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The subject of this little survey are finite sequences in a Z-module (or additively
written abelian group) M that sum up to 0. Typical questions are:

e In a given sequence find a subsequence with zero sum.

e Find conditions that minimal zero sum sequences must satisfy.
e Find all minimal zero-sum sequences.

e Count the minimal zero-sum sequences.

Prominent examples are the cyclic groups M = Z/mZ and M = 7 where zero-sum
sequences correspond to solutions of linear congruences or linear Diophantine equations.

1 Multisets

Since addition in a Z-module M is commutative, the order of the elements in a sequence
doesn’t matter for the summation, therefore we consider finite “multisets” of elements
of M. Informally spoken these are “subsets” that may contain the same elements several
times.

In general a subset S of a set M is characterized by its indicator function

1, if S
wiM—N, pa)={" ">
0, ifa¢gs.

For a multiset we allow multiplicities other than 0 or 1, so we think of a subset where
each element may occur several times. To be precise:

Definition Let M be a set.
1. A multiset S in M is a map

w: M — N.



The subset supp(S) = {a € M | u(a) > 0} C M is called the support of S.
For an element a € supp(S) the value p(a) is called the multiplicity of a in

S. The size of S is
#5:= > pla)

a€supp(S)

(that is the number of its elements counted according to their multi-
plicities). The width of S is w(S) = #supp(S) (that is the number
of different elements). The height of S is the maximum multiplicity,
h(S) = max{u(a) | a € supp(S)}.

2. Let S (with multiplicity map p) and 7' (with multiplicity map v) be multisets
in M. Then T is called a submultiset of .S, written 7' C S, if v < pu, that
is, each element in the support of T" occurs in S at most with the same
multiplicity.

3. The multiset S is called finite if its support is finite.

Note that the size #S of a multiset is finite if and only if S is finite. We denote multisets
by double braces. Thus in Z the multiset (1) = 2, pu(3) = 1, u(—=2) = 4, u(i) = 0

otherwise, is written as
{{1,1,3,-2,-2,-2,—2}}.

Inside the braces the elements may be listed in any order. We may interpret
{{s1,...,sn}} as the orbit of the sequence (s1,...,s,) € M™ under the symmetric group
S,,. Thus the multisets in M of size n are the members of the group-theoretic quotient
M"™/S,.

2 Multiset Sums

Definition Let M be a Z-module and S be a finite multiset in M. The (multiset)
sum of S is
X(9) = Z w(a)a.
a€supp(S)

So we sum up the elements of S according to their multiplicities. If S = {{s1,...,sn}},
then simply
Y(S)=s14+-+sn

(and #S = n). If supp(S) = {ai1,...,an}, and a; has multiplicity z;, the multiset sum
is more intuitively written as

Y(S)=mza1+ -+ Tmam-

Writing the sum as a linear combination with integer coefficients emphasizes
the inherent algebraic (or geometric) structure of the Z-module M. The vector
a=(ai,...,am) € M™ defines a homomorphism

D, ZM — M, :):b—>z:ria,',
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whose kernel consists of the coefficient m-tuples that make the sum zero. Zero-sum
problems address questions on multiset sums such as stated on the introduction:

e Given a multiset S, for which submultisets 7' C S is ¥(T") = 07?
e What properties have minimal (nonvoid) multisets S with 3(S) = 07

e Count or estimate their number.

Examples Prominent zero-sum problems are the linear Diophantine problems that ask
for the (restricted) kernel ker ®, N N":

1. The linear equation (M = Z). Given integer coefficients ay,...,a, € Z, find
non-negative integer solutions x1,...,x, € N of

a1x1 + -+ apxy, = 0.

2. The linear congruence (M = Z/mZ with m € Ng). Given integer coefficients
ai,...,a, € Z, find non-negative integer solutions x1,...,z, € N of

a1xy + -+ apxy, =0 (mod m).

