j) of indices with $a_{i}=b_{j}$, then we have the zero subsum $a_{i}+\left(-b_{j}\right)=0$. The minimality of S enforces $S=\left\{\left\{a_{i},-b_{j}\right\}\right\}$, contradicting $\# S \geq 3$.

Thus

$$
\left\{a_{1}, \ldots, a_{p}\right\} \cap\left\{b_{1}, \ldots, b_{r}\right\}=\emptyset
$$

We may assume (without loss of generality) that $a_{p}>b_{r}$, and consider the derived multiset S^{\prime} where from S one instance of both a_{p} and $-b_{r}$ is removed and the element $a_{p}-b_{r}$ is inserted. Then $\# S^{\prime+}=\# S^{+}$and $\# S^{\prime-}=\# S^{-}-1$.

Could $\# S^{-}=1$, hence $S^{\prime-}=\emptyset$, happen? Then necessarily $S^{-}=\left\{\left\{-b_{1}\right\}\right\}$, $\Sigma\left(S^{+}\right)=-\Sigma\left(S^{-}\right)=b_{1}$, contradicting $\Sigma\left(S^{+}\right) \geq a_{r}>b_{1}$. Thus $\# S^{-} \geq 2$.

Hence we may apply the induction hypothesis, for $\# S^{\prime}=\# S-1$, and from (i) and (iii) for S^{\prime} get
(2) $\# S^{+}=\# S^{\prime+} \leq B^{\prime}:=-\min \left(S^{\prime-}\right) \leq B, \# S^{-}-1=\# S^{\prime-} \leq A^{\prime}:=\max \left(S^{\prime+}\right)=A$,

$$
\begin{equation*}
\# S^{+} \cdot\left(\# S^{-}-1\right) \leq \Sigma\left(S^{+}\right)=\left(a_{p}-b_{r}\right)+\Sigma\left(S^{+}\right)-a_{p}=\Sigma\left(S^{+}\right)-b_{r} \tag{3}
\end{equation*}
$$

From Formula (3) and $b_{r} \cdot \# S^{-}=b_{r} \cdot\left(y_{1}+\cdot+y_{r}\right) \geq y_{1} b_{1}+\cdots+y_{r} b_{r}=-\Sigma\left(S^{-}\right)=\Sigma\left(S^{+}\right)$ (where y_{i} is the multiplicity of $-b_{i}$ in S^{-}) we get

$$
\begin{gathered}
\Sigma\left(S^{+}\right) \cdot \# S^{-}-b_{r} \cdot \# S^{-} \leq \Sigma\left(S^{+}\right) \cdot \# S^{-}-\Sigma\left(S^{+}\right) \\
\left(\Sigma\left(S^{+}\right)-b_{r}\right) \cdot \# S^{-} \leq \Sigma\left(S^{+}\right) \cdot\left(\# S^{-}-1\right) \\
\# S^{+} \cdot\left(\# S^{-}-1\right) \cdot \# S^{-} \leq \Sigma\left(S^{+}\right) \cdot\left(\# S^{-}-1\right)
\end{gathered}
$$

Since $\# S^{-}>1$ we may divide by $\# S^{-}-1$ and get (iii).
In Formula (2) we might have $\# S^{-}-1=A$. Then $\# S^{\prime-}=A^{\prime}$, and the induction hypothesis implies $\operatorname{supp}\left(S^{\prime+}\right)=\left\{A^{\prime}\right\}=\{A\}$, contradicting the additional element $a_{p}-b_{r}$ in $S^{\prime+}$. Hence $\# S^{-}-1 \leq A-1$, and the proof of (i) is complete.

For (ii) first assume that $\# S^{+}=B=b_{r}$. Then

$$
b_{r} y_{1}+\cdots+b_{r} y_{r}=b_{r} \cdot \# S^{-}=\# S^{+} \cdot \# S^{-} \leq \Sigma\left(S^{+}\right)=-\Sigma\left(S^{-}\right)=y_{1} b_{1}+\cdots+y_{r} b_{r}
$$

Hence the multiplicity $y_{i}>0$ only if $i=r$. Thus $\operatorname{supp}\left(S^{-}\right)=\left\{b_{r}\right\}=\{-B\}$. The same reasoning shows that $\# S^{-}=A$ implies that $\operatorname{supp}\left(S^{+}\right)=\{A\}$ (since we didn't use the inequality $b_{r}<a_{p}$).