Note that we changed the meanings of m and n as well as the order of a; and x;
according to the common usage for linear equations where the z; are the unknowns.
Note also that for the linear Diophantine problems the assumption that the coef-
ficients a; are different is unusual, and inadequate for some applications—however
this is a minor technical issue.

Definition Let S be a (finite) multiset in the Z-module M with support {ai,...,am}
and multiplicities z; = u(a;), hence multiset sum X(S) = z1a1 + - -+ + Tiam.-
1. S is called a zero-sum multiset if ¥(S5) = 0.

2. A subsum of S is a sum
y1a1+"'+ymam Withylv"'vymeNv

where 0 < y; < x; foralli =1,...,m, in other words, a sum over a submultiset
T C S defined by v(a;) = v;.

3. The multiset S is called a minimal zero-sum multiset if it is a zero-sum
multiset, its size is positive, and no proper subsum is zero (except the empty
one).

4. The multiset S is called zerofree if it isn’t zero-sum and no nontrivial subsum
is zero (where “nontrivial” means: except the empty one, but including ¥(.5)
itself).



Examples

3. Obviously any multiset with support {0} is a zero-sum multiset. It contains
a unique minimal zero-sum subset {{0}}, given by u(a) = 1 for a = 0, and
p(a) = 0 otherwise (thus pu(a) = da0)-

4. If b € M has order r > 0, then u(a) = rdy = r if a = b and = 0 other-
wise, defines a zero-sum multiset {{b,...,b}} with support {b}, and this is a
minimal one.

5. For M = Z a multiset S with support {1, —1} is zero-sum if and only if
(1) = p(—1). It is minimal if this multiplicity is 1, i.e. if S = {{1,—1}}.

6. For the Examples 1 and 2 above the minimal zero-sum multisets with support
contained in {ai,...,a,} correspond to the minimal nonzero (or indecompos-
able) solutions of the linear Diophantine equation or the linear congruence
with given coefficients a1, ..., a,, see [12] [13].

Additional questions

e How large can a zerofree multiset be? Note that this questions makes sense
only if M is finite, or (for M = Z) if we require that the elements of the
submultisets are of bounded size and have different signs.

e How many values can the subsums of a zerofree multiset take?

3 The Davenport Constant

Definition Let X C M be a subset of a Z-module (or abelian group) M. The Daven-
port constant of X, DC(X), is the supremum of the sizes of minimal zero-sum
multisets with support contained in X.

Examples

1. DC(Z) = oo, since for any n the multiset {{n,—1,...,—1}} of size n+ 1 in Z
is minimal zero-sum.

2. DC(Z/mZ) = m, see Proposition 1| below.

3. For the integer interval X = [-1...1] = {—1,0,1} C M = Z the Davenport
constant is DC(X) = 2. (The minimal zero-sum multisets in X are given by
the Examples 3 and 5 in Section [2} {{0}} and {{1,—1}}.)

4. For the interval X = [—q...q] € M = Z with ¢ > 2 the result,
SD(X) = 2¢ — 1, is non-trivial, it follows from LAMBERT’s Theorem below,
see Theorem (4] (i) and Corollary 2.

Remark 1 Assume DC(X) < oo. There is a zerofree multiset S in X of size
#S =DC(X) — 1.



For the proof take a minimal zero-sum multiset 7" in X of size DC(X'), and remove
(one instance) of an arbitrary a € T. Then S = T — {a} is a zerofree multiset in
X of the required size.

Lemma 1 Assume X is a subgroup of M with DC(X) < co. Then every multiset S of
size #S > DC(X) in X contains a nontrivial zero-sum submultiset.

Proof. Assume the contrary, in particular ¢ := —%(S) # 0, and ¢t € X. Thus
S =SU{t} (multiplicity of ¢ increased by 1) is a zerosum multiset in X of size
#S=#S+1> DC(X), and S contains a minimal zerosum submultiset T, in partic-
ular #7 < DC(X). By our assumption 7" Z S, hence the additional element ¢ is in 7.
However TV =T — {t} C S, and

S(T) =X(T) —t = —t =%(9).

Hence S — T is a zerosum submultiset of S, hence = (). Therefore 7" = S, but
#T' = #T — 1 < DC(X) < #8, contradiction. <&

Remark 2 Thus for a subgroup X of M with finite Davenport constant DC(X) < oo
the Davenport constant is the smallest integer N such that every multiset of size
> N in X contains a nontrivial zero subsum.

Often this property is taken as definition of the Davenport constant—however then
the applicability of this definition is somewhat restricted.

Proposition 1 The Davenport constant of the cyclic group M = Z/mZ is m.

Proof. By Example 4 the multiset with support {1} and multiplicity u(1) = m is a
minimal zero-sum multiset, hence the Davenport constant is at least m. On the other
hand let a1, ..., ay, integers. Then by the pigeon hole principle among the m+ 1 residues

0,a1,a1+as,...,a1+ -+ a, modm

at least two must coincide: ay + -+ a; = a1 + --- + a; (mod m) with 0 <i < j < m.
Their difference a;1 + - - - + a; mod m yields a non-trivial subsum in with value 0. &

Corollary 1 FEvery zerofree multiset of Z/mZ has size < m. In other words, every
multiset S of size #S > m in Z/mZ contains a nontrivial zero-sum submultiset.

Proof. Combine Proposition [I] with Lemma 1} <

We translate the setting into the algebraic language: The Z-module M = Z/mZ
consists of the residue classes of 0,1,...,m — 1. (By abuse of notation we often write
the integers when we mean their residue classes.) A multiset in M is defined by an
assignment of multiplicities r; = p(i) to each of the integers i = 0,...,m — 1. If we
interpret this as a vector r = (rg,...,rm—1) € N then the size of the multiset is the
I-norm ||r||y = >_ r; of the vector, and Corollary 1 yields:



Corollary 2 Let r € N™ be a vector with |||y = m. Then there is a vector x € N™
with 0 < x < r such that

n—1

Zi%‘ =0 (mod m).

=0

An independent version was given by TINSLEY in [15] that however is a special case
of NOETHER’s bound for the invariants of finite groups []]:

Corollary 3 Let x € N be a minimal solution > 0 of the linear congruence
arxy+ -+ apxy, =0 (mod m).

Then
T+ oy <m.

Proof. Collecting terms with coefficients a; congruent mod m we may assume that the
a; are distinct modm and thus form a subset of {0,...,m — 1}. The minimality of x
implies ||z||; < m by Proposition 1} <

The papers [4] and [12] contain a stronger version of Proposition [l|resp. Corollary 3:

Theorem 1 Let S be a minimal zero-sum multiset in Z/mZ. Then:
(i) (EGGLETON/ERDOS) #S +w(S) < m + 1.

(ii) (POMMERENING) If #S 4+ w(S) = m + 1, then w(S) < 2 except when m = 6 and
S ={{1,3,4,4}} or S ={{2,2,3,5}}.

Proof. See [12]. <&
A famous non-trivial result on zero-sum submultisets, in a more general version, is:

Theorem 2 (ERDOS/GINZBURG/Z1V) Suppose m > k > 2 are integers with klm.

Let ay,az,...,am+p—1 be a sequence of integers. Then there exists a subset I of
{1,2,....,m+k —1}, such that #I =m and 3, ;a; =0 (mod k).

Proof. Omitted. See [2]. &
The theorem immediately implies the original result from [5]:

Corollary 1 FEvery sequence of 2m — 1 natural numbers contains m terms whose sum
1s divisible by m.

And here is a geometric version:

Corollary 2 Let r = (ro,...,7m—1) € N™ be a vector with ||r||y = 2m — 1. Then there

is a vector x = (zo,...,Tm—1) € N with 0 < x <1 and ||z|; =m such that
n—1
Zixi =0 (mod n).
=0



4 The Strong Davenport Constant

Definition Let X C M be a subset of a Z-module M. The strong Davenport con-
stant of X, SD(X), is the supremum of the widths of the minimal zero-sum mul-
tisets with support contained in X, see [3].