Corollary 1 Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ with $n \geq 1$, and $P=\left\{i \mid a_{i}>0\right\}$ and $N=\left\{j \mid a_{j}<0\right\}$. Assume $p:=\# P \geq 1$ and $r:=\# N \geq 1$, thus there are positive and negative coefficients. Let $A:=\max \left\{a_{i} \mid i \in P\right\}, B:=\max \left\{-a_{j} \mid j \in N\right\}$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ be an indecomposable solution of $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$. Then:
(i) The vector x is bounded by

$$
\sum_{i \in P} x_{i} \leq B \quad \text { and } \quad \sum_{j \in N} x_{j} \leq A
$$

In particular the linear Diophantine equation has only finitely many indecomposable solutions.
(ii) If $\sum_{i \in P} x_{i}=B$, then $x_{j} \neq 0$ for $j \in N$ at most if $a_{j}=-B$. If $\sum_{i \in N} x_{i}=A$, then $x_{j} \neq 0$ for $j \in P$ at most if $a_{j}=A$.
(iii) $\sum_{i \in P} x_{i} \times \sum_{j \in N} x_{j} \leq \sum_{i \in P} a_{i} x_{i}$.

Proof. If we collect together indices where the a_{i} coincide and add the corresponding vector coordinates x_{i}, this doesn't affect the properties of being a solution or an indecomposable solution. Also the statements (i)-(iii) are not affected. Thus without loss of generality we may assume that all coefficients a_{i} are distinct. Then the corollary is a reformulation of the theorem.

Corollary 2 For $N=[-q \ldots q] \subseteq M=\mathbb{Z}$ with $q \geq 2$ the Davenport constant is $2 q-1$.
Proof. A minimal zero-sum set in $[-q \ldots q]$ may be supported by $\{0\}$ with multiplicity 1 , and this has length 1 . Otherwise it is represented by integers $x_{1}, \ldots, x_{q}, x_{1}, \ldots, y_{q} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{q} i x_{i}+\sum_{i=1}^{q}(-i) y_{i}=0 .
$$

Corollary 1 (with $A \leq q$ and $B \leq q$) implies that

$$
x_{1}+\cdots+x_{q} \leq q \quad \text { and } \quad y_{1}+\cdots+y_{q} \leq q
$$

hence our zero-sum set has length $\leq 2 q$. We distinguish two cases:

1. The only non-zero coordinates are x_{q} and y_{q}. The minimality enforces $x_{q}=y_{q}=1$, hence the length is $2<2 q-1$.
2. There is some non-zero coordinate other than x_{q} and y_{q}. Then only one of x_{q} and y_{q} may be non-zero, otherwise we may decrement both by 1 and still have a non-trivial zero sum. Hence $A<q$ or $B<q$. Thus the length is $\leq 2 q-1$.

On the other hand the equation $q(q-1)-(q-1) q=0$ corresponds to the case $x_{q}=q-1$, $y_{q-1}=q$, and all other coefficients $=0$, and yields a zero-sum set of length $2 q-1$ that is minimal. Hence the bound $2 q-1$ is sharp. \diamond

References

[1] É. Balandraud: An addition theorem and maximal zero-sum free sets in $\mathbb{Z} / p \mathbb{Z}$. Israel J. Math. 188 (2012), 405-429, 1009-1010.
[2] J. D. Bovey, P. Erdős, I. Niven: Conditions for a zero sum modulo n. Canad. Math. Bull. 18 (1975), 27-29.
[3] S. T. Chapman, M. Freeze, W. W. Smith: Minimal zero sequences and the strong Davenport constant. Discr. Math. 203 (1999), 271-277.
[4] R. B. Eggleton, P. Erdős: Two combinatorial problems in group theory. Acta Arithmetica 21 (1972), 111-116.
[5] P. Erdős, A. Ginzburg, A. Ziv: A theorem in additive number theory. Bull. Res. Council Israel 10F (1961), 41-43.
[6] Y. O. Hamidoune, G. Zémor: On zero-free subset sums. Acta Arithm. 78 (1996), 143-152.
[7] J. L. Lambert: Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire. C.R. Acad. Sci. Paris Série I, 305 (1987), 39-40.
[8] E. Noether: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77 (1916), 89-92.
[9] J. E. Olson: An addition theorem modulo p. J. Comb. Theory 5 (1968), 45-52.
[10] J. E. Olson: Sums of sets of group elements. Acta Aritm. 28 (1975), 147-156.
[11] K. Pommerening: Remarks on subset sums. Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/SubSum.pdf
[12] K. Pommerening: The indecomposable solutions of linear congruences. Preprint online as arXiv:1703.03708 [math.NT]: http://arxiv.org/abs/1703.03708.
[13] K. Pommerening: The indecomposable solutions of linear Diophantine equations. Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/LinDio.pdf
[14] P. A. Sissokho: A note on minimal zero-sum sequences over \mathbb{Z}. Acta Arithmetica 166 (2014), 279-288.
[15] M. F. Tinsley: A combinatorial theorem in number theory. Duke Math. J. 33 (1966), 75-79.