Remarks

1. Since width < size, SD(X) < DC(X).

2. Since w(T) = 0 <= T = () we have w(T) > 1 if T' is a minimal zero-sum
multiset in X. Then w(T") = 1 if and only if 7" = {{0}} or if T" consists of
a single element a € X — {0} of finite order n repeated n times. If X is a
subgroup of M, then {{a,(n —1)a}} is also a zero-sum multiset in X and it
has width 2 except when n = 2. Thus for a subgroup X C M:

SD(X) =1 <= X is cyclic of order 2.

Examples

1. SD(Z) = oo, since for any n, N = 1+---+n theset {N,—1,..., —n} of width
= size n + 1 is minimal zero-sum.

2. SD(Z/mZ) is unknown in the general case, see the notes at the end of this
section. Of course for small m the values are known, for example

SD(Z/3Z) = SD(Z/AZ) = SD(Z/5Z) = 2.

For m > 6 we have m — 3 > 3, hence S = {1,2,m — 3} is a minimal zero-sum
set of width = size w(S) = 3. Therefore SD(Z/mZ) > 3.

3. For the integer interval X = [-1...1] = {-1,0,1} € M = Z the strong
Davenport constant is SD(X) = 2. (The minimal zero-sum multisets {{0}}
and {{1,—1}} of Example 3 in Section [3| are in fact sets.)

4. For the interval X = [—¢...q] € M = Z with ¢ > 2 the value of SD(X) is
unknown in general.

By the next theorem if X is a subgroup it doesn’t matter whether SD(X) is defined
via multisets or via sets—in other words, the bound SD(X) (if finite) is attained by
minimal zero-sum set C X. We use an elementary but useful technique of modifying
multisets and start with some lemmas.

Definition Let S = {{s1,...,s,}} be a multiset in the Z-module M. The glued mul-
tiset S;; for two different indices ¢ # j consists of S with s; and s; removed and
their sum s; + s; inserted (s; and s; are “glued” together to s; + s;).

Example For S = {{1,1,3,—-2,-2,—-2,—2}} we have S34 = {{1,1,1,—-2,—-2, -2} }.



Remarks

1. #S;; = #5 — 1, the size is decremented.
2. w(S;;) may be = w(S) — 1 or = w(S) or = w(S) + 1, the width changes by at
most 1.

3. 3(S5) = X(95), the multiset sum is unchanged. In particular S;; is zero-sum
it S is.

Lemma 2 If S is a minimal zero-sum multiset in M, so is every glued multiset S;;.

Proof. Let S = {{s1,...,s,}}, and let T' C S;; a (nonvoid) zero-sum multiset. If s; + s;
is not in 7', then T" C S, hence T' = S, contradicting #71" < #5;; = #S5 — 1. Otherwise
s;+s; is in T" but not in T = S;j — T that is also a zero-sum multiset (with the natural
definition of the multiset difference), hence 7" C S with #T" < #S, forcing T’ = () and
T =25 <

Lemma 3 Let 2 < SD(X) < oo and T be a minimal zero-sum multiset in X of maximal

width w(T') = SD(X).
(i) If a € supp(T), then ka # 0 for 1 <k < p(a).
(ii) If a,b € supp(T), a # b, and #T > 3, then a + b # 0.

Proof. (i) Otherwise v(a) = k defines a zero-sum submultiset S C T of width 1. The
minimality of 7" enforces S = T, hence w(T") = 1, contradiction.

(ii) Otherwise S = {a,b} is a zero-sum sub(multi)set C T, hence = T, hence
#T = #S5 = 2, contradiction. &

Lemma 4 Let2 < SD(X) < oo and T be a minimal zero-sum multiset in X of mazimal
width w(T) = SD(X). Let a € supp(T) have multiplicity u(a) > 2 in T. Then for each
b € supp(T') — {a} at least one of the following statements holds:

(i) a+ b e supp(T),
(i) p(b) =1,
(iii) e+ b ¢ X.
Proof. Let T = {{s1,...,s,}} and a = s;, b = s;. Since w(T") > 2 and pu(a) > 2 we have
#T > 3. Thus Lemma 3| (ii) implies that a + b # 0.
Moreover the conditions a+b ¢ supp(7) and p(b) > 2 together would imply that T;; is
a minimal zero-sum multiset with a, b, and a+0b in its support, hence w(7;;) = SD(X)+1,

contradiction if a + b € X. Therefore 7" must satisfy at least one of the conditions (i),
(ii), or (iii). ©



Theorem 3 (CHAPMAN/FREEZE/SMITH) Let M be a Z-module, and suppose that
2<5:=SD(M) < co. Let T be a minimal zero-sum multiset in M that assumes the
mazximal width w(T') = s, and let the size #1' be minimal under this condition. Then T
15 a set.

Proof. We assume that T = {{s1,...,s,}} is not a set and derive a contradic-
tion. Under this assumption 7' has an element a = s; of multiplicity u(a) > 2.
Then 2a # 0 by Lemma [3[ (i). The glued multiset Tj; is a minimal zero-sum mul-
tiset in M with #T;; = #T — 1. The minimality of #7T enforces w(7;;) < s. Since
Tii =T — {{a,a}} U {{2a}} this implies that

(1) 2a € supp(T)

and a ¢ supp(T};), hence p(a) = 2. By Lemma[d] for each b € supp(T) — {a} the multiset
T must satisfy at least one of the conditions a + b € supp(T') or u(b) = 1.

Case I: Assume p(b) > 2 for some b = s; € supp(T') — {a}. Then a + b € supp(7T),
and the support of Tj; contains a and b, hence w(7Tj;) = s, but #7;; = #T —1 contradicts
the minimality of #T.

Case II: p(b) = 1 for all b € supp(T) — {a}. Then T;; with #71;; = #T — 1 has a
and a+ b in its support, but not b. The minimality of #7 enforces w(T;;) = s — 1, hence
a+b € supp(T).

Using equation and Lemma (3| (ii) we get 3a = a + 2a # 0 and by Lemma 4] (i)
even 3a € supp(7’). Continuing iteratively we see that all multiples ka are in supp(7),
hence

supp(T) ={ka |1 < k < s}.

Continuing the iteration beyond s we also get (s + 1) a € supp(7T’), hence (s + 1) a = ka
for some k with 1 < k < s, and from this the contradiction (s+1—k)a =0. &

By Theorem (3| for determining SD(Z/mZ) we need to consider only minimal zero-
sum subsets of Z/mZ. Explicit values, easily determined by a simple program, see [11],
are

2 form =3, 4, 5,

3 form=26,7,
SD(Z/mZ) = ¢4 for m =38, 9, 10,

5 form=11, ..., 15,

6 form=16, ..., 23.

\

The program uses the trivial fact that if S is a minimal zerosum subset of size s, and
t € S, then S—{t} is a zerofree subset of size s — 1. It proceeds successively by increasing
size s and terminates as soon as it doesn’t find any zerofree subsets of size s. This stop
criterion relies on the following results:

Proposition 2 Let S be a zerofree multiset in a Z-module M. Then the number w(S)
of different elements of S is at most SD(M).



Proof. By definition ¢t := —X(S) € M — {0}, hence T := S U {t} is a zero-sum multiset,
Y(T) = X(S) + t = 0. There is a minimal zero-sum multiset U C T'. Since S is zerofree
U is not contained in .S, hence the multiplicity of ¢ in U is 14 the multiplicity of ¢ in 5,
and U’ := U — {t} (multiplicity of ¢ decreased by 1) is a submultiset of S. Moreover

S(U') = S(U) — t = —t = (S).

Therefore S — U’ is a zero-sum multiset contained in S, hence = (), thus U’ = S and
U=U U{t} =S U{t} =T. Since U is minimal w(S) < w(T) =w(U) < SD(M). <&

Corollary 1 If S C M is a zerofree subset, then #S < SD(M).
Proof. Since S is a set #S5 = w(S5). ¢

Denote the maximum size of a zerofree subset of M by zf(M), called the zerofree

bound of M.
Corollary 2 Assume SD(M) < oco. Then zf(M) = SD(M) or SD(M) — 1.

Proof. zf(M) < SD(M) by Corollary 1. To get a zerofree set of size SD(M) — 1 take a
minimal zero-sum subset of size SD(M) and remove an arbitrary element. <&

Corollary 3 Assume SD(M) < oo and zf(M) =SD(M) — 1. Let T' be a minimal zero-
sum multiset in M of width w(T') = SD(M). Then T is a set.

Proof. Assume a € T has multiplicity wu(a) > 2. Then 77 = T — {{a}} is zerofree and
has width w(7") = w(T") = SD(M), contradiction. <

Example The smallest module m for which all zerofree subsets of Z/mZ have size
< SD(Z/mZ) — 1 is m = 8 (with SD(Z/8Z) = 4). As a consequence for m = 8
minimal zero-sum multisets 7" that attain the maximum width w(T") = SD(Z/8Z)
must be sets.

Notes on the ERDOs-HEILBRONN conjecture (EHC):

1. A version of the EHC claims that a subset S of a finite abelian group M
has a nontrivial subsum equal to 0 if r = #S > ¢y/m with m = #M
for an absolute constant ¢, in other words, zf(M) < [cy/m]. ERDOS AND
HEILBRONN proved this for the cyclic group M = Z/pZ of prime order p
with ¢ = 31/6. OLSON [9] dropped the constant to ¢ = 2 for prime order p,
and [I0] to ¢ = 3 for arbitrary (even non-abelian) M, and BALANDRAUD [I]

proved that zf(Z/pZ) = {\/2]94— 1/4 — 3/2—‘ for p prime > 3, in particular
zf(Z/pZ) < {\/Qp — 11, or ¢ = /2 in this case.
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2. Let ¢ be the E-H constant valid for the finite abelian group M. Then
SD(M) < zf(M) + 1 < [ey/m | by Corollary 2.

3. The strong form of the EHC (by ERDOS) drops the constant to ¢ = /2. In this
strong form the conjecture is open, the best known bound is ¢ = v/2m + (m)
where £(m) is O(/m-log(m)) for M cyclic of order m, proved by HAMIDOUNE
and ZEMOR. [6].

Therefore we have

e SD(Z/mZ) < [3/m] (proved by OLSON), and
e SD(Z/mZ) < [v2m'] (conjectured by ERDGS).

The explicit values above show that the bound (\/ 2m1 is sharp for many
values of m.

5 The Infinite Cyclic Group

Here we give a stronger version of LAMBERT’s Theorem [7] combined with SISSOKHO’s
bound [14]. The proof is given in [I3] in terms of linear Diophantine equations. Here we
rephrase it in terms of multiset sums. For a multiset S in Z let S*, S~ be the subsets
of S consisting of the positive resp. negative elements with multiplicities inherited from
S. Clearly S is zero-sum if and only if 2(S1) = —3(S7).

Example For the multiset S = {{1,1,3,—-2,-2,-2,—2}} we have ST = {{1,1,3}},
ST ={{-2,-2,-2,-2}}, and S is not zero-sum.

Theorem 4 Let S be a (finite) minimal zero-sum multiset in Z. Suppose that S contains
positive and negative integers, in particular #S > 2. Let A := max(S™) be the largest,
and B := —min(S™) be the additive inverse of the smallest element of S. Then

(i) (LAMBERT) #S* < B and #5S~ < A.

(ii) (POMMERENING) If #S* = B, then supp(S~) = {—B}, in particular w(S~) = 1.
If #S~ = A, then supp(S™) = {A}, in particular w(ST) = 1.

(ili) (SISSOKHO) #ST - #S~ < B(ST).

Proof. Let supp(S™) = {a1,...,ap} with 1 < a3 < ... < ap, and supp(S™) =
{=b1,...,=b} with 1 < b < ... < b.. Thus m = p+r, and m = w(S) since S,
due to its minimality, doesn’t contain 0. Furthermore A = a, and B = b,.

We prove all three statements (i), (ii), and (iii) together by induction on #5S.

If #5 = 2, then necessarily #ST = #S~ = 1, ST = {{a1}}, S= = {{-b1}},
¥(ST) = a1, and by = a3. Thus (i) and (iii) hold true. The precondition #S* = B in
(ii) implies by = 1, so S7 = {{—1}} and supp(S~) = {—1}. The same reasoning works
if #5— = A. Thus also (ii) is true.
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Now we assume that #S > 3. If we find a pair (4, ) of indices with a; = b;, then
we have the zero subsum a; + (—b;) = 0. The minimality of S enforces S = {{a;, —b;}},
contradicting #5 > 3.

Thus

{ar,...;ap} 0 {b1,..., b} =0.
We may assume (without loss of generality) that a, > b,, and consider the derived
multiset S’ where from S one instance of both a, and —b, is removed and the element
ap — by is inserted. Then #S5't = #S* and #5'~ = #5~ — 1.

Could #S~ = 1, hence S~ = (), happen? Then necessarily S~ = {{—b1}},
Y(ST) = —%(S7) = by, contradicting X(ST) > a, > by. Thus #5~ > 2.

Hence we may apply the induction hypothesis, for #5’ = #S — 1, and from (i) and
(iii) for S’ get

(2) #ST =#S8"T < B = —min(S7) < B, #5 —1=#5" < A :=max(9'") = A4,

3) #ST(#87 - 1) <B(S) = (ap = br) + B(ST) —ap = B(ST) — by

From Formula and by -#S™ =b.- (y1+-+yr) > b1+ +yb, = —X(S7) = B(ST)
(where y; is the multiplicity of —b; in S™) we get
S(ST) - #8™ — by - #57 < B(SH) - £S5 — B(5H),
(B(8T) —by) - #5 <B(ST) - (#5™ 1),
#ST(#ST —1) - #5T <B(ST) - (#5 - 1).
Since #S~ > 1 we may divide by #S5S~ — 1 and get (iii).
In Formula we might have #5~ — 1 = A. Then #5’~ = A’, and the induction
hypothesis implies supp(S'™) = {4’} = {A}, contradicting the additional element a, — b,

in S'T. Hence #S~ — 1 < A — 1, and the proof of (i) is complete.
For (ii) first assume that #S* = B = b,. Then

bryl + - +bryr = b?" : #S_ = #S+ : #S_ < Z(S+) = _Z(S_) = ylbl + - +yrbr-

Hence the multiplicity y; > 0 only if ¢ = r. Thus supp(S™) = {b,} = {—B}. The same
reasoning shows that #S~ = A implies that supp(S™) = {A} (since we didn’t use the
inequality b, < ap). <

Corollary 1 Let a = (a1,...,an) € Z™ with n > 1, and P = {i|a; > 0} and
N={jla; <0}. Assume p:=#P >1 and r := #N > 1, thus there are positive
and negative coefficients. Let A := max{a; |7 € P}, B := max{—a; |j € N}. Let
x = (x1,...,2,) € N" be an indecomposable solution of ajx1 + -+ apry, = 0. Then:

(i) The vector x is bounded by

ZmigB and ijSA.

ieP JEN
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In particular the linear Diophantine equation has only finitely many indecomposable
solutions.

(i) If > ,cpxi= B, thenx; #0 for j € N at most ifa; = —B. If Y ..y x; = A, then
xj #0 for j € P at most if a; = A.

(i) D iep @i X 2jen T < Diep Gilli-

Proof. If we collect together indices where the a; coincide and add the corresponding
vector coordinates x;, this doesn’t affect the properties of being a solution or an inde-
composable solution. Also the statements (i)—(iii) are not affected. Thus without loss of
generality we may assume that all coefficients a; are distinct. Then the corollary is a
reformulation of the theorem. <

Corollary 2 For N =[—q...q] C M = Z with q¢ > 2 the Davenport constant is 2q — 1.

Proof. A minimal zero-sum set in [—q. .. ¢] may be supported by {0} with multiplicity 1,
and this has length 1. Otherwise it is represented by integers x1,...,z4,21,...,y4 € N

such that
q q

D iwi+ Y (—i)yi =0.
=1

i=1
Corollary 1 (with A < g and B < q) implies that
1+ +xg<q and Yy +--+y, <gq,
hence our zero-sum set has length < 2¢. We distinguish two cases:

1. The only non-zero coordinates are x, and y,. The minimality enforces z, = y, = 1,
hence the length is 2 < 2¢ — 1.

2. There is some non-zero coordinate other than z, and y,. Then only one of z,
and y, may be non-zero, otherwise we may decrement both by 1 and still have a
non-trivial zero sum. Hence A < q or B < ¢g. Thus the length is < 2¢ — 1.

On the other hand the equation ¢ (¢—1)—(¢—1) ¢ = 0 corresponds to the case z; = ¢—1,
Yq—1 = ¢, and all other coefficients = 0, and yields a zero-sum set of length 2¢ — 1 that
is minimal. Hence the bound 2g — 1 is sharp. <

References

[1] E. Balandraud: An addition theorem and maximal zero-sum free sets in Z/pZ.
Israel J. Math. 188 (2012), 405-429, 1009-1010.

[2] J.D. Bovey, P. Erdés, 1. Niven: Conditions for a zero sum modulo n. Canad. Math.
Bull. 18 (1975), 27-29.

13



[3]

S. T. Chapman, M. Freeze, W. W. Smith: Minimal zero sequences and the strong
Davenport constant. Discr. Math. 203 (1999), 271-277.

R.B. Eggleton, P. Erdés: Two combinatorial problems in group theory. Acta Arith-
metica 21 (1972), 111-116.

P. Erdés, A. Ginzburg, A. Ziv: A theorem in additive number theory. Bull. Res.
Council Israel 10F (1961), 41-43.

Y. O. Hamidoune, G. Zémor: On zero-free subset sums. Acta Arithm. 78 (1996),
143-152.

J. L. Lambert: Une borne pour les générateurs des solutions entieres positives d’une
équation diophantienne linéaire. C.R. Acad. Sci. Paris Série I, 305 (1987), 39-40.

E. Noether: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann.
77 (1916), 89-92.

J. E. Olson: An addition theorem modulo p. J. Comb. Theory 5 (1968), 45-52.
J. E. Olson: Sums of sets of group elements. Acta Aritm. 28 (1975), 147-156.

K. Pommerening: Remarks on subset sums. Online:
http://www.staff.uni-mainz.de/pommeren/MathMisc/SubSum. pdf

K. Pommerening: The indecomposable solutions of linear congruences. Preprint
online as arXiv:1703.03708 [math.NT]: http://arxiv.org/abs/1703.03708.

K. Pommerening: The indecomposable solutions of linear Diophantine equations.
Online: http://www.staff.uni-mainz.de/pommeren/MathMisc/LinDio.pdf

P. A. Sissokho: A note on minimal zero-sum sequences over Z. Acta Arithmetica
166 (2014), 279-288.

M. F. Tinsley: A combinatorial theorem in number theory. Duke Math. J. 33 (1966),
75-79.

14


http://www.staff.uni-mainz.de/pommeren/MathMisc/SubSum.pdf
http://arxiv.org/abs/1703.03708
http://www.staff.uni-mainz.de/pommeren/MathMisc/LinDio.pdf

	Multisets
	Multiset Sums
	The Davenport Constant
	The Strong Davenport Constant
	The Infinite Cyclic Group

